CoBpeMeHHbIe MHPpOpMaLuOHHbIE TexHOJIoruM U UT-06pa3oBaHue 2017 Tom13 Ne1l

YK 004.453

Ayrapetyan R.B.!, Gavrin E.A.*", Shitov A.N.*!

! Samsung Research Center, Moscow, Russia
2 Lomonosov Moscow State University, Moscow, Russia

A NOVEL APPROACH FOR ENHANCING PERFORMANCE OF JAVASCRIPT ENGINE FOR WEB
APPLICATIONS

Abstract

JavaScript is the most widespread language for Web programming. And, literally, it is vital for Web
2.0. With development of Web 2.0, JavaScript engines experience increasingly large performance-
related challenges. The ability to boost JavaScript performance becomes the crucial point for
complete replacement of desktop applications in some cases. We propose the novel approach for
dramatic performance improvement of Web applications by introducing snapshot of compiled code,
profile and type feedback for fast startup and ahead-of-time optimizations.

Keywords

JavaScript, Just-in-Time Compilation, Compiler, Virtual Machine, JavaScript Engine, Hybrid Compiler.

AitpanetsHn P.B.}, Tappun E.A.%!, [llutos A.H.>!

'Uccnenoparensckuii llentp CamcyHr, . Mocksa, Poccus
>MOCKOBCKUI rOCyIapCTBEHHbIM yHUBEpCUTET UMeHu M.B. JlJoMoHoCOBa, I. MockBa, Poccus

HOBBI MOAX0/ JI/Isl MNOBBLIIEHUA MPOU3BOAUTE/ILHOCTU BUPTYAJIbHOM
MAIIMHBI S3bIKA JAVASCRIPT BEB-IIPUJ/IOKEHH I

AHHOTaA KA

JavaScript sesasemcs Hau6osqee pacnpoOCMPAHEHHbIM S3bIKOM 051 8e6-npozpamMMUpo8aHusl.
BupmyasbHblie mawuHbl 045 JavaScript uchbimbigaiom cepbesHble NpobJaembl, C8s3aHHble C

npouseoaume/leocmb;o npu

ucnosiHeHUu

eblyuc/1umesibHO C/10J#CHblE npu/loofceHuﬁ.

Bo3moxcHOCMb nosvluleHUs npou3godumeabHocmu JavaScript cmaHosumces Kpumuyeckol U Mol
npedsazaem HoO8bII N00X00 0/ CYWeCcmeeHH020 y/ayvuwleHusl hpousgodumesbHOCMU 8e6-

npusosxceHull.
Kinruyessle ci1oBa

JavaScript; komnusasmop;
JavaScript; 2ubpudHblii KomMnuasmop.

JuHamuveckas KOMNnuAAayus,

supmya/sbHas MawuHd; dsudicok

Introduction

Web applications usually are simple client-server
software applications with client running in a web
browser, and the server side, which is remote, taking
over most of heavy computations and management of
data storage. Nowadays, usual web applications are e-
mail clients, instant messengers, news feeds, maps, or
simple games. The main characteristic of the existing
applications is the computational simplicity of client
part. As we suppose, this is a direct consequence of
JavaScript engines slowness. By historical reasons,
JavaScript is the only natively supported language on
the Web [1]. However, it seems that performance of
JavaScript is still not enough for efficient execution of
complex software algorithms, which is absolute
requirement for modern applications - starting from

3D games and to complex analytics tools.

Previously, the performance challenge was
attempted to be overcome by several technologies
starting from ActiveX to Native Client, asm.js and
WebAssembly [1]. While some of these technologies
are either not secure enough or don’t provide sufficient
performance, other require using another
programming languages, which are not as widespread
as JavaScript [1]. See table 1 for comparison of their
particular features.

