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ABSTRACT

A method of analysis the dynamics of complex systems using neural networks with an infinite
number of cells was investigated. For the Cauchy problem for systems of differential equations of
countable order, which describes the neural network with infinite number of cells, considered the
question of the existence and uniqueness of its solution.
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INTRODUCTION

The recent research of the dynamics of complex systems using neural networks with an infinite
number of cells in faced with the problem of the solutions analysis of certain infinite systems of ordinary
differential equations to a time-independent solution. A model for a large network of "neurons" with a
graded response (or sigmoid input-output relation) was studied [4]. The idea was used in biological systems
was given added credence by the continued presence of such properties for more nearly biological
"neurons”. In the paper [1] was given existence and uniqueness results for the equations describing the
dynamics of some neural networks for which there were infinitely many cells. Such system was considered
and neural nets which were modelled were described by the infinite system of ordinary differential
equations.

Bruce D. Calvert and Armen H. Zemanian [2] investigated a nonlinear infinite resistive network, an
operating point could be determined by approximating the network by finite networks obtained by shorting
together various infinite sets of nodes, and then taking a limit of the nodal potential functions of the finite
networks. By taking a completion of the node set of the infinite network under a metric given by the
resistances, limit points were obtained that represent generalized ends, which it be called "terminals," of
the infinite network. These terminals could be shorted together to obtain a generalized kind of node, a
special case of a 1-node. An operating point will involve Kirchhoff's current law holding at 1-nodes, and so
the flow of current into these terminals was studied. They gave existence and bounds for an operating point
that also had a nodal potential function, which was continuous at the 1-nodes. The existence was derived
from the said approximations.
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Haiying Huang, Qiaosheng Du and Xibing Kang [5] studied a class of neutral high-order stochastic
Hopfield neural networks with Markovian jump parameters and mixed time delays. The jumping
parameters was modeled as a continuous-time finite-state Markov chain. The existence of equilibrium point
for the addressed neural networks was studied. By utilizing the Lyapunov stability theory, stochastic
analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria were
presented in terms of linear matrix inequalities to guarantee the neural networks to be globally
exponentially stable in the mean square.

In paper [15] Xiao Liang, Linshan Wang, Yangfan Wang and Ruili Wang focused on the long time
behavior of the mild solution to delayed reaction-diffusion Hopfield neural networks (DRDHNNs) driven by
infinite dimensional Wiener processes. They analyzed the existence, uniqueness, and stability of this system
under the local Lipschitz function by constructing an appropriate Lyapunov-Krasovskii function and
utilizing the semigroup theory. Some easy-to-test criteria affecting the well-posedness and stability of the
networks, such as infinite dimensional noise and diffusion effect, were obtained. The criteria could be used
as theoretic guidance to stabilize DRDHNNs in practical applications when infinite dimensional noise was
taken into consideration. Considering the fact that the standard Brownian motion is a special case of infinite
dimensional Wiener process, they undertake an analysis of the local Lipschitz condition, which had a wider
range than the global Lipschitz condition.

In 1984 Hopfield investigated a neural network which was described using system of ordinary
differential equations [4]

du, . u.(t)
C—=>T"g(u.(t))+d ———=,
S Xt d = ”
i j=1,..,N,>0
or
du.
Lis fugt)+rai j=1,...,N,
dt
N
ﬁ(%gsf)zzzjg(u_,)/cp”i =(d,—u()/R)/C, (2)
1

where u,(?) are the voltage changes on the neuron, which determines the state of the system, C, >0, R >0

, T

i

d, are sets of real numbers, and a function g €[-1;1], (s € R) increasing function. In this work, we
study the following system of singularly perturbed differential equations, which is a generalization of system

(D):

du; _ fu,g.t)+m,i=1,..,N,
d
o (3)
,Lt—i=F;(u,g,f)+Mi, i=N+1,...,
d
fiu,g.0)=YT'g(u,)/C,
1
m = (d,~u,(t)/R)/C, (4)
i=1,...,N,
F;(u:gst) :ZT;]Ag(uj)/Ci’
=
M,=(d —u(t)/R)/C, (5)
i=12,..,

where u,(¢), i=1,2,... is a functional sequence, C;, >0, R >0, T, d, c I, are numerical sequence, and
u >0 is a small parameter.
For system (3) we can formulate the following Cauchy problem:
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du,
= = fi(u,g,0)+m,i=1,...,N,
dt

du,
u%=Fl.(u,g,t)+Ml.,i=N+1,..., (6)

w(0)=i'i=1,2,...,

where #’ c /, numerical sequence.

