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Abstract

The article is devoted to the prototyping of a new JavaScript virtual machine. The work is based on
the  Tizen  platform,  which  uses  HTML5  and  JavaScript  for  application  development.  The
performance  and  memory  consumption  of  JavaScript  programs  on  existing  machines  is  worse
compared to C ++ or C # applications.  In our work, we tried to reduce this gap between JavaScript
and other languages. 
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ГИБРИДНЫЙ КОМПИЛЯТОР ДЛЯ ДИНАМИЧЕСКОГО ЯЗЫКА ПРОГРАММИРОВАНИЯ
JAVASCRIPT

Аннотация

Статья  посвящена  созданию  прототипа  новой  виртуальной  машины  языка  JavaScript.
Работа  основана  на  платформе  Tizen,  которая  использует  HTML5  и  JavaScript  для
разработки приложений. Производительность и потребление памяти JavaScript-программ
на существующих машинах хуже по сравнению с С++ или С# приложениями. В нашей работе
мы попытались уменьшить разрыв по производительности между JavaScript  и другими
языками. 
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Introduction
In  this  paper  we  cover  our  work  dedicated  to

creating  a  prototype  of  novel  JavaScript  execution
engine.  The  work  is  inspired  by  the  Tizen  platform,
which announces HTML5 and JavaScript as the main
approach  for  developing  applications.  The
performance and memory consumption of JavaScript-
based  programs  on  existing  engines  is  worse
comparing to native or Java applications. In our work
we  tried  to  reduce  this  gap  between  JavaScript  and
other languages.

Common  architecture  of  JavaScript  engine  is  a
virtual  machine,  which  consists  of  several  execution
layers.  First  one  is  fast  interpreter  or  fast  code
generator, second and next are more heavyweight and
better  optimizing  compilers.  Modern  JavaScript
engines, like Google’s v8 [1], Apple’s JavaScriptCore [2]
and  Mozilla’s  SpiderMonkey  [3]  have  this  structure.
The drawback of this approach is that every run starts

from  parsing  of  JS  source  code  and  engine  requires
some  time  to  compile  the  code  and  accelerate
execution.

Our main idea is to apply a novel hybrid approach
of  virtual  machines  design:  to  mix  JIT  and  AOT
compilation. Basic way of execution is the same as in
v8 and JavaScriptCore, but only for the first run. During
first  run  we  cache  additional  data,  which  improves
performance  of  the  application.  This  data  includes
profile  information,  including  seen  types,  and
generated  native  code.  Moreover,  we  perform  full
compilation  of  the  application  between  executions,
which  means  that  not  only  “hot”  regions,  but  all
JavaScript  code  will  be  highly  optimized.  After
revealing  new optimization opportunities  application
becomes more and more optimized. At some point, for
example if  the  whole  application was  compiled,  it  is
possible  to  disable  incremental  updates  of  cached
information and just execute the native binary. 
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We implemented a prototype of a hybrid JavaScript
engine. In comparison to v8 engine on LongSpider [4]
benchmark  (extended  version  of  SunSpider  [5]
benchmark)  it  shows  40%  performance  and  25%
memory  improvement,  which  proves  that  hybrid
approach  for  running  JavaScript  applications  is
efficient.

Base design and implementation
We  took  the  JerryScript  [6]  project  as  the  base.

JerryScript is an ultra-lightweight JavaScript engine for
internet  of  things.  Its  main  feature  is  low  memory
consumption.  As  our  solution  is  targeting  mobile
platform,  therefore  low  memory  consumption  is  an
important feature we tried to inherit from JerryScript
solution.

JerryScript is an interpreter. It parses source code
into bytecode and then executes bytecode instructions
step by step.  JerryScript also has a  feature of saving
bytecode  to snapshot  and starting execution from it.
For us this feature is a quite early prototype of hybrid
compilation.

JerryScript is targeting small devices, therefore it is
not  designed  for  high  performance.  So  at  first  we
implemented its core parts to reach our performance
goals. 

Value representation
For dynamically-typed languages there is an issue

with specifying a structure,  which can represent  any
type of the language.

