
Современные информационные технологии и ИТ-образование 2017 Том 13 № 1

УДК 004.453
Ayrapetyan R.B.1, Gavrin E.A.2,1, Shitov A.N.2,1

1 Samsung Research Center, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia

THE HYBRID COMPILER TARGETING JAVASCRIPT LANGUAGE

Abstract

The article is devoted to the prototyping of a new JavaScript virtual machine. The work is based on
the Tizen platform, which uses HTML5 and JavaScript for application development. The
performance and memory consumption of JavaScript programs on existing machines is worse
compared to C ++ or C # applications. In our work, we tried to reduce this gap between JavaScript
and other languages.

Keywords

JavaScript; virtual machine; just-in-time compilation; optimization.

Айрапетян Р.Б.1, Гаврин Е.А.2,1, Шитов А.Н.2,1

1 Исследовательскиий Центр Самсунг, г. Москва, Россия
2 Московскиий государственныий университет имени М.В. Ломоносова, г. Москва, Россия

ГИБРИДНЫЙ КОМПИЛЯТОР ДЛЯ ДИНАМИЧЕСКОГО ЯЗЫКА ПРОГРАММИРОВАНИЯ
JAVASCRIPT

Аннотация

Статья посвящена созданию прототипа новой виртуальной машины языка JavaScript.
Работа основана на платформе Tizen, которая использует HTML5 и JavaScript для
разработки приложений. Производительность и потребление памяти JavaScript-программ
на существующих машинах хуже по сравнению с С++ или С# приложениями. В нашей работе
мы попытались уменьшить разрыв по производительности между JavaScript и другими
языками.

Ключевые слова

JavaScript; виртуальная машина; динамическая компиляция; оптимизация.

Introduction
In this paper we cover our work dedicated to

creating a prototype of novel JavaScript execution
engine. The work is inspired by the Tizen platform,
which announces HTML5 and JavaScript as the main
approach for developing applications. The
performance and memory consumption of JavaScript-
based programs on existing engines is worse
comparing to native or Java applications. In our work
we tried to reduce this gap between JavaScript and
other languages.

Common architecture of JavaScript engine is a
virtual machine, which consists of several execution
layers. First one is fast interpreter or fast code
generator, second and next are more heavyweight and
better optimizing compilers. Modern JavaScript
engines, like Google’s v8 [1], Apple’s JavaScriptCore [2]
and Mozilla’s SpiderMonkey [3] have this structure.
The drawback of this approach is that every run starts

from parsing of JS source code and engine requires
some time to compile the code and accelerate
execution.

Our main idea is to apply a novel hybrid approach
of virtual machines design: to mix JIT and AOT
compilation. Basic way of execution is the same as in
v8 and JavaScriptCore, but only for the first run. During
first run we cache additional data, which improves
performance of the application. This data includes
profile information, including seen types, and
generated native code. Moreover, we perform full
compilation of the application between executions,
which means that not only “hot” regions, but all
JavaScript code will be highly optimized. After
revealing new optimization opportunities application
becomes more and more optimized. At some point, for
example if the whole application was compiled, it is
possible to disable incremental updates of cached
information and just execute the native binary.

212

Современные информационные технологии и ИТ-образование 2017 Том 13 № 1

We implemented a prototype of a hybrid JavaScript
engine. In comparison to v8 engine on LongSpider [4]
benchmark (extended version of SunSpider [5]
benchmark) it shows 40% performance and 25%
memory improvement, which proves that hybrid
approach for running JavaScript applications is
efficient.

Base design and implementation
We took the JerryScript [6] project as the base.

JerryScript is an ultra-lightweight JavaScript engine for
internet of things. Its main feature is low memory
consumption. As our solution is targeting mobile
platform, therefore low memory consumption is an
important feature we tried to inherit from JerryScript
solution.

