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Abstract

The rapid development of cloud technologies and its high prevalence in both commercial and
academic areas have stimulated active research in the domain of optimal cloud resource
management. One of the most active research directions is dynamic virtual machine (VM) placement
optimization in clouds build on Infrastructure-as-a-Service model. This kind of research may pursue
different goals with energy-aware optimization being the most common goal as it aims at a urgent
problem of green cloud computing - reducing energy consumption by data centers. In this paper we
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present a new heuristic algorithm of dynamic reallocation of VMs based on an approach presented
in one of our previous works. In the algorithm we apply a 2-rank strategy to classify VMs and servers
corresponding to the highly and lowly active VMs and solve four tasks: VM classification, host
classification, forming a VM migration map and VMs migration. Dividing all of the VMs and servers
into two classes we attempt to implement the possibility of risk reduction in case of hardware
overloads under overcommitment conditions and to reduce the influence of the occurring overloads
on the performance of the cloud VMs. Presented algorithm was developed based on the workload
profile of the JINR cloud (a scientific private cloud) with the goal of maximizing its usage, but it can
also be applied in both public and private commercial clouds to organize the simultaneous use of
different SLA and QoS levels in the same cloud environment by giving each VM rank its own level of
overcommitment.
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MPOCTOM 3BPUCTUYECKUA AJITOPUTM JIMHAMUYECKOI'O INEPEPACIPE/IEJIEHUA
BM B IAAS OBJIAKAX

H.A. Basramogl, A.B. Bapanogs?, U.C. Kagouynukogl, B.B. KopenbkoB12, H.A. KyTroBckmiil,
HN.C. [IeneBaHIOK!

1 06'peMHEHHBIN HHCTUTYT S/I€PHBIX UCCIeA0BaHuM, I. Jly6Ha, Poccus
Z PoccuicKMM SKOHOMHUYeCKHUH yHUBepcuTeT uM. [.B. [l1iexanoBa, r. MockBa, Poccus
AHHOTanus

O0HuM u3 Haubosiee NONYASIPHbLIX BUDO8 UCNO/IL308AHUSL 00/AAYHBIX MEXHO/A02ULl KAK 8 HAYKe 8
yeaoM, mak u 8 (Ppuduke BbICOKUX IHepaull 8 4ACMHOCMU, 518/51emcsi NoCmpoeHue 06/AaYHbIX
8bIHUCAUMENbHBIX YEeHMPO8, OCHOBAHHbIX HA Mmodeau HH@pacmpykmypa Kak ycayea (aHaa.
Infrastructure-as-a-Service, laaS). Ycaosus npedocmasieHusi no./ib3ogamensimM 8UpMya/bHbIX
MawuH (BM) mozym paszauuamwvcs, HO 8 60/NbWUHCMBE CAyYae8 MOXCHO dudzHOCmuposams
npobsiemy HeagPeKkmugHo20 UCNO./1b308aHUSl pecypcos. B danHoll cmambe asmopamu
npedcmassieH pa3pabomarHbuiii Memod noevileHUs1 IPPHeKMUEHOCMU UCNO1b308AHUST 00 1AYHbIX
pecypcos, 8 O0CHO8e Komopozo Jexcum udesi JduHamuveckozo nepepacnpedeneHusi BM Ha
dusuueckom obopydosanuu. [Ipedsazaemvili Memod pa3pabomaH HA OCHOBAHUU pe3y/bmamos
nposedeHHO20 A8MOpaAMU cMambvlU AHAAU3A nompebieHus 061aYHbIX pecypcos 8 Hay4HoU cdepe
Ha npumepe 061a4Holl uHPpacmpykmypsvl 066€dUHEHHO20 UHCMUMyma si0epHbiX ucc1edosaHull
(OHAH). B daHHOU cmambe agmopbl paccmampusanm 8dpudHm peaausayuu npednoHceHHO20
Memoda - 3spucmuyeckull aszopumm OUHAMUYECKO20 nepepacnpedeseHuss BM Ha ocHose
deyxpanzoeoil cmpamezuu. 3adaueil npedsazaemozo an20pumMMa A6AemMCcs MUHUMU3AYUS
Ko/Au4Yecmed npocmausarmwyux pecypcog o06.4avyHol uH@pacmpykmypbl U 0O0HOBPEMEHHO
MUHUMU3AYUsl B8/USIHUSI hepezpy30K. Aszopummuyeckue pdcyemvl OCHOBAHbI HA OAHHbBIX O
nompeb6aeHuU onepamugHoli hamsimu U pecypcos npoyeccopa Kak eupmyanbHbIMU MAWUHAMU,
mak u KaxcoblM cepeepom, cocmasAsiiowum obaa4Hyr uHgpacmpykmypy. Paccmampusaemotil
aszopumm ekjavaem caedyrowue amansl: Kaaccuguxkayuro BM u cepsepos coeaacHo 3a0aHHbIM
napamempam, cocmasJjaeHue Kapmsl Muepayuu U, HenocpedcmeeHHo, muepayus BM coaaacho
cocmasseHHol kapme. [IpedcmassienHblll an120pumm Moxcem HAlmu nNpuMeHeHue He MOJIbKO 8
YaCMHbIX 00/1AYHbIX UHPPpACMPYKmMypax, Ho makice U 8 KOMMep4eckoll cpede: npopaHiICUPO8as
06/1a4Hble pecypchbl U 3a0a8 Kaxcdomy paHzy ceor cmeneHb overcommit, MOXHO Op2aHU308amMb
pabomy e eduHoll o6aa4Holl cpede ¢ pasauuHbimu Service-Level Agreements (SLA) u Quality of
Service (QoS).
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061ayHble 8bIMUCAEHUS; 8UpMYAAU3AYUS; ONMUMU3AYUS];, UHMeA1eKmyaabHoe ynpaeaeHue; 1O/,