We propose to look at the challenge from another
view point. JavaScript is dynamically-typed language,
which is designed to maximize development flexibility
[2]. There are several existing fine-tuned approaches
for profiling and analysis of dynamically-typed
languages - type feedback, type inference [3] and

217



CoBpemeHHbIe MHPOpPMaLMOHHBIE TEXHOJI0TMU U UT-06pa3oBaHue

2017 Tom13 Ne1l

inline caching [4]. However, these approaches don’t
practically allow to analyze the executed program,
globally. Under this conditions, the uncertainty derived
from dynamic nature of JavaScript, becomes a
significant obstacle for compiler optimizations, and
consequently the core of the performance challenge.

We propose to store and update dynamic profiling
data of Web Applications as a whole during their
execution, for ahead-of-time analysis followed by
optimized compilation. The stored data allows to fully
analyze an application’s code, type information, etc.,
and so to figure out its semantics with minimal
uncertainty. And ahead-of-time compilation allows to
perform comprehensive semantics analysis without
introducing delays into execution of applications.
These features, finally, lead to the best opportunities
for performance optimizations.

There are Java, Python and JavaScript runtimes,
which partially implement similar ideas. Android
Runtime uses profile-guided AOT compilation [9],
Pyston implements application code cache with plans
to implement AOT recompilation with higher
optimization levels [10], and V8 caches information for
fast recreation of compiled code [11]. However, our

approach is completely novel, as it involves
comprehensive global semantics analysis, leading to
minimization of dynamic uncertainty.

High-Performance JavaScript engine

As a highly effective illustration to the proposed
idea, we developed the prototype of High-Performance
JavaScript Engine (see Figure 1 for overall design).

The main components of the developed engine,
which is based on JerryScript [8], are execution
manager, semantics analyzer, type information
manager, persistent cache of code and execution
profile, JS parser, and optimizing compiler (see Fig. 2).
In overall, execution process is managed by execution
engine, which handles an executed application’s source
code, loads the available information about the
application from persistent cache, and starts with most
effective way of application execution, which is
available according to the cached data. Possible ways
are generic interpretation, optimized interpretation
backed by inline caches, fast-compiled region
invocation, and finally execution of fully optimized
AOT-compiled region representing the whole program.

Table 1. Comparison of the existing technologies attempting to solve performance challenge for Web Applications

Technology Security Performance Language

Asm.js Safe Slow JavaScript
WebAssembly (wasm) Safe Fast C/C++
Native Client (PNaCl) Safe Fast C/C++

ActiveX Unsafe Fast C/C++/VB

-

Byte
Code

=) Execution

v
_ )
- Source code A Application A Update Profile Info
- Type Info Package y
- Meta info /V/ Collect Profile
Graph API
¥
Engine ‘ Language-Oriented ‘ - Language optimizations
. = | optimizer | - Uses profile (Type feedback) {—\
static library - Type inference Execution
l - Emits LLVM \ Y 4
Engine . ) . ’
as — [ LLVM Optimizer J — u
LLVM IR

Figure 1. Overall design of High-Performance JavaScript Engine

218



CoBpemeHHbIe MHPOpPMaLMOHHBIE TEXHOJI0TMU U UT-06pa3oBaHue

2017 Tom13 Ne1l

15 Parser .
engine

Optimizing
compiler

Execution

k Fast compiler

information
manager

Persistent
cache

manager

Semantics
analyzer

Figure 2. Architecture of High-Performance JavaScript Engine

JavaScript Parser

Initial analysis of input JavaScript program is
performed by parser, which operates on modular level,
i.e. considers one JS source file per invocation. Parsing
of the file is performed in two passes - the first detects
structure of the source and figures out what JS features
are used there - “with” blocks, closures, direct-mode
“eval”, and the second generates actual byte-code. The
information about used ]S features is used as runtime
hints for using fast-paths afterwards.

The produced byte-code is high-level
representation of parsed JS file, constructed without
any assumptions about dynamic behavior of the
program. Each instruction is opcode with 3 optional
arguments, and each of the argument either extends
the opcode, or designates an identifier, virtual VM
register, or constant value.