Cauchy problems for the systems of ordinary differential equations of infinite order was
investigated A.N.Tihonov [10], K.P.Persidsky [9], O.A.Zhautykov [13], [14], Ju.Korobeinik [6] other
researchers.

It was studied the singular perturbated systems of ordinary differential equations by A.N. Tihonov
[11], A.B.Vasil’eva [12], S.A. Lomov [8] other researchers.

In this paper the Cauchy problem (6) is considered the existence and uniqueness of its solution, an
algorithm for constructing asymptotic solutions using approximate methods of solutions of differential
equations with a small parameter at the highest derivative and analyzed the possibility of applying it
solutions to predict the dynamics of complex systems in conditions of uncertainty.

For the Cauchy problem for systems of differential equations of countable order, which describes
the neural network with infinite number of cells, considered the question of the existence and uniqueness
of its solution, an algorithm for constructing asymptotic solutions using approximate methods of solutions
of differential equations with a small parameter at the highest derivative and analyzed the possibility of
applying it solutions to predict the dynamics of complex systems in conditions of uncertainty.

In this paper we apply methods from [12] for the singular perturbated systems of ordinary
differential equations of infinite order of Tikhonov-type.

TIKHONOV-TYPE CAUCHY PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS OF
INFINITE ORDER WITH A SMALL PARAMETER

Let's consider Tikhonov-type Cauchy problems for systems of ordinary differential equations of
infinite order with a small parameter y and initial conditions (6):

x = f(x(0), y(2),1) + m,
py =F(x(@),y(0),0)+M; (7)
x(t) = ul, y(t,) = uy,
X = (tyyestty) = Uy sty nsen) s
I = oo ) S F = (Fy s Fy o)
m=(m,....m,) M=M,, ,M,.,,.),
u, = (@) ...,uy)" uy = (ty,,iy,,,...)"
where x, f,me X, X eR" are n-dimensional functions; y,F,M €Y, Y c/ are infinite-dimensional
functions and 7 €[t,,1,] (¢, <t, <), teT, TeR; u’ e X and u, €Y are given vectors, x>0 is a small
real parameter; x(t)=(x,...,x,)" and y@#) =(y,,y,,...)) are solutions of (7). Given functions
Fx@), v, 0)=(fi,..., fy)" and F(x(t), y(¢),t) = (F,F,,...)" are continuous functions for all variables.

Let S is an integral manifold of the system (7) in XxYxT. If any point 1 €[f,1]
(x(¢),y(),t)e S of trajectory of this system has at least one common point on S this trajectory
(x(2), y(t),t) € S belongs the integral manifold S totally. If we assume in (7) that u =0 than we have a
degenerate system of the ordinary differential equations and a problem of singular perturbations

x = f(x@), y(t),t) +m,
0= F(x(1), y(1),1); (8)
x(t,) =u,,
where the dimension of this system is less than the dimension of the system (7), since the relations
F(x(t),y(),t) =0 in the system (8) are the algebraic equations (not differential equations). Thus for the

system (8) we can use limited number of the initial conditions then for system (7). Most natural for this case
we can use the initial conditions x(z,) = u for the system (8) and the initial conditions y(z,) = uf disregard
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otherwise we get the overdefined system. We can solve the system (8) if the equation F(x(z),y(¢),t) =0
could be solved. Ifitis possible to solve we can find a finite set or countable set of the roots y, (¢) = w, (x(?),?)
where ge N.

If the implicit function F(x(¢), y(¢),t) = 0 has not simple structure we must investigate the question
about the choice of roots. Hence we can use the roots y, (t)=w,(x(1),t) (¢ € N) in (8) and solve the
degenerate system

{Xd = f(x, (0, w,(x, (), 0),0) + m;
_ 0 €)
Yaty) =u,.

