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Due to the complexity of lattice models of statistical physics, there is interest in developing new ap-
proaches to study them, including those using quantum technologies. In this paper, we describe and
implement a scheme for applying the Variational Quantum Eigensolver to the problem of finding the
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calculation of Rayleigh quotient for transfer matrix is described in detail for n = 1,2,3. Using special
parameterizations of the state of the system of qubits and transfer matrix decomposition, free ener-
gy and magnetization are calculated for 3-chain model on a quantum computer emulator. The entire
computation process, including quantum computer emulation, is implemented using the Python pro-
gramming language. Also, a method is proposed for significant acceleration of calculations (by about
10,000 times) on the emulator for considered models. Confidence intervals are constructed for the
found characteristics of the model.
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AHHOTanusa

B cBfI31 €O CJIOKHOCTBIO UCC/Ie/IOBAHUS PEIIETOYHBIX MO/JIeJIel CTaTUCTHYeCKON QU3NKHU BO3SHUKAET
HWHTepec K pa3paboTKe HOBBIX MOAXO0J0B K UX U3y4YEHHUIO, B TOM YHCJIE C UCII0JIb30BaHUEM KBAaHTOBBIX
TEXHOJIOTUH. B maHHO#N paboTe onmuchIBaeTCs U peasn3yeTcs cxeMa npuMeHeHus Variational Quan-
tum Eigensolver (BapraiiuoHHbBIA KBaHTOBBIN aJTrOPUTM JJIsI HAX0XK/J€HUSI COOCTBEHHBIN 3HAYEHU )
K 3ajjlaye HaxOXK/leHUsI CBOOOAHOUN 3HEPrHM M HaMarHUYEeHHOCTH B TEPMOJWHAMHUYECKOM Ipejeie
N-IenHoM 06061IeHHON MI0CKOW MoJiesin U3MHTa ¢ y4eToM B3auUMOJeMCTBUS BJIIMKAUIINX cOCefieH,
CAeAYIOUMX OJMKaUIINX cocefied U IMJIAKEeTHBIX B3aUMO/leHCTBUHN. PacyeT oTHomenus Panes gns
TpaHchep-MaTpUIbl MOAPOGHO onucaH g n = 1,2,3. C mnoMoLbi0 CHeUaTbHbIX TapaMeTpU3aLni
COCTOSIHUSI CHCTEMbI KYOUTOB U pasJioKeHUsI TpaHCPeP-MaTPHULIbl BBIYUCISAIOTCS CBOGO/[HAS SHEPTHUS
Y HAaMarHW4eHHOCTb [JIS TPEXIeNOYeyHOW MOJeJHd Ha 3MYJSATOpe KBAaHTOBOI'O KOMIIbIOTEpa.
Becp mpouecc BBIYMCIEHUM, BKJOYas 3MYJASLUI0 KBAaHTOBOTO KOMIBIOTEPA, peajn30BaH C
HCIIOJIb30BaHUEM sI3bIKA NporpaMmupoBaHus Python. Takke mpejsiaraeTcs MeTo[ 3HAaYUTEJIBHOIO
ycKopeHUs BeluyrciaeHnd (mpuMepHo B 10 000 pa3) Ha aMyssTOpe [iJis pacCMaTPUBAeMbIX MOJeJIel.
Jl1s1 HaliIeHHBIX XapaKTePUCTHUK MOJEJIM IIOCTPOEHBI I0BEPUTEbHbIE HHTEPBAJIbI.

KiroueBble C/10BA: KBaHTOBble BbIYMC/IEHHsS, BAPUAIMOHHBIM KBAHTOBBIA aJrOPUTM, MOJENb
W3unra, laMuabTOHMaH, TpaHcdep-MaTpuIla, CTATUCTHYECKas CyMMa, CBO60iHasA IHeprus

KoH}IUKT MHTEPECOB: aBTOpLI 3adABJISIOT 06 OTCYTCTBUU KOH(JIMKTA HHTEPECOB.