Type Information
Type feedback, essentially, represents statistics of
arguments types for each byte-code instruction of an
application. Type here means basic JavaScript type
(number, string, object, etc.) and extended information.
The extended information consists of details, which are
specific for each of the basic types:
* numbers can be integer or floating point,
signed or unsigned
* strings can be ASCll-only or UTF-16, one of
specification-defined or arbitrary
*  objects can have different field layout
Details of object layouts are packed into
application-wide identifiers (which can also be
referred as “hidden classes”), which are then encoded
into type feedback.

Execution Engine

The execution engine is the central node of the
developed JavaScript engine’s architecture. The
component manages execution of an application, by
navigating through byte-code. For each part of
application, it lookups available compiled regions, and
chooses way of execution - either invocation of the
regions, or of interpreter.

Upon load of an application, execution engine
requests information about compiled regions, which
are available for the application, from persistent cache.
All the available regions are registered in code
manager, to be loaded on-demand.

Execution of a part, for which no compiled region is
available up to a moment, is performed by interpreter.
Interpreter processes byte-code instructions one-by-
one and optimizes its execution by inline caching [4].
Inline caches replace the generic implementation of an
instruction’s semantics by the most specific,
considering the collected type feedback. If dynamic
behavior of the program changes, and so the
specialized implementation is invoked with a type set,
which can’t be handled by the specific implementation,
then it is either switched to another specific (so called
“monomorphic”) case of implementation for the new
type set, or to a less specific (“polymorphic”) case,
which can handle the both type sets. The
monomorphic cases are faster to execute, and could
require more switching in case of frequent changes of
dynamic behavior, in comparison to polymorphic cases.
So, the choice should be performed according to profile
information.

During interpretation, execution engine collects

219



CoBpeMeHHbIe MHPpOpMaLuOHHbIE TexHOJIoruM U UT-06pa3oBaHue 2017 Tom13 Ne1l

type feedback and profile for each of executed parts,
and provides it to type information manager. After type
feedback is collected, execution engine invokes JIT, to
compile “hot” loops and frequently-invoked functions.
The dynamic JIT compiler should be fast enough, so it
performs only local optimizations, in comparison to
fully-optimizing ahead-of-time compiler. After JIT
compilation is finished, the produced compiled regions
are registered in code manager, and become available
to the execution engine.

All the produced compiled regions, type feedback
and profiler information are mirrored to persistent
cache, for usage during further executions, and for AOT

compilation.
As a fallback to adapt to changes in an application’s
dynamic behavior, each compiled region has

information, which is necessary for rollbacks to more
generic, and so less optimized, implementations of
corresponding application parts. After a rollback,
profile information is updated according to the newly
discovered behavior, to be used in future optimizations
- both JIT and AOT.

Ahead-of-Time Compiler

The developed AOT compiler is the essential part of
the overall optimization pipeline in our approach. In
general, the compiler loads all the existing information
about a particular application from engine’s persistent
cache, and produces highly optimized representation
of the application based on the loaded information.

Among other compiler optimizations, the compiler
performs type specialization, type check elimination,
automatic fixed-sized array detection [v8], global dead-
code elimination, elision of concatenation, etc.

One of optimizations, which deserves special
attention, is partially dynamic by its nature - the
dynamic trace-based analysis. Core of the optimization
on compiler side is search of compiled region parts
that consist of constant expressions, pure or
independent computations - the features are figured
out through global analysis. The corresponding region
parts are additionally compiled in a way, which allows
to partially postpone their execution by recording
traces of with their input values and identifiers. After
the recording is finished, the trace is analyzed to figure
out which of computations are really necessary, and
which are, for example, duplicate, by means of
checking data dependencies figured out during
compilation. Afterwards, the recording is replayed
without execution of unnecessary parts. This way of
processing dynamic traces is actually a dynamic dead-
code elimination. As possible future development of
the idea, we consider automatic non-speculative
parallelization of JavaScript code based on
dependencies information from compiler.