JerryScript is an interpreter. It parses source code
into bytecode and then executes bytecode instructions
step by step. JerryScript also has a feature of saving
bytecode to snapshot and starting execution from it.
For us this feature is a quite early prototype of hybrid
compilation.

JerryScript is targeting small devices, therefore it is
not designed for high performance. So at first we
implemented its core parts to reach our performance
goals.

Value representation
For dynamically-typed languages there is an issue

with specifying a structure, which can represent any
type of the language.

A union of all possible types, tagged by object type
field, can be utilized. The disadvantage of this approach
is that small values (e.g., integer) are stored as
packaged (boxed) values, and their access is performed
via an auxiliary pointer. JerryScript has this extra
indirection in values access.

High performance implementations of JavaScript
language utilize tagged pointers. This means that some
additional information is stored inside a pointer. This
is possible due to the fact that the minimum memory
size is 4 bytes and the two least significant bits of a
pointer are equal to zero and can be used for storing
auxiliary data. For example, all of the real pointers can
be marked by setting the least significant bit, and pack
integers into values with the zeroed least significant bit
(31-bit integers). This approach is utilized in V8.

The minimum memory block equals to 8 bytes in
JavaScriptCore and SpiderMonkey engines. Pointer,
integer, double numbers as well as some additional
types can be packed in such a block. This technique is
called nan-boxing [7]. In High-Performance JavaScript
engine we chose this representation.

Fast property access
Another important thing is to provide fast access to

object’s properties and methods. In general case to
access a property in object a dynamic lookup inside a
table of properties is required. To optimize the lookup
procedure we dynamically create hidden classes behind

the scenes the same way as V8 does [8]. Each object
has associated runtime hidden class that describes the
structure of the object and the displacement of specific
properties therein. This allows to make access to the
object’s properties as fast as in the languages in which
the object structure is predetermined and could not be
changed during program execution.

We take advantage of using another commonly used
technique for optimizing dynamically typed languages
called inline caching [9]. High performance JavaScript
Engine maintains a cache of the type of objects, which
were seen during bytecode interpretation. By
assuming that future operations would happen with
the same types, instruction handlers are replaced with
more specific, which process only those concrete types.

Dynamic machine code generation
It is impossible to achieve performance comparable

to industrial engines by doing only interpretation of
JavaScript code. All mature solutions generate native
code on the fly. We utilize LLVM [10] as a backend and
implement optimizing compiler using its JIT
infrastructure.

During runtime execution hot regions are detected
and compiled for those types which were seen during
previous execution. Consequently, we need to generate
type checks in order to verify that types seen during
interpretation and types during native code execution
match. Several checks are generated for each
instruction, which leads to a pretty big overhead.

There is a number of circumstances, which force a
fall back from native code to interpreter, for example,
mismatch of types. This situation is called a bailout.
The tricky thing is restoration after bailouts. In this
case several compiled functions could call each other
and the inner-most could cause a bailout, which would
require interpreter’s frame reconstruction.

Hybrid compilation
The key concept of this project was hybrid

compilation: combination of just in time and ahead of
time compilation. To do this we cache additional
information about some program internals:
• Source code
• Bytecode
• Type information (inline caches)
• Compiled code

In the first run we execute in a traditional way and
save the specified information into the snapshot file.
When the application is executed again, inline caches
and native code are loaded from cache, making the
execution very fast immediately after the start,
removing the necessity of accumulation of the type
information and detection of hot loops.

Another beautiful thing is that snapshot contains all
required information to perform complete compilation
of the application. This is done offline (between
application executions), if offline compilation succeeds,
and no bailouts occur during next run of the

213

Современные информационные технологии и ИТ-образование 2017 Том 13 № 1

application, optimizing compiler will be never called,
which significantly reduces memory consumption.

The overall design of the engine is show on Fig. 1.