J1 M TUPOBaHMA: Aujpees A. C., Xpanos I1. B. UccieioBanre 06061eHHbIX MOZiesIed M3uHra Ha
KBaHTOBOM KoMnbioTepe // CoBpeMeHHbIe HHOPMaLMOHHbIe TexHOoJ0ruu U UT-o6pasoBanue. 2023.
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1. Introduction

The Ising model is a mathematical model of statistical physics de-
signed to describe the magnetization of a material. Ising chain mod-
els are of interest in connection with the emergence and study of
nanomaterials with one-dimensional or quasi-one-dimensional
characteristics. Works [1, 2, 24, 25, 26] are devoted to the research
in this area.Due to the complexity of such models, there is interest
in developing new approaches to study them, including those using
quantum technologies. This topic has been the subject of many
works. The article [3] gives examples of calculating the energy of
the ground state of the quantum Ising model with four spins and
the partition function of the Potts model with three spins. In [4] au-
thors present a quantum algorithm to prepare the thermal Gibbs
state of interacting quantum systems. Paper [5] proposes a scheme
to calculate the Gibbs function with the imaginary time evolution.
An efficient quantum algorithm for the exact evaluation of either
the fully ferromagnetic or anti-ferromagnetic q-state Potts partition
function Z for a family of graphs related to irreducible cyclic codes
is presented in [6]. In [7] establishes a relationship between 1QP
and computational complexity of calculating the imaginary-valued
partition functions of Ising models. In [8] authors develop a hybrid
quantum-classical algorithm to estimate the partition function, uti-
lizing a novel Clifford sampling technique. A quantum algorithm for
estimating partition functions of quantum spin Hamiltonians is pre-
sented in [9]. In [10] builds explicit quantum circuits that imple-
ment the actions of the transfer matrices on arbitrary many-qubit
states. A linear-time algorithm is presented in [11] for the construc-
tion of the Gibbs distribution of configurations in the Ising model,
on a quantum computer.

At this stage in the development of quantum computing, the capa-
bilities of quantum computers are rather limited: the number of
qubits is small, and the depth of a possible circuit is low due to
strong noise. For computers of this period, the designation NISQ
(Noisy intermediate-scale quantum, Noisy medium-scale quantum)
is used. However, it has been shown that such quantum computers
are superior to classical ones on a certain set of tasks that allow us-
ing the advantages of quantum computing [12-14]. Algorithms run-
ning on these devices can use a limited number of qubits and must
be noise tolerant to some extent. Quite often, these are algorithms
that use classical computations in addition to quantum ones.

VQE (Variational Quantum Eigensolver) is one of the most promis-
ing algorithms for computers of the NISQ era. VQE was first intro-
duced in [15], its theoretical justification was extended and formal-
ized in [16]. The scope of the algorithm is very wide, it includes:
drug development [17, 18], materials science [19], chemical tech-
nology [20].

In this paper, we describe and implement a scheme for applying the
Variational Quantum Eigensolver to the problem of finding the free
energy and magnetization in the thermodynamic limit of the n-
chain generalized planar Ising model with the interaction of nearest
neighbors, next nearest neighbors, and plaquette interactions. Us-
ing special parameterizations of the state of the system of qubits,
the highest eigenvalue of the transfer matrix is calculated for n =
1,2,3 on a quantum computer emulator. The entire computation
process, including quantum computer emulation, is implemented
using the Python programming language. Also, a method is pro-
posed for significant acceleration of calculations (by about 10.000
times) on the emulator for considered models. Confidence intervals
are constructed for the found characteristics of the model.
Chapters 2 and 3 describe the model under study and set the re-
search task. Chapter 4 describes how VQE works. Chapter 5
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describes a method for calculating the Rayleigh quotient for the
transfer matrix. In the next three chapters, the method is described
in more detail for specific cases. In chapter 7, the results of calcula-
tions for the three-chain Ising model are demonstrated.

2. Model description

In this paper, we consider the possibility of calculating the free en-
ergy of a generalized two-dimensional Ising-like model with cycli-
cally closed boundary conditions in the thermodynamic limit on a
quantum computer. The interaction between spins is given by the
following Hamiltonian

L-1
H"(0) = —Z_Oyin, €)

where
r

n—1 ]

1

H' = Z O(E(‘Ti,jgi,jﬂ + 0141,j0141,j41) +

j=
1201 j0141,; +

+)3(01,0141,j41 + 01 jr10i41) +
I

U
+/40j0i41,j0; j+10i41,j41 T ?(O_i,j + 0i+1,j))
0, = %1,

Ooj=0.5]=0,..,n
Oip = 0jnyi=0,...,L—1.

