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АННОТАЦИЯ 

В	 статье	 исследована	 динамика	 сложных	 систем	 с	 помощью	 нейронных	 сетей	 с	
бесконечным	 количеством	 элементов	 (клеток).	 Сформулирована	 задача	 Коши	 для	
систем	 дифференциальных	 уравнений	 бесконечного	 порядка,	 которая	 описывает	
нейронные	сети	с	бесконечным	числом	клеток,	и	рассмотрен	вопрос	о	существовании	и	
единственности	решении	такой	задачи.	
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ABSTRACT 

A	method	of	analysis	the	dynamics	of	complex	systems	using	neural	networks	with	an	infinite	
number	of	cells	was	investigated.	For	the	Cauchy	problem	for	systems	of	differential	equations	of	
countable	order,	which	describes	the	neural	network	with	infinite	number	of	cells,	considered	the	
question	of	the	existence	and	uniqueness	of	its	solution.	
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INTRODUCTION 

The recent research of the dynamics of complex systems using neural networks with an infinite 
number of cells in faced with the problem of the solutions analysis of certain infinite systems of ordinary 
differential equations to a time-independent solution. A model for a large network of "neurons" with a 
graded response (or sigmoid input-output relation) was studied [4]. The idea was used in biological systems 
was given added credence by the continued presence of such properties for more nearly biological 
"neurons". In the paper [1] was given existence and uniqueness results for the equations describing the 
dynamics of some neural networks for which there were infinitely many cells. Such system was considered 
and neural nets which were modelled were described by the infinite system of ordinary differential 
equations. 

Bruce D. Calvert and Armen H. Zemanian [2] investigated a nonlinear infinite resistive network, an 
operating point could be determined by approximating the network by finite networks obtained by shorting 
together various infinite sets of nodes, and then taking a limit of the nodal potential functions of the finite 
networks. By taking a completion of the node set of the infinite network under a metric given by the 
resistances, limit points were obtained that represent generalized ends, which it be called "terminals," of 
the infinite network. These terminals could be shorted together to obtain a generalized kind of node, a 
special case of a 1-node. An operating point will involve Kirchhoff’s current law holding at 1-nodes, and so 
the flow of current into these terminals was studied. They gave existence and bounds for an operating point 
that also had a nodal potential function, which was continuous at the 1-nodes. The existence was derived 
from the said approximations. 
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Haiying Huang, Qiaosheng Du and Xibing Kang [5] studied a class of neutral high-order stochastic 
Hopfield neural networks with Markovian jump parameters and mixed time delays. The jumping 
parameters was modeled as a continuous-time finite-state Markov chain. The existence of equilibrium point 
for the addressed neural networks was studied. By utilizing the Lyapunov stability theory, stochastic 
analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria were 
presented in terms of linear matrix inequalities to guarantee the neural networks to be globally 
exponentially stable in the mean square. 

In paper [15] Xiao Liang, Linshan Wang, Yangfan Wang and Ruili Wang focused on the long time 
behavior of the mild solution to delayed reaction-diffusion Hopfield neural networks (DRDHNNs) driven by 
infinite dimensional Wiener processes. They analyzed the existence, uniqueness, and stability of this system 
under the local Lipschitz function by constructing an appropriate Lyapunov-Krasovskii function and 
utilizing the semigroup theory. Some easy-to-test criteria affecting the well-posedness and stability of the 
networks, such as infinite dimensional noise and diffusion effect, were obtained. The criteria could be used 
as theoretic guidance to stabilize DRDHNNs in practical applications when infinite dimensional noise was 
taken into consideration. Considering the fact that the standard Brownian motion is a special case of infinite 
dimensional Wiener process, they undertake an analysis of the local Lipschitz condition, which had a wider 
range than the global Lipschitz condition. 

In 1984 Hopfield investigated a neural network which was described using system of ordinary 
differential equations [4]  
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where ( )iu t  are the voltage changes on the neuron, which determines the state of the system, > 0iC , > 0iR

, ,ijT  id  are sets of real numbers, and a function  1;1g  ,  s R  increasing function. In this work, we 
study the following system of singularly perturbed differential equations, which is a generalization of system 
(1): 
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where ( ), = 1, 2,iu t i   is a functional sequence, > 0iC , > 0iR , ijT , 1id l  are numerical sequence, and 
> 0  is a small parameter. 