Performance and memory consumption
For estimation of the developed engine’s
performance we have chosen the LongSpider

benchmark [6]. This benchmark is derived from the
more widely known SunSpider [5], with the main
difference - number of loop iterations, which are
greater in LongSpider.

Currently, our engine executes LongSpider
benchmark by 40% faster (geometric mean) than V8
[7] on the second execution, taking advantage of
ahead-of-time semantics analysis, which is performed
using profile from the first execution. And memory
consumption is 25% lower (geometric mean) on the
benchmark. See table 2 and 3 for detailed
measurements.

Table 2. Comparison of engine’s performance on Raspberry Pi

2 board
High-
Performance
Benchmark Google V8 JavaScript
(seconds) .
Engine
(seconds)
3d-cube.js 10.98 2.89
3d-morph.js 20.34 22.36
3d-raytrace.js 16.59 0.62
access-binary- 17.5 22.1
trees.js
access-fannkuch.js 6.25 13.21
access-nbody.js 16.03 31.26
access-nsieve.js 6.1 7.92
bltops-3b1t-b1ts-1n- 0.66 06
byte.js
bltops-blts-ln- 211 147
byte.js
bitops-nsieve-bits.js | 16.52 19.22
controlflow- 10.99 15.1
recursive.js
crypto-aes.js 17.08 0.37
crypto-md>5.js 27.21 21.14
crypto-shal.js 33.27 30.01
math-cordic,js 23.53 2.63
math-partial- 24.03 14.77
sums.js
math-spectral- 13.61 39.37
norm.js
string-fasta.js 23.84 11.73

Table 3. Comparison of engine’s memory consumption on

ARM32
High-
Performance
Benchmark ((f(?l(;%}?tzg JavaScript
Engine
(kilobytes)
3d-cube.js 11736 56068
3d-morph.js 11060 8680
3d-raytrace.js 26020 19088
access-binary-
trees.js 30424 116864
access-fannkuch.js | 6564 4160




CoBpeMeHHbIe MHPpOpMaLuOHHbIE TexHOJIoruM U UT-06pa3oBaHue 2017 Tom13 Ne1l

access-nbody.js 7308 4604 ECMAScript Conformance Test Suite.
access-nsieve.js 86316 83864
bitops-3bit-bits-in- Conclusion
byte.js 6132 3972 The developed engine, while being an early
bitops-bits-in- prototype, represents highly effective illustration to the
byte.js 6128 3940 proposed technology, which is based on ahead-of-time
bitops-nsieve- analysis of full-application profile. Deep analysis
bits.js 18904 17172 provides way to figure out all the necessary application
controlflow- semantics from its high-level source and execution
recursive.js 6304 4388 profile, which gives the best possible opportunities for
crypto-aes.js 15936 38936 optimizations of JavaScript-based Web Applications.
crypto-md5.js 40732 7860 The developed prototype is faster than V8
crypto-shal,js 81824 62988 JavaScript engine by 40% on LongSpider benchmark,
math-cordicjs 8480 4192 with 25% lower achieved performance results
math-partial- demonstrate that the proposed technology opens a real
sums.js 9416 4216 way for efficient execution of complex fully-functional
math-spectral- Web Applications with, under certain conditions, near-
norm.js 7904 4160 native performance.

— . As future directions, we consider research of
string-fasta.js 8916 4532

dynamic trace-based optimizations. From our view
point, the way of dynamic representation of
application’s execution line, can be developed to make
possible automatic non-speculative parallelization of
JavaScript applications.

ECMA-262 Compliance
The developed engine is 100% compliant with
ECMA-262, according to test262 - the Official

References

1. A, Hass; A, Rossberg; D.L., Schuff; B.L., Titzer; D., Gohman; L., Wagner; A., Zakai; M., Holman; JF, Bastien (2017). Bringing the Web
up to Speed with WebAssembly..