Jr. and h' are dimensionless coefficients characterizing the interac-
tion of vertices with each other and with the external field, respec-
tively.

It should be noted that with such a representation of the Hamilto-
nian at n = 2 interactions with the coefficients J';,J's,J', are dou-
bled, and atn = 1weset)'; =J'5 =J', = 0.

3. Transfer-matrix method

To calculate the free energy in the thermodynamic limit, the trans-
fer matrix method [1, 2, 24, 25, 26] is used, which is based on find-
ing the largest eigenvalue 4,4, of a certain matrix (transfer matrix)
constructed from a given Hamiltonian.
The free energy in the thermodynamic limit L — oo is calculated by
formula
T
f = _k%ln(/lmax ):
where T is the temperature, kgis the Boltzmann constant.
Elements of the transfer matrix © of size 2" x 2™ (Table 1) have the
form
HE(90,0,+490,1-1,91,0+91,n-1 )

0 = e KT ,
where
n—-1
k= ) 271 —ay)),
=0
n—1
l= ) 277 (1-o0y).
j=0
In the following calculations, we use the notation
e, W
Je= "y

For the considered Hamiltonian, the transfer matrix will always be
symmetric, and hence its eigenvalues are real.
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T able 1. Structure of transfer matrix for n=3
* - 012
+ - + - 011
+ - + - + - + - 010
+ + Boq 01 o2 B0z B4 Bos Bos 007
+ - 010 011 012 013 014 015 016 017
- + 020 021 022 023 024 025 026 027
- B30 031 B3z 033 B34 Bas B34 037
+ + 040 04y 04 043 044 O4s 046 047
- - 950 951 952 953 954 955 956 957
- + 060 061 62 063 Osa O6s 66 067
- 070 071 072 073 074 075 076 077
0,2 00,1 90,0

Source: Compiled by the authors.
4. Variational quantum eigensolver

Due to the fact that the dimension of the matrix grows exponen-
tially with the increase of lattice width, special algorithms are
needed to calculate the largest eigenvalue. In this paper, we con-
sider the possibility of applying VQE to this problem.

Let us describe the principle of its work.

Let © be a symmetric matrix with dimentions 2" x 2™, |y) is a state
of a system of n qubits.

Consider the Rayleigh quotient for the transfer matrix, i.e. the dot
product (i|O1p) () = 1).

Representing |1) as a linear combination of orthonormal eigenvec-
tors |¢;) of the matrix ©, we obtain

2n_1 o1
Wiel) = (Y. agilely. ag;)=
i= j=
2n_q n_q
- Zi:o Zj=0 a;a}'/lj <¢1|¢]> =
2n—1
= Z Ailailz
i=0

i=
Since Yla;|* =1, @|OY) < Apaxr Amax is the maximum eigen-
value. Moreover, there exists a state |Pp.x ), such
that (Ymax [01Wmax ) = Anax

We introduce a parameterized quantum circuit that will be used to
obtain different states of qubits. An example of such circuit forn =
3 is shown in Fig. 1, where

cos (x2i+1) —sin (x2i+1)
— _ 2 2
Up = Ui (e xgi40) = | Xoiv1\ Xait1 |
iX5; i ix,; i+t1
e*z2i sin (—) e'*2i cos (—)
2 2
i=0,1,2.

o {0

a1

9,

Fig. 1. Example of a parameterized quantum circuit for n =3
Source: Hereinafter in this article all figures were drawn up by the authors.

By applying the circuit to the qubits, we get the parameterized state

|1/)(x1, ...,xp)).

Substituting into the dot product, we obtain a real function of p var-
iables.

9(xy, 0 x) = (W (xg, o, ) 1019 (x4, 0, X))

It remains to find the maximum of this objective function equal
to Aax - Any optimization algorithm is suitable for solving this
problem. In this work, the COBYLA algorithm? [21, 22] was used.