Figure 1: Overall design of High-Performance JavaScript Engine

Table 2. Comparison of engine’s performance on Raspberry Pi
2 board

Benchmark
Google V8
(seconds)

High-
Performan
ce
JavaScript
Engine
(seconds)

3d-cube.js 10.98 2.89
3d-morph.js 20.34 22.36
3d-raytrace.js 16.59 0.62
access-binary-trees.js 17.5 22.1
access-fannkuch.js 6.25 13.21
access-nbody.js 16.03 31.26
access-nsieve.js 6.1 7.92
bitops-3bit-bits-in-byte.js 0.66 0.6
bitops-bits-in-byte.js 2.11 1.47
bitops-nsieve-bits.js 16.52 19.22
controlflow-recursive.js 10.99 15.1
crypto-aes.js 17.08 0.37
crypto-md5.js 27.21 21.14
crypto-sha1.js 33.27 30.01
math-cordic.js 23.53 2.63
math-partial-sums.js 24.03 14.77
math-spectral-norm.js 13.61 39.37
string-fasta.js 23.84 11.73
Total (seconds and
geometric mean)

286.64 256.77

Table 3. Comparison of engine’s memory consumption on
ARM32

Benchmark
Google V8
(kilobytes)

High-
Performan
ce
JavaScript
Engine
(kilobytes)

3d-cube.js 11736 56068

3d-morph.js 11060 8680
3d-raytrace.js 26020 19088
access-binary-trees.js 30424 116864
access-fannkuch.js 6564 4160
access-nbody.js 7308 4604
access-nsieve.js 86316 83864
bitops-3bit-bits-in-
byte.js 6132 3972
bitops-bits-in-byte.js 6128 3940
bitops-nsieve-bits.js 18904 17172
controlflow-recursive.js 6304 4388
crypto-aes.js 15936 8936
crypto-md5.js 40732 7860
crypto-sha1.js 81824 62988
math-cordic.js 8480 4192
math-partial-sums.js 9416 4216
math-spectral-norm.js 7904 4160
string-fasta.js 8916 4532
Total (kilobytes and
geometric mean) 390104

This feature allowed us to perform full compilation
of longspider benchmarks starting from the second run
and beat v8 on longspider (see tables 2-3).

In next section we cover optimization techniques
that we utilized in the project.

Optimizations
One of the big challenges is to achieve good quality

of generated native code. To achieve this goal the
optimizing compiler has to support several things:
• Representing temporary values as unboxed

values;
• Inlining;
• Optimizations, such as global value numbering

(GVN) and loop-invariant code motion (LICM).

214

Современные информационные технологии и ИТ-образование 2017 Том 13 № 1

Unboxing reduces memory pressure and permits
usage of effective native machine instructions. Inlining
improves performance and permits more
optimizations to occur.

JIT compiler optimizations
In our project we reused optimizations, integrated

into LLVM infrastructure. We have several scenarios for
compilation. One is just-in-time compilation. For this
case we enable only part of LLVM optimizations to
make compilation faster. Another case is offline
compilation. For it we turn on the maximum number of
optimizations to achieve best code quality.

LLVM is a mature project which covers almost all
possible optimizations for static languages, but it is not
enough for JavaScript. Bluntly compiled code has
JavaScript-specific semantics and contains a lot of type
checks and accesses to boxed objects, which break
many of LLVM optimizations. LLVM compiler has
nothing to do with it.

This fact forced us to implement additional analysis
layer to resolve JavaScript-specific things and generate
as low-level code as possible, so that LLVM
optimizations would work fine on it.

In next sections we discuss optimizations, which
are implemented on the analysis layer.

Type-check elimination
As it was mentioned in the previous sections, type

checks are required to provide correct execution of
compiled code.

Each byte code instruction has input operands. In
general case type of each operand of the instruction is
checked, which gives too much overhead. Many checks
could be removed, for example, if several instructions
have the same input variable, and there are no writes
to the variable between those instructions, one check
is enough.

Optimizer’s task is too remove as many redundant
checks as possible.