KoHcoaudayusi BM.

1. Introduction

The rapid pace of cloud technologies
development and their wubiquitous wuse in
commercial area [1] could not but lead to their
introduction in the field of science and education.
One of the most popular cloud technologies use-
cases in the science in general, and in high energy
physics in particular [2-6], is building cloud
datacenters based on Infrastructure as a Service
(IaaS) model [7]. In such systems an end-user gets a
pool of virtual machines (VM) with the ability to
install any required additional software by himself.
In such clouds user VMs are automatically allocated
to physical servers (which form a cloud) by a built-
in VM scheduler. Thus, cloud users get a universal
computing tool with the ability to adapt it to their
current personal needs by themselves.

As is known, pursuing universality of a system
often leads to various performance issues and one
of the most common problems is the falling
efficiency in the utilization of physical equipment. In
private scientific cloud infrastructures this problem
can worsen due to internal organization of the
provided service. In particular, unlike the
commercial clouds in which a service is provided on
the pay-as-you-go model, i.e. service users are
charged based on usage, in scientific private cloud
infrastructure the service is often provided at no
cost. Evidently, in the absence of any restrictions
this approach is characterized by abuse of allocated
resources by users, inevitably leading to significant
reduction of the provider's equipment usage
efficiency. This problem is often solved by signing
Service Level Agreement (SLA) which, for example,
may contain a clause on the automatic removement
of user VMs when not used. There are other popular
approaches to the problem, e.g. methods of artificial
performance reduction by over-allocating virtual
resources. This technique is referred to as
“overcommitment” and it leads to increased load of
hardware, but may also lead to the overloading of
physical equipment and, consequently, to the cloud
VMs performance degradation.

In one of our previous works [8] we analyzed
cloud resources usage in scientific area by the

example of the Joint Institute of Nuclear Research
(JINR) cloud infrastructure and suggested a new
method of the efficiency improvement of the cloud
resources utilization based on dynamic reallocation
of VMs across the cloud hardware. A software
framework, which simplifies development of
various schemes of dynamic reallocation of VMs in
clouds, was also introduced by the authors [9]. In
this paper we review implementation of a version of
the earlier suggested method - heuristic algorithm
of dynamic VM re-allocation based on 2-rank
strategy. The algorithm is intended for minimizing
the number of idle resources in cloud infrastructure
and at the same time minimizing the consequences
of the hardware overload.

The rest of the paper is organized as follows.
Section 2 discusses related work, followed by the
model of the cloud loads discussed in Section 3. The
2-rank algorithm for dynamic reallocation of VMs is
presented in Section 4. Section 5 concludes the
paper with a summary and future research
direction.