A union of all possible types, tagged by object type
field, can be utilized. The disadvantage of this approach
is  that  small  values  (e.g.,  integer)  are  stored  as
packaged (boxed) values, and their access is performed
via  an  auxiliary  pointer.  JerryScript  has  this  extra
indirection in values access.

High  performance  implementations  of  JavaScript
language utilize tagged pointers. This means that some
additional information is stored inside a pointer. This
is possible due to the fact that the minimum memory
size is  4 bytes and the two least significant bits of a
pointer are equal to zero and can be used for storing
auxiliary data. For example, all of the real pointers can
be marked by setting the least significant bit, and pack
integers into values with the zeroed least significant bit
(31-bit integers). This approach is utilized in V8. 

The minimum memory block equals to 8 bytes in
JavaScriptCore  and  SpiderMonkey  engines.  Pointer,
integer,  double  numbers  as  well  as  some  additional
types can be packed in such a block. This technique is
called nan-boxing [7]. In High-Performance JavaScript
engine we chose this representation.

Fast property access
Another important thing is to provide fast access to

object’s  properties  and  methods.  In  general  case  to
access a property in object a dynamic lookup inside a
table of properties is required. To optimize the lookup
procedure we dynamically create hidden classes behind

the scenes the same way as V8 does [8].  Each object
has associated runtime hidden class that describes the
structure of the object and the displacement of specific
properties therein.  This allows to make access to the
object’s properties as fast as in the languages in which
the object structure is predetermined and could not be
changed during program execution.

We take advantage of using another commonly used
technique for optimizing dynamically typed languages
called inline caching [9]. High performance JavaScript
Engine maintains a cache of the type of objects, which
were  seen  during  bytecode  interpretation.  By
assuming  that  future  operations  would  happen  with
the same types, instruction handlers are replaced with
more specific, which process only those concrete types.

Dynamic machine code generation
It is impossible to achieve performance comparable

to industrial  engines  by  doing only  interpretation  of
JavaScript  code.  All  mature solutions generate  native
code on the fly. We utilize LLVM [10] as a backend and
implement  optimizing  compiler  using  its  JIT
infrastructure.

During runtime execution hot regions are detected
and compiled for those types which were seen during
previous execution. Consequently, we need to generate
type checks in order to verify that types seen during
interpretation and types during native code execution
match.  Several  checks  are  generated  for  each
instruction, which leads to a pretty big overhead.

There is a number of circumstances, which force a
fall back from native code to interpreter, for example,
mismatch of  types.  This  situation is  called  a  bailout.
The  tricky  thing  is  restoration  after  bailouts.  In  this
case several compiled functions could call each other
and the inner-most could cause a bailout, which would
require interpreter’s frame reconstruction.

Hybrid compilation
The  key  concept  of  this  project  was  hybrid

compilation: combination of just in time and ahead of
time  compilation.  To  do  this  we  cache  additional
information about some program internals:
• Source code
• Bytecode
• Type information (inline caches)
• Compiled code

In the first run we execute in a traditional way and
save the specified information into the snapshot  file.
When the application is executed again, inline caches
and  native  code  are  loaded  from  cache,  making  the
execution  very  fast  immediately  after  the  start,
removing  the  necessity  of  accumulation  of  the  type
information and detection of hot loops.

Another beautiful thing is that snapshot contains all
required information to perform complete compilation
of  the  application.  This  is  done  offline  (between
application executions), if offline compilation succeeds,
and  no  bailouts  occur  during  next  run  of  the
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application, optimizing compiler will  be never called,
which significantly reduces memory consumption.

The overall design of the engine is show on Fig. 1.

