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Abstract

JavaScript is the most widespread language for Web programming. And, literally, it is vital for Web
2.0. With development of Web 2.0, JavaScript engines experience increasingly large performance-
related  challenges.  The  ability  to  boost  JavaScript  performance  becomes  the  crucial  point  for
complete replacement of desktop applications in some cases.  We propose the novel approach for
dramatic performance improvement of Web applications by introducing snapshot of compiled code,
profile and type feedback for fast startup and ahead-of-time optimizations.
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НОВЫЙ ПОДХОД ДЛЯ ПОВЫШЕНИЯ ПРОИЗВОДИТЕЛЬНОСТИ ВИРТУАЛЬНОЙ
МАШИНЫ ЯЗЫКА JAVASCRIPT ВЕБ-ПРИЛОЖЕНИЙ

Аннотация

JavaScript  является  наиболее  распространенным  языком  для  веб-программирования.
Виртуальные  машины  для  JavaScript  испытывают  серьезные  проблемы,  связанные  с
производительностью  при  исполнении  вычислительно  сложные  приложений.
Возможность повышения производительности JavaScript  становится критической и мы
предлагаем  новый  подход  для  существенного  улучшения  производительности  веб-
приложений. 
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Introduction
Web  applications  usually  are  simple  client-server

software  applications  with  client  running  in  a  web
browser,  and the server side,  which is remote,  taking
over most of heavy computations and management of
data storage. Nowadays, usual web applications are e-
mail clients, instant messengers, news feeds, maps, or
simple games. The main characteristic of the existing
applications  is  the computational  simplicity  of  client
part.  As  we suppose,  this  is  a  direct  consequence of
JavaScript  engines  slowness.  By  historical  reasons,
JavaScript is the only natively supported language on
the  Web  [1].  However,  it  seems that  performance  of
JavaScript is still not enough for efficient execution of
complex  software  algorithms,  which  is  absolute
requirement for modern applications – starting from

3D games and to complex analytics tools.
Previously,  the  performance  challenge  was

attempted  to  be  overcome  by  several  technologies
starting  from  ActiveX  to  Native  Client,  asm.js  and
WebAssembly  [1].  While  some  of  these  technologies
are either not secure enough or don’t provide sufficient
performance,  other  require  using  another
programming languages, which are not as widespread
as JavaScript [1].  See table 1 for comparison of their
particular features.

We propose to look at the challenge from another
view point.  JavaScript  is  dynamically-typed language,
which is designed to maximize development flexibility
[2].  There are several existing fine-tuned approaches
for  profiling  and  analysis  of  dynamically-typed
languages  –  type  feedback,  type  inference  [3]  and
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inline  caching  [4].  However,  these  approaches  don’t
practically  allow  to  analyze  the  executed  program,
globally. Under this conditions, the uncertainty derived
from  dynamic  nature  of  JavaScript,  becomes  a
significant  obstacle  for  compiler  optimizations,  and
consequently the core of the performance challenge.

We propose to store and update dynamic profiling
data  of  Web  Applications  as  a  whole  during  their
execution,  for  ahead-of-time  analysis  followed  by
optimized compilation. The stored data allows to fully
analyze  an  application’s  code,  type  information,  etc.,
and  so  to  figure  out  its  semantics  with  minimal
uncertainty.  And ahead-of-time compilation allows to
perform  comprehensive  semantics  analysis  without
introducing  delays  into  execution  of  applications.
These features,  finally,  lead to  the best opportunities
for performance optimizations.

There  are  Java,  Python  and  JavaScript  runtimes,
which  partially  implement  similar  ideas.  Android
Runtime  uses  profile-guided  AOT  compilation  [9],
Pyston implements application code cache with plans
to  implement  AOT  recompilation  with  higher
optimization levels [10], and V8 caches information for
fast  recreation  of  compiled  code  [11].  However,  our

approach  is  completely  novel,  as  it  involves
comprehensive  global  semantics  analysis,  leading  to
minimization of dynamic uncertainty.

High-Performance JavaScript engine
As  a  highly  effective  illustration  to  the  proposed

idea, we developed the prototype of High-Performance
JavaScript Engine (see Figure 1 for overall design).

The  main  components  of  the  developed  engine,
which  is  based  on  JerryScript  [8],  are  execution
manager,  semantics  analyzer,  type  information
manager,  persistent  cache  of  code  and  execution
profile, JS parser, and optimizing compiler (see Fig. 2).
In overall, execution process is managed by execution
engine, which handles an executed application’s source
code,  loads  the  available  information  about  the
application from persistent cache, and starts with most
effective  way  of  application  execution,  which  is
available according to the cached data.  Possible ways
are  generic  interpretation,  optimized  interpretation
backed  by  inline  caches,  fast-compiled  region
invocation,  and  finally  execution  of  fully  optimized
AOT-compiled region representing the whole program.