5. Computation of Rayleigh quotient on
quantum computer

The Rayleigh quotient (|@[y) can be interpreted as the expected
value M (X) of some random variable X, corresponding to a given
qubit state. In this case A; — are the possible values of this quantity,
|a;|? are the probabilities of obtaining them.
From here we get a method for its approximate calculation: to make
a series of measurements of qubits and calculate the average. How-
ever, one needs to already know all the eigenvalues of the matrix to
perform the computation.
To overcome this obstacle, we decompose the matrix © into a linear
combination of matrices of a simpler form, independent of the
model parameters.

0=YcByci=cUpJ2)3JuhT)
To do this, identically equal coefficients are grouped, and for each
of such groups a matrix is constructed with ones in the places of the
elements of this group, the rest of the matrix is filled with zeros.
Based on the construction, all matrices will be symmetrical. For a
single-chain model, such a decomposition looks like this:

(efz+h ee];fh)zew((l) 8)+ezz-n((0) 2)+e—/z(g (1))

e )2
Separately, we can consider the diagonal elements of the transfer
matrix, since for a diagonal matrix composed of them, the eigenval-
ues and vectors are determined in an obvious way. This reduces the
number of matrices in the decomposition.
In this case, the dot product also decomposes into a sum

Wil =y Bl

or

MX) = Z:ciM(Yi),

t Powell M.J.D. A View of Algorithms for Optimization without Derivatives. Technical Report DAMTP2007 /NA03. Cambridge: Department of Applied Mathematics and
Theoretical Physics, University of Cambridge; 2007. 12 p. Available at: https://www.damtp.cam.ac.uk/user/na/NA_papers/NA2007_03.pdf (accessed 17.06.2023).
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where Y;is a random variable corresponding to B; and the
state [(xy, ..., xp))

For each matrix B; we find eigenvalues and eigenvectors. From the
found vectors we construct an orthonormal basis and a unitary op-
erator A; of transition to it.

Then, to calculate M (Y;), the state |1[J(X1, s x,,)) is first created us-
ing a parametrized circuit, after which the transition operator to
eigenbasis 4; is applied and measurements are taken. As a result of
the measurements, we obtain one of the eigenvectors |vj) ofthe ma-
trix B;. This means that the random variable Y; has taken a value
equal to the eigenvalue 4; ; of the matrix B;.

do

q1

Fig. 2. Example of one measurement of Y; for n=3

After a series of such measurements, you can calculate the average
Yigt++Yig

value of the results Y, = . Based on the law of large num-

bersY, approaches the expected value of ¥;, that is (| B; |1)), as k —
00,
The accuracy of the estimate can be described using a confidence
interval. Since Y, for sufficiently large k has a normal distribution,
the true expected value with a probability of 95 % lies in the inter-
val

[W - 2 Y, +2 —]
where s; is the standard dev1at10n of Y.
After domg these calculations for all matrices Bl, we get

wiel =y cplBlu) ~ Z e = %

A i= 1ClSl

6. Examples of objective function computa-
tion

Confidence interval [X — 7, X+= \/_

1-chain model
In this example, we consider the Hamiltonian

1_p W
Hi = J300,i00,41 + P (Uo,i + Uo,i+1)-

We define the function g(x,y)= W(xy)|0.¥(x,y))=
(¥(x,y),0,9(x,y)) as follows. The qubit is initialized in the state
|0) = ((1)) To obtain the state |y (x,y)), the parametrized unitary
operator U, is applied to it.

cos (%) —sin (g)
UO = UO(JC, y) = . y . y
e¥sin (E) e cos (E)

[w(x,y)) = Uy(x,¥) |0)

The dot product ((x,¥)|0;[W(x,)) = (WY(x,y),0,¥(x,y)) can
be interpreted as the expected value M (X) of some discrete random
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variable X, the values of which are the eigenvalues of the matrix 0;.
To calculate M (X) the transfer matrix is decomposed into a linear
combination of matrices of a simpler form.