Figure 1: Overall design of High-Performance JavaScript Engine

Table 2. Comparison of engine’s performance on Raspberry Pi
2 board

Benchmark
Google V8
(seconds)

High-
Performan
ce
JavaScript
Engine
(seconds)

3d-cube.js 10.98 2.89
3d-morph.js 20.34 22.36
3d-raytrace.js 16.59 0.62
access-binary-trees.js 17.5 22.1
access-fannkuch.js 6.25 13.21
access-nbody.js 16.03 31.26
access-nsieve.js 6.1 7.92
bitops-3bit-bits-in-byte.js 0.66 0.6
bitops-bits-in-byte.js 2.11 1.47
bitops-nsieve-bits.js 16.52 19.22
controlflow-recursive.js 10.99 15.1
crypto-aes.js 17.08 0.37
crypto-md5.js 27.21 21.14
crypto-sha1.js 33.27 30.01
math-cordic.js 23.53 2.63
math-partial-sums.js 24.03 14.77
math-spectral-norm.js 13.61 39.37
string-fasta.js 23.84 11.73
Total  (seconds  and
geometric mean)

286.64 256.77

Table 3. Comparison of engine’s memory consumption on
ARM32

Benchmark
Google V8
(kilobytes)

High-
Performan
ce
JavaScript
Engine
(kilobytes)

3d-cube.js 11736 56068

3d-morph.js 11060 8680
3d-raytrace.js 26020 19088
access-binary-trees.js 30424 116864
access-fannkuch.js 6564 4160
access-nbody.js 7308 4604
access-nsieve.js 86316 83864
bitops-3bit-bits-in-
byte.js 6132 3972
bitops-bits-in-byte.js 6128 3940
bitops-nsieve-bits.js 18904 17172
controlflow-recursive.js 6304 4388
crypto-aes.js 15936 8936
crypto-md5.js 40732 7860
crypto-sha1.js 81824 62988
math-cordic.js 8480 4192
math-partial-sums.js 9416 4216
math-spectral-norm.js 7904 4160
string-fasta.js 8916 4532
Total  (kilobytes  and
geometric mean) 390104

This feature allowed us to perform full compilation
of longspider benchmarks starting from the second run
and beat v8 on longspider (see tables 2-3).

In  next  section  we  cover  optimization techniques
that we utilized in the project.

Optimizations
One of the big challenges is to achieve good quality

of  generated  native  code.  To  achieve  this  goal  the
optimizing compiler has to support several things:
• Representing  temporary  values  as  unboxed

values;
• Inlining;
• Optimizations, such as global value numbering

(GVN) and loop-invariant code motion (LICM).
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Unboxing  reduces  memory  pressure  and  permits
usage of effective native machine instructions. Inlining
improves  performance  and  permits  more
optimizations to occur. 

JIT compiler optimizations
In our project we reused optimizations, integrated

into LLVM infrastructure. We have several scenarios for
compilation.  One is  just-in-time compilation.  For this
case  we  enable  only  part  of  LLVM  optimizations  to
make  compilation  faster.  Another  case  is  offline
compilation. For it we turn on the maximum number of
optimizations to achieve best code quality.

LLVM is a mature project  which covers almost all
possible optimizations for static languages, but it is not
enough  for  JavaScript.  Bluntly  compiled  code  has
JavaScript-specific semantics and contains a lot of type
checks  and  accesses  to  boxed  objects,  which  break
many  of  LLVM  optimizations.  LLVM  compiler  has
nothing to do with it.

This fact forced us to implement additional analysis
layer to resolve JavaScript-specific things and generate
as   low-level  code  as  possible,  so  that  LLVM
optimizations would work fine on it.

In  next  sections  we  discuss  optimizations,  which
are implemented on the analysis layer.

Type-check elimination
As it was mentioned in the previous sections, type

checks  are  required  to  provide  correct  execution  of
compiled code.

Each byte code instruction has input operands. In
general case type of each operand of the instruction is
checked, which gives too much overhead. Many checks
could be removed, for example, if several instructions
have the same input variable, and there are no writes
to the variable between those instructions, one check
is enough.

Optimizer’s task is too remove as many redundant
checks as possible.

We  implemented  analysis  which  find  checks  that
could  be avoided.  Simple  version works per a  single
basic block: it tracks all reads and writes to a variable
and, when there are several consecutive reads, all the
checks, except first read, are removed. More complex,
per-function  type-check  elimination  tracks
reads/writes from incoming basic blocks and analyses
cycles.

Fixed arrays
JavaScript  arrays  are  pretty  complicated  as  their

size can change during execution, their elements could
contain any type, they can contain holes and any object
could  be  used  as  an  array.  This  forces  to  have
complicated  runtime  support  for  performing
operations on arrays from native code.