We implemented analysis which find checks that
could be avoided. Simple version works per a single
basic block: it tracks all reads and writes to a variable
and, when there are several consecutive reads, all the
checks, except first read, are removed. More complex,
per-function type-check elimination tracks
reads/writes from incoming basic blocks and analyses
cycles.

Fixed arrays
JavaScript arrays are pretty complicated as their

size can change during execution, their elements could
contain any type, they can contain holes and any object
could be used as an array. This forces to have
complicated runtime support for performing
operations on arrays from native code.

We implemented support for arrays compilation,
even if they are not used in static way: arrays are not
obliged to have fixed size and uniform contents.

Profile-based dead code elimination
JavaScript applications tend to contain pretty big

amount of dead code. Close look at longspider [4]
benchmark revealed that its tests also could be
significantly optimized by applying dead code
elimination techniques.

Basic technique of dead code elimination that we
used is to analyse byte code fragment and determine
that output operands are never used, which means that
instructions, which produce those operands, are
obsolete. There are also several tricky cases that we
covered.

string-fasta benchmark performs a big amount of
string operations but it is clear that most of them are
redundant. For instance, there is the following code:

ret += seq.substring(seqi, seqi+lenOut).length;
This fragment calculates length of a substring and

the substring itself is not used. We win in this case by
not doing any real operations on a string and
calculating only the length.

Another case is from 3d-raytrace benchmark. It has
main cycle with a call to a pair of functions inside of it:

testOutput =
arrayToCanvasCommands(raytraceScene());

On every iteration the same scene is rendered. This
functions itself intensively allocate objects and contain
global object accesses. So they are not pure. But in fact
on each iteration they access only objects which were
created on the same iteration. We implemented the
optimization which tracks generations of objects and
determines that created and accessed objects always
belong to the same iterations, which proves that in fact
these functions are pure and their result value can be
cached.

Trace-based compilation
This optimization is a tricky case of eliminating

redundant computations. This was primarily targeted
for cases, like in the access-binary-trees benchmark,
which performs the following:

for (var n = 4; n <= 16; n += 1) {
 var minDepth = 4;
 var maxDepth = Math.max(minDepth + 2, n);
 var stretchDepth = maxDepth + 1;

 var check =

bottomUpTree(0,stretchDepth).itemCheck();
 var longLivedTree = bottomUpTree(0,maxDepth);
 for (var depth=minDepth; depth<=maxDepth;

depth+=2){
 var iterations = 1 << (maxDepth - depth +

minDepth);
 check = 0;
 for (var i=1; i<=iterations; i++){
 check +=

bottomUpTree(i,depth).itemCheck();
 check += bottomUpTree(-

i,depth).itemCheck();
 }

215

Современные информационные технологии и ИТ-образование 2017 Том 13 № 1

 }
 ret += longLivedTree.itemCheck();
}
This particular loop contains a big amount of calls

to bottomUpTree(..).itemCheck(). Output value of this
calls modify check variable. But in the middle of the
loop there is a store of zero to the check variable. This
store discards all previous modifications of this
variable, therefore all previous calls to itemCheck()
function are redundant. Straight-forward dead code
elimination techniques do not work in this case.

Our approach is to break compiled region parts to
blocks of independent computations and record a trace
of the blocks’ execution without performing actual
computations with except of those, which are
necessary to track control flow. The trace is optimized
to remove blocks, which compute unused values, and is
replayed to perform only those of actual computations,
which are actually necessary.

The final trace contains only few calls to
bottomUpTree(..).itemCheck() and the loop executes
significantly faster.

Conclusion
In our work we implemented prototype of a hybrid

JavaScript engine, which combines ahead of time and
just in time compilation approaches. As far as we know,
for the current moment this is the first existing hybrid
implementation of a JavaScript engine. Our prototype
is targeting Tizen platform, which claims Web
technologies in general and JavaScript in particular, as
the main way of application development. This allows
us to assume that source JavaScript code is always
located on a device and we can perform its
optimization offline. We cache type information,
bytecode and native code which provide us all required
knowledge to perform fully-optimized offline
compilation. By utilizing this technique, we achieve
40% performance improvement over Google’s v8
engine.