Since it is not assumed that the roots y, (1) = w, (x(¢),¢) satisfy the initial conditions of the Cauchy
problem (7) (y,(z,) # w,, g € N), the solutions y(f) (7) and y, (¢) do not close to each other at the initial
moments of time ¢ > 0 . Also there is a very interesting question about behaviors of the solutions x(¢) of the
singular perturbated problem (7) and the solutions x,(¢) of the degenerate problem (9). When ¢t =0 we
have x(t,) = x,(t,) . Do these solutions close to each other when ¢ €(%,,7,]? The answer to this question
depends on using roots y, (t) = w,(x(¢),¢) and the initial conditions which we apply for the systems (7) and
(8).

LOCAL EXISTENCE THEOREM FOR CAUCHY PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS OF INFINITE ORDER

Let Tikhonov-type Cauchy problems for systems of ordinary differential equations of infinite order
with a small parameter x4 > 0 and initial conditions (7) has a form:

{z’ = P(z(t,G, u),t, 1) +Q;

2ty 1) = G, (10)

where
2= (X, Xy seeer Xps Vs Varens) s
P(z(t,G, ) t, 1) = (frs fosos frys b F it Fy)'
Q= (m,my,...my,M, M, ,,.),
G= (ufl,ufz,...,qu,ugl,ugz,...)r,
P(z(t,G, p),t, 1) is the infinite-dimensional function; G is the given vector; ¢ €[t,,,] (¢, <t, < ).

Let z(¢,G, u) be a continuously differentiable solution of the Cauchy problems (10) then there are
O(t,G,u)=0z(¢,G,u)/ 6G, Y(t,G, u) = 0z(t,G, 1) / ou where ®(¢,G, u) and ¥ (¢,G, 1) satisfy of the system
of ordinary differential equations in variations:

z= Pz, G, p).t, 1),

b(,G,p) = J.(t,G, (G, p),

(6,6, 1) = J.(1,G, )Y (1,G, u) + A, (1,G, w);
2(4),G, 1) = G,

O(,,G,u) =1, ¥(1,,G, 1) = 0,

(11)
where J_(¢,G, ) = (0F / 0z;);",_, is Jacobi matrix, / is an identity operator and A, (¢,G, 1) = (OF, / 0p);Z, is
a vector.

Theorem 1 (local existence theorem). Let P(z(¢,G,u).t,u), J.(,G,u), A, (t,G,u) be
continuous and meet Gelder’s local condition with z € U, (G) then the system (11) has only one solution, which
meet the conditions z(¢,,G,u)=G, z(t,G,u)eU,(G). Thus z(¢+,G,u) continuously differentiable with
respect to the initial condition, and its derivative meet the equation (11).

Proof. This statement is following from [3] (theorem 3.4.4) when the unlimited operator be
. End proof.

The behavior of the solution (.G, 1) (10) and the nonnegative condition for the off-diagonal
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elements of the matrix J_(¢,G, p) is demonstrated by the following theorem.

Theorem 2. Let the solution z of (10) be z(t,G,u) €, forany t>0, G el and u. The following
claims are equal: (i) the off-diagonal elements J_(t,G, u) are non-negative for any G; (ii) for any G and any
vector hel ,h20,z(t,G+h,u) 2 z(t,G, ) .

Proof. Let us examine a convex set Z, and z(z,G,u)e Z for any G € Z, derivative ®(¢,G, u) of
function z(¢,G, u) can be specify by simultaneous equations (11). In that case the following formula is fair
forany G°,G' € Z :

2,6, 1)~ 2(,G" 1) = [ (1, 7(5), )G = G s

where y(s)=(1-5)G’ +sG',0<s<1.
In fact the function z(¢z,G,u) transfer the segment y(s) into the curve z(z,y(s),u) in (12). The

(12)

following formula is fair because of the continuous differentiability of function z(z,G, )

2ty (@), )= 2(, G, i) + I;st.