Uz+h) —J2
_(e T erT
91_< —J2 (/2—’1)>
eT e T
_ ko 1 Gzth) (1 0
_eT( )+e ! (39 0)
== ). aluhT) B
=

5= o) = o)B=(o 1)

Then W0, [Y(x,y)) = (P(x,y),0,9(x,y)) =
i (WG y) Bip(x,y)) =

3
- Z.zl ci{w (e, y)Bil(x, y))

o= © 9

For each symmetric matrix B;, a series of measurements is made in
the basis formed by its orthonormal eigenvectors. To do this, the
state of the qubit is transformed using the transition matrix into the
new basis - the unitary operator A4;. A;* is an operator whose col-
umns are formed by orthonormal eigenvectors of the matrix B;.

ool L= )

In this case, the matrices A;!
general, this is not the case.
Let us present the eigenvalues of the matrices B;. By: 4,4 =1,
M1=-—1By:A0=1, A, =0.B3:130=0, 43, = 1.

are also symmetric, so 4; = A7, In

After applying the operator 4;, the qubit is measured. The result of
the measurement is either the state |0), or | 1), which correspond to
the eigenvectors of B;. Let us define a discrete random variable Y;
as follows: if the state |0) is obtained as a result of the qubit meas-
urement, then Y; = 4;,, if |1), then Y; = A, ;. The distribution of ¥;
depends on the state of the qubit [(x, y)).

Thus M(X) = X3, c;M(Y))

For matrix B; the scheme of one iteration is as follows (Fig. 3).

do

C

Fig. 3. Scheme of one iteration for matrix B; with n=1

k iterations are carried out and the average value of the results is
calculated.
- Y, ++Y
Yi — i1 ik
k
Then the approximate value of the function g is calculated.

3 3
JE=MI = ) M) ~ ) o,

i=1 i=
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2-chain model
We define the function g(x;, y,, X5, ¥,) =

(W (g, y1, %2, ¥2) 1021 (1, y1, %2, ¥2)) =
(¢(x1,y1,xz, ¥2), 0,9 (x, y4, xz,yz)) as follows. The system of two

1
qubits is initialized in the state |00) = 8 . To obtain the state
0
[ (x1, y1, %2, V2)), first, the parameterized unitary operator is ap-
plied to the null qubit
V1 4t
cos ( > ) sin ( > )

Up = Up(xy,y1) = ) ) ,
e¥isin (J;—l) e™icos (%)

then the CNOT operator with zero controlling qubit, and after that
the unitary operator is applied to the first qubit

Y2 . Y2
cos (7) —sin (7)
U, = Ul(xz'.')’z) =1 . Vo . Vs
e'*2sin (?) e*zcos (7)

[P Qe y1, %2, ¥2)) = (Uz(xz,YZ)) CX (I®U, (x1,y1)) 100)

The  dot  product  (Y(x1,y1, X2 ¥2)[021%(x1,y1, %2, ¥2)) =
(W1, y1, %2, 2), 0,(x1, ¥, X5, 7,)) can be interpreted as the ex-
pected value M (X) of some discrete random variable X, the values
of which are the eigenvalues of the matrix ©,. To calculate M (X) the
transfer matrix is decomposed into a linear combination of matri-
ces of a simpler form.

2h+2]1+2],+4)3+2]4 h=2], h=2]4 2]1=2]2=4]3+2]4
e T e T e T e T
h=2], —2J1+2)-4)3+2])4 —2J1-2)2+4)3+2]4 —h-2J,
0, = e T e T e T e T —
2 h=2], —2J1=2]p+4]3+2]4 —2]1+2),—=4]3+2]4 —h=2],
e T e T e T e T
2]1=2]2—4)3+2]4 —h-2], —h-2], —2h+2]1+2),4+4)3+2]4
e T e T T T
2h+2]1+2],+4]3+2], —2J1+2)2—4]3+2]4 —2J1+2),—4]3+2]4 —2h+2]1+2],+4]3+2]4
= diag (e T ,e T ,e T ,e T )
h-2J, —h-2J, 2J1=2]5~4J3+2], =2]1=2]5+4/3+2], 5
+€ T B2+e T B3+6’ B4+6’ T BS = Z CiUl']Z']3']4'h'T).Bi
i=1

01 1 0 0 0 0O
B, = 1 0 0 O B. = 0 0 0 1
2 1 0 0 073 0 0 0 1
0 0 0 O 01 1 O
0 0 0 1 0 0 0 O
_ {0 0 0 O 0 01 O
Bi=1l0 0 0 o) ={0o 1 0 o0
1 0 0 O 0 0 0 O

Then @ (xy,y1, X2, V) |05 1Yy, vy, X0, ¥5)) =
W), 0,9(x,y)) =
Y, Ci(w(xl’yl'XZ’YZ)'Bi‘/’(xl,yl,xz,yz)) _

5
= Z L ¢i{Cer, 1, X2, ¥2) | Bilp (1, y1, X2, ¥2))
i=

For each symmetric matrix B;, a series of measurements is made in
the basis formed by its orthonormal eigenvectors. To do this, the
state of the qubit is transformed using the transition matrix into the
new basis - the unitary operator 4;. A;* is an operator whose col-
umns are formed by orthonormal eigenvectors of the matrix B;.
Eigenvalues of the matrix B; — 4; ;,j = 0,1,2,3.