For system (3) we can formulate the following Cauchy problem:  
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where 0
1iu l  numerical sequence. 

Cauchy problems for the systems of ordinary differential equations of infinite order was 
investigated A.N.Tihonov [10], K.P.Persidsky [9], O.A.Zhautykov [13], [14], Ju.Korobeinik [6] other 
researchers. 

It was studied the singular perturbated systems of ordinary differential equations by A.N. Tihonov 
[11], A.B.Vasil’eva [12], S.A. Lomov [8] other researchers. 

In this paper the Cauchy problem (6) is considered the existence and uniqueness of its solution, an 
algorithm for constructing asymptotic solutions using approximate methods of solutions of differential 
equations with a small parameter at the highest derivative and analyzed the possibility of applying it 
solutions to predict the dynamics of complex systems in conditions of uncertainty. 

For the Cauchy problem for systems of differential equations of countable order, which describes 
the neural network with infinite number of cells, considered the question of the existence and uniqueness 
of its solution, an algorithm for constructing asymptotic solutions using approximate methods of solutions 
of differential equations with a small parameter at the highest derivative and analyzed the possibility of 
applying it solutions to predict the dynamics of complex systems in conditions of uncertainty. 

In this paper we apply methods from [12] for the singular perturbated systems of ordinary 
differential equations of infinite order of Tikhonov-type. 

TIKHONOV-TYPE CAUCHY PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS OF 
INFINITE ORDER WITH A SMALL PARAMETER 

Let’s consider Tikhonov-type Cauchy problems for systems of ordinary differential equations of 
infinite order with a small parameter   and initial conditions (6): 
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where , ,x f m X , nX R  are n-dimensional functions; , ,y F M Y , 1Y l  are infinite-dimensional 
functions and  0 1,t t t  ( 0 1<t t   ), t T , T R ; 0

xu X  and 0
yu Y  are given vectors, > 0  is a small 

real parameter; 1( ) = ( , , )TNx t x x  and 1 2( ) = ( , , )Ty t y y   are solutions of (7). Given functions 

1( ( ), ( ), ) = ( , , )TNf x t y t t f f  and 1 2( ( ), ( ), ) = ( , , )TF x t y t t F F   are continuous functions for all variables. 
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( ( ), ( ), )x t y t t S  belongs the integral manifold S  totally. If we assume in (7) that = 0  than we have a 
degenerate system of the ordinary differential equations and a problem of singular perturbations 
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where the dimension of this system is less than the dimension of the system (7), since the relations 
( ( ), ( ), ) = 0F x t y t t  in the system (8) are the algebraic equations (not differential equations). Thus for the 

system (8) we can use limited number of the initial conditions then for system (7). Most natural for this case 
we can use the initial conditions 0

0( ) = xx t u  for the system (8) and the initial conditions 0
0( ) = yy t u  disregard 
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otherwise we get the overdefined system. We can solve the system (8) if the equation ( ( ), ( ), ) = 0F x t y t t  
could be solved. If it is possible to solve we can find a finite set or countable set of the roots ( ) = ( ( ), )q qy t w x t t  
where q N . 

If the implicit function ( ( ), ( ), ) = 0F x t y t t  has not simple structure we must investigate the question 
about the choice of roots. Hence we can use the roots ( ) = ( ( ), )q qy t w x t t  (q N ) in (8) and solve the 
degenerate system  
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Since it is not assumed that the roots ( ) = ( ( ), )q qy t w x t t  satisfy the initial conditions of the Cauchy 
problem (7) ( 0( )q xy t w , q N ), the solutions ( )y t  (7) and ( )qy t  do not close to each other at the initial 
moments of time > 0t . Also there is a very interesting question about behaviors of the solutions ( )x t  of the 
singular perturbated problem (7) and the solutions ( )dx t  of the degenerate problem (9). When = 0t  we 
have 0 0( ) = ( )dx t x t . Do these solutions close to each other when  0 1,t t t ? The answer to this question 
depends on using roots ( ) = ( ( ), )q qy t w x t t  and the initial conditions which we apply for the systems (7) and 
(8). 