2. Richards, G., Lebresne, S., Burg, B., & Vitek, J. (2010, June). An analysis of the dynamic behavior of JavaScript programs. In ACM

Sigplan Notices (Vol. 45, No. 6, pp. 1-12). ACM.

Hackett, B., & Guo, S. (2012). Fast and precise hybrid type inference for JavaScript. ACM SIGPLAN Notices, 47(6), 239-250.

Brunthaler, S. (2010, June). Inline caching meets quickening. In European Conference on Object-Oriented Programming (pp. 429-

451). Springer Berlin Heidelberg.

WebKit / LongSpider, 2016. https://github.com/WebKit/webkit/tree/master/PerformanceTests/LongSpider.

WebKit. SunSpider JavaScript Benchmark, 2017. https://webkit.org/perf/sunspider/sunspider.html.

Chrome V8. https://developers.google.com/v8.

Gavrin, E. Lee, S. ], Ayrapetyan, R, & Shitov, A. (2015, October). Ultra-lightweight JavaScript engine for internet of things. In

Companion Proceedings of the 2015 ACM SIGPLAN International Conference on Systems, Programming, Languages and

Applications: Software for Humanity (pp. 19-20). ACM.

9. Implementing ART Just-In-Time (JIT) Compiler, 2017. https://source.android.com/devices/tech/dalvik/jit-compiler.

10. The Pyston Blog. Caching object code, 2016. https://blog.pyston.org/2015/07/14/caching-object-code.

11. V8 ]JavaScript Engine. Code caching, 2015. https://v8project.blogspot.com/2015/07 /code-caching.html.

[Moctynuna: 15.05.2017

B w

© N U

06 aBTOpax:

AiipaneTtsaH Py6en BopucoBuy, Beaiyluii MHXeHep-NPOrpaMMUCT OTAesa KOMIUIALMY, MccieoBaTenbcKUM
LenTp CaMcyHT, cv.ru@samsung.com

laBpuH EBreHmii AjleKCaHAPOBMY, acCIUPaHT QaKyJbTeTa BBIYUCIUTENbHOR MaTeMaTHUKU U KUGEpPHETHKH,
MOCKOBCKHHI TOCyAapCTBeHHBbIH YHuBepcuTeT HMMeHM M.B. JloMOHOCOBa; pykoBOAWTeNb OTAeJa
koMnuasuuy, UccnenoBatenbckuit LleHTp CaMcyHT, eugene.a.gavrin@gmail.com

IllutoB AHAped HuKosaeBMY, acnupaHT QaKy/nbTeTa BBIUMCJAUTENbHOM MaTeMaTUKH M KHUOEpHeTHKH,
MOCKOBCKHI ToCyjapCTBEHHBI yHUBepcuTeT uMMeHM M.B. JloMoHoOcoBa; BeAylUH WHXeHep-
NPOTrPaMMHUCT OTAesa KoMIusinuy, UccnenoBatennsckui Llentp CamcyHr, sand1k@yandex.ru

Note on the authors:

Ayrapetyan Ruben, leading engineer-programmer of Compilation Department, Samsung Research Center,
cv.ru@samsung.com

Gavrin Evgeny, Postgraduate Student of Faculty of Computational Mathematics and Cybernetics, Lomonosov
Moscow State University; Head of Compilation Department, Samsung Research Center,
eugene.a.gavrin@gmail.com

Shitov Andrey, Postgraduate Student of Faculty of Computational Mathematics and Cybernetics, Lomonosov
Moscow State University; engineer-programmer of Compilation Department, Samsung Research

Center, sand1k@yandex.ru

221


mailto:sand1k@yandex.ru
mailto:eugene.a.gavrin@gmail.com
mailto:cv.ru@samsung.com
mailto:sand1k@yandex.ru
mailto:eugene.a.gavrin@gmail.com
mailto:cv.ru@samsung.com

	A novel approach for enhancing performance of JavaScript engine for Web applications
	Новый подход для повышения производительности виртуальной машины языка JavaScript веб-приложений