After applying the operator 4;, the qubit is measured. The measure-
ment result is one of the states |0), | 1), |2), |3), which correspond to
the eigenvectors of B;. Let us define a discrete random variable Y;
as follows: if the state |j) is obtained as a result of measuring a
qubit, thenY; = 4; ;. The distribution of ¥; depends on the state of
the qubit|y(xy, y1, X2, ¥2)).

Thus M(X) = X5, c;M(Y)

For matrix B; the scheme of one iteration is as follows (Fig. 4).
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Fig. 4. Scheme of one iteration for matrix B; with n=2

k iterations are carried out and the average value of the results is
calculated.

— Y, ++Y

YL — i1 ik
k

Calculations are carried out in turn for all matrices B;.

Then the approximate value of the function g is calculated.

3 3
91, y1,%2,¥2) = M(X) = Z aM(¥) = z Y,
i=1 i=1
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3-chain model cos (’;—2) —sin (%)

We define the function 9(x1, Y1, X2, V2, X3,Y3) =
(W01, ¥1, X2, Y2, %3, ¥3) |03 (1, 1, X2, V2, X3, ¥3)) =

(1/J(x1,y1,x2,yz,xg,yg).@3¢(x1,y1,x2,y2,x3,y3)) as follows. The
1

system of three qubits is initialized in the state |000) = .To ob-

OO OO OO

0
tain the state [(xy, V4, X2, Y2, X3, V3)), first, a parameterized unitary
operator is applied to the zero qubit (Fig. 5)
V1 Y1

cos (7) —sin (7)
Up=Uplx,y) =| Vi ) vi |
e*1sin (7) e™1cos (7)

Then a CNOT operator with zero control qubit acting on the first
one. After that, the unitary operator is applied to the first qubit

U, =U;(x,,y,) = .
' s e'*2sin (%) e*2cos (%)
Then a CNOT operator with the first controlling qubit acting on the
second. And finally, the unitary operator is applied to the second
qubit
cos (&) —sin (&)
U, = Uy(x3,y3) = ) 2y3 . Zyg
e'*ssin (?) e*3cos (3)
|¢(x1'y1' xzd’z'xyys)) =
= (U;(x2,y,)®IRI) CX1. IQU, (x;,y,)Q0) -
* CXo1 (I®IQUy(x1,¥,)) |000)
Dot product
(W, y1, %2, Y2, X3, ¥3) 103 [ (0t Y1, X2, V2, X3, ¥3)) =
(W01, y1, %2, Y2, %3,73), 039 (X1, ¥1, X5, 2, %3,¥3)) can be inter-
preted as the expected value M(X) of some discrete random varia-
ble X, the values of which are the eigenvalues of the matrix 05. To
calculate M (X) the transfer matrix is decomposed into a linear com-
bination of matrices of a simpler form.