We  implemented  support  for  arrays  compilation,
even if they are not used in static way: arrays are not
obliged to have fixed size and uniform contents. 

Profile-based dead code elimination
JavaScript  applications  tend  to  contain  pretty  big

amount  of  dead  code.  Close  look  at  longspider  [4]
benchmark  revealed  that  its  tests  also  could  be
significantly  optimized  by  applying  dead  code
elimination techniques. 

Basic technique of  dead code elimination that we
used is to analyse byte code fragment and determine
that output operands are never used, which means that
instructions,  which  produce  those  operands,  are
obsolete.  There are  also several tricky cases  that we
covered. 

string-fasta  benchmark performs a big amount of
string operations but it is clear that most of them are
redundant. For instance, there is the following code:

ret += seq.substring(seqi, seqi+lenOut).length;
This fragment calculates length of a substring and

the substring itself is not used. We win in this case by
not  doing  any  real  operations  on  a  string  and
calculating only the length.

Another case is from 3d-raytrace benchmark. It has
main cycle with a call to a pair of functions inside of it:

testOutput  =
arrayToCanvasCommands(raytraceScene());

On every iteration the same scene is rendered. This
functions itself intensively allocate objects and contain
global object accesses. So they are not pure. But in fact
on each iteration they access only objects which were
created  on  the  same  iteration.  We  implemented  the
optimization which tracks generations of objects and
determines that  created and accessed objects  always
belong to the same iterations, which proves that in fact
these functions are pure and their result value can be
cached.

Trace-based compilation
This  optimization  is  a  tricky  case  of  eliminating

redundant computations. This was primarily targeted
for  cases,  like  in  the  access-binary-trees  benchmark,
which performs the following:

for ( var n = 4; n <= 16; n += 1 ) {
    var minDepth = 4;
    var maxDepth = Math.max(minDepth + 2, n);
    var stretchDepth = maxDepth + 1;
    
    var check = 

bottomUpTree(0,stretchDepth).itemCheck();  
    var longLivedTree = bottomUpTree(0,maxDepth);
    for (var depth=minDepth; depth<=maxDepth; 

depth+=2){
        var iterations = 1 << (maxDepth - depth + 

minDepth);
        check = 0;
        for (var i=1; i<=iterations; i++){
            check += 

bottomUpTree(i,depth).itemCheck();
            check += bottomUpTree(-

i,depth).itemCheck();
        }
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    }
    ret += longLivedTree.itemCheck();
}
This particular loop contains a big amount of calls

to bottomUpTree(..).itemCheck(). Output value of this
calls  modify  check variable.  But  in the middle  of  the
loop there is a store of zero to the check variable. This
store  discards  all  previous  modifications  of  this
variable,  therefore  all  previous  calls  to  itemCheck()
function  are  redundant.   Straight-forward dead  code
elimination techniques do not work in this case.

Our approach is to break compiled region parts to
blocks of independent computations and record a trace
of  the  blocks’  execution  without  performing  actual
computations  with  except  of  those,  which  are
necessary to track control flow. The trace is optimized
to remove blocks, which compute unused values, and is
replayed to perform only those of actual computations,
which are actually necessary.

The  final  trace  contains  only  few  calls  to
bottomUpTree(..).itemCheck()  and  the  loop  executes
significantly faster.

Conclusion
In our work we implemented prototype of a hybrid

JavaScript engine, which combines ahead of time and
just in time compilation approaches. As far as we know,
for the current moment this is the first existing hybrid
implementation of a JavaScript engine. Our prototype
is  targeting  Tizen  platform,  which  claims  Web
technologies in general and JavaScript in particular, as
the main way of application development. This allows
us  to  assume  that  source  JavaScript  code  is  always
located  on  a  device  and  we  can  perform  its
optimization  offline.  We  cache  type  information,
bytecode and native code which provide us all required
knowledge  to  perform  fully-optimized  offline
compilation.  By  utilizing  this  technique,  we  achieve
40%  performance  improvement  over  Google’s  v8
engine.

Our  work  is  an  early  prototype  and  we  plan  to
extend optimizations that we have developed to more
general cases.
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