@article{SITITO, author = {Anatoly Novikov и Anton Pronkin и Dmitry Ustukov}, title = { Быстрые алгоритмы первичной обработки изображений в бортовых системах технического зрения}, journal = {Современные информационные технологии и ИТ-образование}, volume = {16}, number = {3}, year = {2020}, keywords = {}, abstract = {В многоспектральных системах технического зрения летательных аппаратов решается большое число задач, призванных обеспечить безопасный полет в сложных условиях видимости и успешное выполнение полетного задания. Эти задачи традиционно делятся на задачи низшего уровня и задачи высокого уровня. К задачам низшего уровня, иначе – задачам первичной обработки изображений, относятся задачи подавления шума в составе обрабатываемого изображения, улучшения изображения и детектирования границ перепада яркостей. К методам решения задач в бортовом компьютере предъявляются жесткие ограничения по затратам машинного времени на их реализацию. Весь комплекс задач как низшего, так и высокого уровня должен решаться в реальном времени. В статье представлены оригинальные алгоритмы решения двух задач низшего уровня – подавления дискретного гауссова шума и детектирования границ. Для подавления дискретного гауссова шума применен модифицированный вариант сигма-фильтра, дополненный оригинальным алгоритмом низкой вычислительной сложности для оценивания уровня шума в составе обрабатываемого изображения и вычисления на этой основе порога отсечения в сигма-фильтре. Для детектирования границ перепада яркостей на изображении предложен способ, являющийся, с одной стороны, аналогом метода Кенни, а с другой - альтернативной ему. Отличия от детектора границ Кенни заключаются, во-первых, в использовании строчной маски для вычисления оценок частных производных в составе градиента. Эта маска обеспечивает получение оптимальных, в смысле метода наименьших квадратов, оценок частных производных. Формирование сглаженных оценок частных производных позволило отказаться от предварительного сглаживания обрабатываемого изображения в условиях шума невысокой интенсивности. Во-вторых, в предложенном методе применен иной способ формирования порогов, обеспечивающих выбор «сильных» и «слабых» линий. В отличие от детектора границ Кенни примененный способ формирования и использования порогов ориентирован на формирование контурного изображения с минимальным числом коротких контурных линий. Короткие линии затрудняют анализ контурного изображения на этапе решения задач высокого уровня. Новый способ детектирования границ требует затрат машинного времени в 2-3 раза меньше, чем детектор границ Кенни.}, pages = {673--685}, doi = {10.25559/SITITO.16.202003.673-685}, url = {http://sitito.cs.msu.ru/index.php/SITITO/article/view/699} }