Table 1. Comparison of the existing technologies attempting to solve performance challenge for Web Applications
Technology Security Performance Language

Asm.js Safe Slow JavaScript
WebAssembly (wasm) Safe Fast C/C++
Native Client (PNaCl) Safe Fast C/C++

ActiveX Unsafe Fast C/C++/VB

Figure 1. Overall design of High-Performance JavaScript Engine
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Figure 2. Architecture of High-Performance JavaScript Engine
JavaScript Parser
Initial  analysis  of  input  JavaScript  program  is

performed by parser, which operates on modular level,
i.e. considers one JS source file per invocation. Parsing
of the file is performed in two passes – the first detects
structure of the source and figures out what JS features
are used there – “with” blocks,  closures,  direct-mode
“eval”, and the second generates actual byte-code. The
information about used JS features is used as runtime
hints for using fast-paths afterwards.

The  produced  byte-code  is  high-level
representation  of  parsed  JS  file,  constructed without
any  assumptions  about  dynamic  behavior  of  the
program.  Each instruction is  opcode with  3 optional
arguments,  and each of the argument  either extends
the  opcode,  or  designates  an  identifier,  virtual  VM
register, or constant value.

Type Information
Type feedback,  essentially,  represents  statistics  of

arguments types for each byte-code instruction of an
application.  Type  here  means  basic  JavaScript  type
(number, string, object, etc.) and extended information.
The extended information consists of details, which are
specific for each of the basic types:
• numbers  can  be  integer  or  floating  point,

signed or unsigned
• strings  can  be  ASCII-only  or  UTF-16,  one  of

specification-defined or arbitrary
• objects can have different field layout

Details  of  object  layouts  are  packed  into
application-wide  identifiers  (which  can  also  be
referred as “hidden classes”), which are then encoded
into type feedback.

Execution Engine
The  execution  engine  is  the  central  node  of  the

developed  JavaScript  engine’s  architecture.  The
component  manages  execution  of  an  application,  by
navigating  through  byte-code.  For  each  part  of
application, it lookups available compiled regions, and
chooses  way  of  execution  –  either  invocation  of  the
regions, or of interpreter.

Upon  load  of  an  application,  execution  engine
requests  information  about  compiled  regions,  which
are available for the application, from persistent cache.
All  the  available  regions  are  registered  in  code
manager, to be loaded on-demand.

Execution of a part, for which no compiled region is
available up to a moment, is performed by interpreter.
Interpreter  processes  byte-code  instructions  one-by-
one and optimizes its execution by inline caching [4].
Inline caches replace the generic implementation of an
instruction’s  semantics  by  the  most  specific,
considering  the  collected  type  feedback.  If  dynamic
behavior  of  the  program  changes,  and  so  the
specialized implementation is invoked with a type set,
which can’t be handled by the specific implementation,
then it is either switched to another specific (so called
“monomorphic”) case of implementation for the new
type  set,  or  to  a  less  specific  (“polymorphic”)  case,
which  can  handle  the  both  type  sets.  The
monomorphic  cases  are  faster  to  execute,  and  could
require more switching in case of frequent changes of
dynamic behavior, in comparison to polymorphic cases.
So, the choice should be performed according to profile
information.

During  interpretation,  execution  engine  collects
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type feedback and profile for each of executed parts,
and provides it to type information manager. After type
feedback is collected, execution engine invokes JIT, to
compile “hot” loops and frequently-invoked functions.
The dynamic JIT compiler should be fast enough, so it
performs  only  local  optimizations,  in  comparison  to
fully-optimizing  ahead-of-time  compiler.  After  JIT
compilation is finished, the produced compiled regions
are registered in code manager, and become available
to the execution engine. 

All  the produced compiled regions,  type feedback
and  profiler  information  are  mirrored  to  persistent
cache, for usage during further executions, and for AOT
compilation.

As a fallback to adapt to changes in an application’s
dynamic  behavior,  each  compiled  region  has
information, which is necessary for rollbacks to more
generic,  and  so  less  optimized,  implementations  of
corresponding  application  parts.  After  a  rollback,
profile information is updated according to the newly
discovered behavior, to be used in future optimizations
– both JIT and AOT.

Ahead-of-Time Compiler
The developed AOT compiler is the essential part of

the overall  optimization pipeline in our approach.  In
general, the compiler loads all the existing information
about a particular application from engine’s persistent
cache,  and produces highly optimized representation
of the application based on the loaded information.

Among other compiler optimizations, the compiler
performs type  specialization,  type  check elimination,
automatic fixed-sized array detection [v8], global dead-
code elimination, elision of concatenation, etc.