3h+3J1+3J2+6J3+3]sa h—=J1+3Jp=2J3+3]Jsa h—=J1+3J2=2J3+3]s —h=J1+3J,=2]3+3]J4a h=J1+3J2=2]3+3]4
0; =diag(e ,e ,e ,e T ,e T Rk
—h—-J1+3]3-2]3+3]s —h-J1+3J3-2]3+3]s —3h+3]1+3/5+6]/3+3]4 2h+]1+)2+2]3—]a htJ1—J2=2]3—]a
e T ,e T ,e T )+ +e T +e T 3
h=J1=J2+2]3—]a —JitJ2—2]3—]a —J1—3J2+2]3+3]4 —htJ1-J2=2]3—]a
+e T B,+e T Bs+e T Bgte T 7
—h=J1—=J2+2]3=]4 —2h+1+)2+2]3—]a 3J1=3J2—6J3+3]/4 10
te T gte T gte T By = Z ¢iU1J2J3,Ja B, T) By
=1
01 1 0 1 0 0 O 0 00 10110
10 0 00 0 0O 0 00 0 O0O0OO0OTDO
10 0 00O OO 0 00 0 0 O0 O0OTUDO
B, = 000 0 OO O0OTO0 B, = 10 0 000 0O
2 1.0 0 0 0 0 0 0f"™3 0 00 0 O0O0O0TUDO
000 O0O0OO0OTUO0OTQ O 10 0 0 0 0 OO
000 0O OO O0OTO0 10 0 000 0O
0 00 0 O0 O0 0 O 0 0000 0 0O
0 0 00O O 0 0 O 0 0 0OO 0 0 O
001010 00 00 010100
01 0010 00O 00 010 010
B, = 00 0 0 O0 O0 O0O0 B. = 01 100 0O0O0
4 0110000 O0}"7® 000 O0O0OT1TT1TPO0
00 0O0O0OTO0OTUO0OTQ O 010 01000
00 0 0 O0 O0 O0O0 00101000
0 0 00O 0 0 O 0 00 0 0 0 0 O
0 0 00OO 0 0 O 0 0 00O 0O OO0
000 O0O0OOT1TTPO 0 0 0 0 0 O0 0 1
000 O0OT1TO0TFO0 00 0O0OUO 0O 01
B = 000 01T 0 00 B. = 0 00 0 0 O0 O0TUDO
6 00 010000}~ 0 00 0 O0O0 O0 1
001 0 0 O0 O0O0 0 00 0 O0O0OO0OTDO
010 0 O0O0OTO 0 00 0 OO0 OTDO
0 0 00O 0 0 O 01 1 0 10 00O
0 0 0OOO 0 O0 O 0 0 0OO O 0 O
000 0O O O0O0TO0 00 0 0 OO O0OTPDO
00 00O TO0OTUO0TO O 00 0O0OTO OO O0OTO O
B, = 000 0 O 110 B. = 00 0 0 O0 O O0 1
8 00 0 0 O0O0O0 D0} 00 0 0O OO 0OTPO
00010 010 00 0 0 OO0 O0 1
000 1 0 100 000 0 OO0 O0 1
0 0 00OO 0 0O 0 001 01 10
0 0 00O 0 0 1
0 000 0 O0OTDO
0 00 0 O0O0OTUO0OTPO
Byy = 00 0O0OOT OO
0 000 0O O0OTPDO
0 000 0 O0OTP O
0 00 0O O0O0OTUOTPO
10 0 000 0O
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do Free Energy
—2 1 —— Exact solution
q1 ° VQE
-3
9,
_4 -
¢ 0 1 2 L
kg
Fig. 5. Scheme of one iteration for matrix B; with n=3 ]
Then (W (1, y1, %2, Y2, X3, ¥3) |03 [ (x1, Y1, X2, V2, X3, ¥3)) = 61
('I’(xhypxz: V2, %3,¥3), 03 (x1, V1, X2, V3, x3,y3)) =
21 Ci(‘l’(xv}’pxz:)’z:x3:Y3)'Bi'l’(xvhrxz'}’z:xszh)) = 7]
10 -
= Z L iy, y1, %2, Y2, X3, 3) | Bilp(x1, ¥1, %3, V2, X3, ¥3)) 20 -15 -l0 -05 00 05 10 15 20
= r
For each symmetric matrix B;, a series of measurements is made in ) )
Fig 6.F for n=3 with h=-00L)=),=J,=1]3=
the basis formed by its orthonormal eigenvectors. To do this, the '8 rei'e; irgg_zf)r;ge m‘;vrgbe]iagfa;? itlzl:surements kh: 1{)2000]4 Js

state of the qubit is transformed using the transition matrix into the

new basis - the unitary operator 4;. A7 * is an operator whose col-  The magnetization is calculated by the formula
umns are formed by orthonormal eigenvectors of the matrix B;.