Our work is an early prototype and we plan to
extend optimizations that we have developed to more
general cases.

References
1. Chrome V8. https://developers.google.com/v8.
2. JavaScriptCore. https://developer.apple.com/reference/javascriptcore.
3. SpiderMonkey. https://developer.mozilla.org/ru/docs/SpiderMonkey.
4. WebKit / LongSpider, 2016. https://github.com/WebKit/webkit/tree/master/PerformanceTests/LongSpider.
5. WebKit. SunSpider JavaScript Benchmark, 2017. https://webkit.org/perf/sunspider/sunspider.html
6. Gavrin, E., Lee, S. J., Ayrapetyan, R., & Shitov, A. (2015, October). Ultra-lightweight JavaScript engine for internet of things. In

Companion Proceedings of the 2015 ACM SIGPLAN International Conference on Systems, Programming, Languages and
Applications: Software for Humanity (pp. 19-20). ACM.

7. “Value representation in JavaScript implementations”, https://wingolog.org/archives/2011/05/18/value-representation-in-
javascript-implementations.

8. Design elements of V8 https://developers.google.com/v8/design.
9. Adaptive Optimization for SELF: Reconciling High Performance with Exploratory Programming, Urs Hoё lzle, 163p.
10. LLVM compiler infrastructure. http://llvm.org/.
11. Hoё lzle, U., Chambers, C., AND Ungar, D. 1991. Optimizing dynamically-typed object-oriented languages with polymorphic inline

caches. In Proceedings of the ECOOP ’91 Conference. Lecture Notes in Computer Science, vol. 512. Springer-Verlag, Berlin.

Поступила: 10.05.2017
Об авторах:
Айрапетян Рубен Борисович, ведущиий инженер-программист отдела компиляции, Исследовательскиий

Центр Самсунг, cv.ru@samsung.com
Гаврин Евгений Александрович, аспирант факультета вычислительноий математики и кибернетики,

Московскиий государственныий университет имени М.В. Ломоносова; руководитель отдела
компиляции, Исследовательскиий Центр Самсунг, eugene.a.gavrin@gmail.com

Шитов Андрей Николаевич, аспирант факультета вычислительноий математики и кибернетики,
Московскиий государственныий университет имени М.В. Ломоносова; ведущиий инженер-
программист отдела компиляции, Исследовательскиий Центр Самсунг, sand1k@yandex.ru

Note on the authors:
Ayrapetyan Ruben, leading engineer-programmer of Compilation Department, Samsung Research Center,

cv.ru@samsung.com
Gavrin Evgeny, Postgraduate Student of Faculty of Computational Mathematics and Cybernetics, Lomonosov

Moscow State University; Head of Compilation Department, Samsung Research Center,
eugene.a.gavrin@gmail.com

Shitov Andrey, Postgraduate Student of Faculty of Computational Mathematics and Cybernetics, Lomonosov
Moscow State University; engineer-programmer of Compilation Department, Samsung Research
Center, sand1k@yandex.ru

216

mailto:sand1k@yandex.ru
mailto:eugene.a.gavrin@gmail.com
mailto:cv.ru@samsung.com
mailto:sand1k@yandex.ru
mailto:eugene.a.gavrin@gmail.com
mailto:cv.ru@samsung.com
https://webkit.org/perf/sunspider/sunspider.html

	THE HYBRID COMPILER TARGETING JAVASCRIPT LANGUAGE
	ГИБРИДНЫЙ КОМПИЛЯТОР ДЛЯ ДИНАМИЧЕСКОГО ЯЗЫКА ПРОГРАММИРОВАНИЯ JAVASCRIPT