By the formula of complex derivative

oz(t,y(s), 1) _
Os

=1
Recalling that 6z/0G = ® and y'(s)=G' —G’, with ‘ we get (12). Let us suppose that statement (i) is
fair. So because of (12)

g—g(y(s))y'(s) |

2, G+ h, 1) — 2(1,G, 1) = J:@(t, ¥ (), )hds

= < ¢ < JZ (ta G7
where y(9)=G+sh0ss<l . Because of non-negativeness of function #) outside of diagonal
from (12) we get ®(z,y(s), ) =20, 50 ®(t,y(s), )h > 0 whence we get statement (ii).
Let us suppose that (ii) is fair Under the conditions of Theorem 1 P, J with zeU,(G) be
continuous and meet Gelder’s local condition. Let Gelder’s local conditionbe PPP< M, PJ P< M|, and there

are numbers 6 >0, =min(s/M,,1/M,). Let z(t, G,u)=G+z (t,G,1) be a solution of (12), where

Z'(t,G,u) is a fixed point of Picard’s mapping (HQ)(t)ZItP(G+9(T))dT under conditions
fo

telt,—6,,t,+6,],0,<6. Mapping H is contraction with coefficient A=06,M, <1. Consider the

approximation to solution 2(¢,G,u) = G+2" (t,G, 1) = G+ (t —t,) P(z(t,G, 1), ¢, ) . We can see that
P(t,G,u)—z(t,G, u)P= =PZ (t,G, 1) — 2" (t,G, ) P<

SﬁPHZ(I,G,H)—E(l, G,/J)P,

[E.G.w)—2(.G. ) =
= I:P(G +(r—1,)P)d7 — f,thT =

- j (P(G +(t —t,)P)— P)dt = D.

Because of the derivative of the function P islimited and P meet Gelder’s local condition with the
constant M,, where

PP(G +(r —1,)P(G))— P(G)P< M, P(z —1,)P(G)P< M M, | 7 —1, |,
SO PDP<M M, (t—t,) /2(1-A), or PZ(t,G,u) - z(t,G, ) P< My M, (t—t,)* / 2(1- 1) . Using this estimation
and for all small ¢ >0 we have that

0<z(t,G+le;, 1)—z(t,G, ) =Ce; +(t—1)[P(G+{e,)— P(G)]+7(G,D),
where Py(G,t)P< M M, (t—t,)> /2(1-2) and e; is a vector, which has all coordinates equal to 0 but j -th
coordinate equal to 1. Component i # j of thisinequality is givenby 0 < (¢ —¢,)[P.(G +{e,;) - F(G)] +7,(G,1)
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Dividing by 7—¢,>0 and directing ¢ —¢ on the right, considering y,(G,t)/(t-t,) >0 we get
0< P(G+{e;)—P(G) . Letus divide last expression by ¢ and direct { — 0
P(G+¢e)=P(G) _oP _

0< | =—L=J.
Jim ¢ oG, 7
what is mean the fairing of statement (i). End proof.
G, G'ex >0
Theorem 3. Let ® be Markovian mapping and < ) ! ) H>0 than

Pz(t,G', ) z(t,G°, u) P<PG' — G° P.
Proof. Using (6) from the proofing of theorem 4 we have
P=(t,G' 1)~ =(1,G", ) B [ PO(E7(s))(G' ~G") P (13)

O(t,y(s))

Let function is Markovian mapping for any

t>0,se[0,1], PO, y(s))(G' —G°)P<PG' —G° P.

Estimating the integral, considering this inequality, we get required. End proof.
This theorem shows us the following sufficient condition for the boundedness of the norm-solution

z(t,G, ).

Corollary fact from theorem 3. Let 3G € X :z(t,G ,u) =G . Then Pz(t,G,u)-G |<PG-G P
witht>0,Ge X .

This fact we can use for solutions analysis of the systems (10).

CONCLUSIONS

For the Cauchy problem for systems of differential equations of countable order, which describes
the neural network with infinite number of cells, considered the question of the existence and uniqueness
of its solution. Next step for investigation is constuting an algorithm for asymptotic solutions using
approximate methods of solutions of differential equations with a small parameter at the highest derivative
and analyzed the possibility of applying it solutions to predict the dynamics of complex systems in
conditions of uncertainty.
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