One  of  optimizations,  which  deserves  special
attention,  is  partially  dynamic  by  its  nature  –  the
dynamic trace-based analysis. Core of the optimization
on  compiler  side  is  search  of  compiled  region  parts
that  consist  of  constant  expressions,  pure  or
independent  computations -  the  features  are  figured
out through global analysis. The corresponding region
parts are additionally compiled in a way, which allows
to  partially  postpone  their  execution  by  recording
traces of with their input values and identifiers. After
the recording is finished, the trace is analyzed to figure
out  which  of  computations  are  really  necessary,  and
which  are,  for  example,  duplicate,  by  means  of
checking  data  dependencies  figured  out  during
compilation.  Afterwards,  the  recording  is  replayed
without  execution  of  unnecessary  parts.  This  way of
processing dynamic traces is actually a dynamic dead-
code  elimination.  As  possible  future  development  of
the  idea,  we  consider  automatic  non-speculative
parallelization  of  JavaScript  code  based  on
dependencies information from compiler.

Performance and memory consumption
For  estimation  of  the  developed  engine’s

performance  we  have  chosen  the  LongSpider

benchmark  [6].  This  benchmark  is  derived  from  the
more  widely  known  SunSpider  [5],  with  the  main
difference  –  number  of  loop  iterations,  which  are
greater in LongSpider.

Currently,  our  engine  executes  LongSpider
benchmark by 40% faster (geometric mean) than V8
[7]  on  the  second  execution,  taking  advantage  of
ahead-of-time semantics analysis, which is performed
using  profile  from  the  first  execution.  And  memory
consumption is  25% lower (geometric  mean) on the
benchmark.  See  table  2  and  3  for  detailed
measurements.

Table 2. Comparison of engine’s performance on Raspberry Pi
2 board

Benchmark Google V8
(seconds)

High-
Performance 
JavaScript 
Engine
(seconds)

3d-cube.js 10.98 2.89
3d-morph.js 20.34 22.36
3d-raytrace.js 16.59 0.62
access-binary-
trees.js 17.5 22.1

access-fannkuch.js 6.25 13.21
access-nbody.js 16.03 31.26
access-nsieve.js 6.1 7.92
bitops-3bit-bits-in-
byte.js 0.66 0.6

bitops-bits-in-
byte.js 2.11 1.47

bitops-nsieve-bits.js 16.52 19.22
controlflow-
recursive.js 10.99 15.1

crypto-aes.js 17.08 0.37
crypto-md5.js 27.21 21.14
crypto-sha1.js 33.27 30.01
math-cordic.js 23.53 2.63
math-partial-
sums.js 24.03 14.77

math-spectral-
norm.js 13.61 39.37

string-fasta.js 23.84 11.73

Table 3. Comparison of engine’s memory consumption on
ARM32

Benchmark Google V8
(kilobytes)

High-
Performance

JavaScript
Engine

(kilobytes)
3d-cube.js 11736 56068
3d-morph.js 11060 8680
3d-raytrace.js 26020 19088
access-binary-
trees.js 30424 116864
access-fannkuch.js 6564 4160
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access-nbody.js 7308 4604
access-nsieve.js 86316 83864
bitops-3bit-bits-in-
byte.js 6132 3972
bitops-bits-in-
byte.js 6128 3940
bitops-nsieve-
bits.js 18904 17172
controlflow-
recursive.js 6304 4388
crypto-aes.js 15936 8936
crypto-md5.js 40732 7860
crypto-sha1.js 81824 62988
math-cordic.js 8480 4192
math-partial-
sums.js 9416 4216
math-spectral-
norm.js 7904 4160
string-fasta.js 8916 4532

ECMA-262 Compliance
The  developed  engine  is  100%  compliant  with

ECMA-262,  according  to  test262  –  the  Official

ECMAScript Conformance Test Suite.

Conclusion
The  developed  engine,  while  being  an  early

prototype, represents highly effective illustration to the
proposed technology, which is based on ahead-of-time
analysis  of  full-application  profile.  Deep  analysis
provides way to figure out all the necessary application
semantics  from  its  high-level  source  and  execution
profile, which gives the best possible opportunities for
optimizations of JavaScript-based Web Applications.

The  developed  prototype  is  faster  than  V8
JavaScript engine by 40% on LongSpider benchmark,
with  25%  lower  achieved  performance  results
demonstrate that the proposed technology opens a real
way for efficient execution of complex fully-functional
Web Applications with, under certain conditions, near-
native performance.

As  future  directions,  we  consider  research  of
dynamic  trace-based  optimizations.  From  our  view
point,  the  way  of  dynamic  representation  of
application’s execution line, can be developed to make
possible  automatic  non-speculative  parallelization  of
JavaScript applications.
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