LOCAL EXISTENCE THEOREM FOR CAUCHY PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL 
EQUATIONS OF INFINITE ORDER 

Let Tikhonov-type Cauchy problems for systems of ordinary differential equations of infinite order 
with a small parameter > 0  and initial conditions (7) has a form: 
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( ( , , ), , )P z t G t   is the infinite-dimensional function; G  is the given vector;  0 1,t t t  ( 0 1<t t   ). 
Let ( , , )z t G   be a continuously differentiable solution of the Cauchy problems (10) then there are 

( , , ) = ( , , ) /t G z t G G    , ( , , ) = ( , , ) /t G z t G      where ( , , )t G   and ( , , )t G   satisfy of the system 
of ordinary differential equations in variations: 
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  (11) 
where , =1( , , ) = ( / )z i j i jJ t G P z    is Jacobi matrix, I  is an identity operator and =1( , , ) = ( / )i it G P       is 
a vector. 

Theorem 1 (local existence theorem). 	 Let	 ( ( , , ), , )P z t G t  ,	 ( , , )zJ t G  ,	 ( , , )t G  	 be	
continuous	and	meet	Gelder’s	local	condition	with	 ( )z U G 	then	the	system	(11)	has	only	one	solution,	which	
meet	 the	 conditions	 0( , , ) =z t G G ,	 	 	 ( , , ) ( )z t G U G  .	 Thus	 ( , , )z t G  	 continuously	 differentiable	 with	
respect	to	the	initial	condition,	and	its	derivative	meet	the	equation	(11).	

	Proof. This statement is following from [3] (theorem 3.4.4) when the unlimited operator be = 0A

. End	proof. 

The behavior of the solution ( , , )z t G   (10) and the nonnegative condition for the off-diagonal 
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elements of the matrix ( , , )zJ t G   is demonstrated by the following theorem. 
Theorem 2. 	Let	the	solution	 z 	of	(10)	be	 1( , , )z t G l  	for	any	 0t  ,	 1G l 	and	  .	The	following	

claims	are	equal:	(i)	the	off-diagonal	elements	 ( , , )zJ t G  	are	non-negative	for	any	G ;	(ii)	for	any	G 	and	any	
vector	 1, 0, ( , , ) ( , , )h l h z t G h z t G     	..	 

Proof. Let us examine a convex set Z , and ( , , )z t G Z   for any G Z , derivative ( , , )t G   of 
function ( , , )z t G   can be specify by simultaneous equations (11). In that case the following formula is fair 
for any 0 1,G G Z :  
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following formula is fair because of the continuous differentiability of function ( , , )z t G   
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By the formula of complex derivative  
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. Dividing by 0 > 0t t  and directing 0t t  on the right, considering 0( , ) / ( ) 0i G t t t    we get 
0 ( ) ( )jP G e P G   . Let us divide last expression by   and direct 0    
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what is mean the fairing of statement (i). 	End	proof. 

Theorem 3. Let	  	 be	 Markovian	 mapping	 and	
0 1,G G X

,	
0t 
,	 > 0 	 than	

1 0 1 0( , , ) ( , , )z t G z t G G G   P P P P. 
	Proof. Using (6) from the proofing of theorem 4 we have  
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 Let function ( , ( ))t s  is Markovian mapping for any  
 1 0 1 00, [0,1], ( , ( ))( ) .t s t s G G G G     P P P P  

Estimating the integral, considering this inequality, we get required. End	proof. 
This theorem shows us the following sufficient condition for the boundedness of the norm-solution 

( , , ).z t G   
Corollary fact from theorem 3. 	 Let	 * * *: ( , , ) =G X z t G G  .	Then	 * *( , , ) ||z t G G G G   P P P	

with	 0,t G X  . 
This fact we can use for solutions analysis of the systems (10). 

CONCLUSIONS 

For the Cauchy problem for systems of differential equations of countable order, which describes 
the neural network with infinite number of cells, considered the question of the existence and uniqueness 
of its solution. Next step for investigation is constuting an algorithm for asymptotic solutions using 
approximate methods of solutions of differential equations with a small parameter at the highest derivative 
and analyzed the possibility of applying it solutions to predict the dynamics of complex systems in 
conditions of uncertainty. 
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