Eigenvalues of the matrix B; — Ai_j,j =0,12,..,7. M=— af _ _lﬂ
After applying the operator 4;, the qubit is measured. The measure- T 0T kgok
ment result is one of the states |0), |1), |2), ..., |7), which correspond ~ The derivative was calculated numerically.

to the eigenvectors of B;. Let us define a discrete random variable Of  frean—fn

Y; as follows: if the state |j) is obtained as a result of measuring a an- " An +o(Ah)

qubit, thenY; = 4, ;. The distribution of ¥; depends on the state of Magnetization

the |¢(x1ry1'x2!y2'x3ry3))- E
Thus M(X) — Zilgl CiM(Yi) 0.0 4 T Sgict solution
For matrix B; the scheme of one iteration is as follows (Fig. 5).
0.2 1
k iterations are carried out and the average value of the results is
calculated.
0.4 1
— YtttV M
Yl — L k L
706 |
Calculations are carried out in turn for all matrices B;.
Then the approximate value of the function g is calculated. —0.8 1
10 10 L
91, y1,%3,y2,%3,¥3) = M(X) = Z M) ~ z 4 -1.0 1
i=1 i=1 T T T T . T T T ‘

7. Computation results
Fig. 7. Magnetization for n = 3 with parameters h = —0.01,/; = J, =], =

The calculations were carried out using a quantum computer emu- 1,J3 = r,T = 0.2.The number of ¥; measurements k = 10000, Ah = 0.01

lator [23] written in the Python programming language. Programs

were also written to calculate the transfer matrix, its decomposi-

tion into a linear combination and the construction of unitary oper-  Confidence interval for the free energy with 95 % probability
ators, and the calculation of the average value. The SciPy library was L € [—Tln ()? +2 i) ; =Tln ()? -2 i)] .
used to find the maximum mean value. The text of the program re- kg vk Vi
lated directly to this work is presented in the appendices. Interval length

. . . . . . . . 4S ™~
Using dlrt?ct emulaFlon of the circuit sho.wn in Fig. .2, calculations TIn (1 __ )~ T— S 0ask — oo,
were carried out (Fig. 6-7) for a three-chain model with parameters XVk + 2s XVk + 2s

h=-001,/,=),=],=1,J3=r,T=02. The number of Confidence interval for magnetization with a probability of 91 %

Y; measurements k = 10000. [Tin ()? 2 5h=o.01) TI ( > 5h=0) )
h=0 — —Tin|Xp=—001 +2 ;

k k

= Sh=\({;1 = Sh\i:
Tin (Xh=0 2 ) ~Tin (X,F_om -2 ) 1
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Remark. Since the approximate calculation of the Rayleigh quo- Free Energy
tient for the transfer matrix on a quantum computer requires ex- ~5.00 A Exact solution
tensive calculations, a method for accelerated calculation was de- * VQE
veloped to work on the emulator. The emulation of measuring the =5.02 +
state of a system of qubits is carried out by calculating the distribu-
tion of a random variable and its subsequent realization. Based on —5.04 1
the fact that the distribution of ¥; is known to us, a series of a large f
number of independent measurements can be replaced by a meas- ke 0%
urement of one random random variable with a normal distribution
and the following parameters 081
—5.10 A
m 1 m
w=Y" .o = (> .
=1 kdai—y —-5.12 |

Using accelerated emulation and the parametrized quantum circuit 10 15 20 25 30 35 40 45 50
shown in Fig. 8, calculations were carried out (Fig. 9) for a three- T

chain model with parametersh = —0.01,]; =J, =J; =], =1 and Fig. 9. Free energy for n=3 with parameters

k =10000.

h=—=001J; = J, = J; = J, = 1.k = 10000

Qo -m 8. Conclusion

In this paper, the application of VQE to the problem of finding the free
energy and magnetization of the n-chain generalized planar Ising
q 1 model in the thermodynamic limit by the transfer matrix method was
described. The process of calculating the objective function for n =
1,2,3 is described in detail. Using various parameterizations of the
state of the system of qubits, the largest eigenvalue of the transfer ma-
q > trix for the three-chain model was calculated on a quantum computer
emulator. Graphs of free energy and magnetization in the thermody-
namic limit are plotted. Confidence intervals are given for the found
Fig 8. Parameterized circuit for n =3 characteristics of the model. The entire calculation process, including
quantum computer emulation, is implemented using the Python pro-
gramming language. A method for significantly accelerating calcula-
tions on the emulator is also proposed.
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