2. Related work

Traditional approach to increase the efficiency
of resource usage in cloud computing environments
and to reduce the capital expenditure on the cloud
infrastructure (built on IaaS model) maintenance is
to consolidate VMs using overcommitment
technologies, thus forming a more dense VM
distribution across the hardware in the cloud. Some
platforms (e.g., OpenStack), which cloud computing
environments are based on, are able to perform
such consolidation of VMs using simple algorithms,
while other platforms lack such functionality (e.g.,
OpenNebula). Nevertheless, overcommitting
resources inevitably leads to the reduction of the
Quality of Service (QoS) since it is never possible to
accurately predict the future load in advance and
there may be situations when real workloads will
exceed the maximum of physically possible because
of the abrupt growth of the load generated by the
VMs. A large number of publications are devoted to
the research of method for VM scheduling under
overcommitment conditions minimizing QoS
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degradation, in particular one of the recent research
[10], in which authors consider VM scheduling in
the laaS-clouds, taking into account
overcommitment, as a bin-packing problem [11]
with chance constraints. However, even more
number of research works is focused on research of
methods for dynamic optimization of virtual
resources distribution in cloud environments [12-
19], and there is also a number of publications
describing software implementations of such
methods [20-22]. There are also such methods
pursuing more exotic goals, i.e. thermal-aware
resource management designed to improve the
efficiency of heat extraction [23]. In essence all of
these methods are focused on optimizing virtual
resources distribution on physical equipment
organized in a way to maximize VM density among
servers while minimizing degradation of the QoS.
Implementation of such a class of methods is
possible due to sufficiently advanced VM live-
migration technology [24], i.e. transferring a VM
from one server to another one without
disconnecting the client, with close to zero
downtime and restoring the full state of the VM
running processes after migration. In all of the
abovementioned works methods of dynamic
optimization of the VM distribution are considered
in context of solving of one of the green computing
urgent problems: decreasing energy consumption
by data centers [25]. To treat this problem such
methods are used to maximize the workloads
density to decrease the number of active servers:
idle servers containing no VMs are then powered off
or put into power-saving mode, thus reducing total
power usage.

In this paper we describe a new algorithm of
dynamic reallocation of virtual resources, based on
the analysis of the workloads profile in the JINR
Cloud [22]. Proposed algorithm is an attempt to
implement possibility of risk reduction in case of a
hardware overload and to reduce the influence of
the occurring overloads on the performance of the
cloud VMs. The proposed algorithm relies on a
custom monitoring and performance data collection
system, since not every cloud platform provides
such a suitable system [26-27].

3. Cloud Load Model

Four key characteristics of the VM performance
are memory size, central processing unit (CPU)
resources, number and speed of /0 disk operations
and volume of network traffic. If a cloud system has
low network traffic and a negligibly small number

sitito.cs.msu.ru

of disk operations (which is seen in JINR Cloud),
then memory size and CPU resources are the only
significant performance metrics. In this paper we
consider only the memory size and the number and
the usage of CPU. The proposed algorithm is aimed
at maximizing memory and CPU usage of the cloud
servers.

The total usage of CPU resources C on a single
server we define as follows:

k
C=ch+ch
i=1

where k is the number of VMs placed on server, ¢jis
the CPU usage of the VM j, and c,is the CPU usage
generated by the server itself, which is actually an
overhead spent on the server functioning.

Then the total CPU load of the cloud as a whole
L.can be expressed in the form:

n
LC=ZC,:
i=1

where n € N is the total number of servers included
in the cloud.
The memory consumption M is defined in the

same way:
k n
j=1 i=1

where m; is the memory size used by VM j, and m,,
is the memory size - an overhead spent on the
server functioning.

4. Algorithm description

To implement the algorithm the following input
data are needed:

Memory and CPU usage by VMs;

Memory and CPU usage by servers.

The following parameters also have to be
defined by the cloud system administrator based on
risks which the cloud provider is ready to take:

P - parameter used to determine the rank R of
the VM, P € (0,1);

t - time for which the average VM load is
computed;

Factors O, and O,, determine valid values of the
CPU and memory overcommit levels, defined for
each of two ranks. Value of these parameters less
than 2 mean that servers of this rank will always be
underloaded, values of 1 mean that maximum load
may reach 100 %, the greater the value above 1, the
higher the risk of the hardware overload.

The proposed algorithm is as follows:
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The algorithm assumes that all VMs in the cloud
can be divided into two classes: highly active VMs,
which are assigned the rank 1, and low-active VMs,
which get the rank 0. All the cloud servers also get
one of the ranks and the VMs with the assigned rank
are placed on the servers with the same
corresponding rank. In each iteration of the
algorithm ranks of VMs are recomputed in
accordance with the pre-defined rules and all the
VMs which changed the rank are migrated to the
other cluster. When necessary the ranks of the
servers that have no VMs left are deleted forming
cluster of the unranked servers. In general, the cycle
of the algorithm consists of the following stages:

VM classification.

Server classification.

Computing VM migration map

VM migration.

Deletion of the rank of the idle servers.

In the following sections we review in more
detail some of these stages of the described
algorithm.

4.1 VM classification

To classify the cloud VMs (Algorithm 1) we
consider the following function:
_ {1ifVCZ + V2> Pp?
~oifv2 +v2 < P
where V. and V,, correspond to the average CPU and
memory usage for the time t normalized by 1, and P
is the predefined variable used to define the rank as
described in the previous section. Time t and value
of P are the parameters and are defined by the
system administrator. For instance, if P = 0.5, then
the VM rank distribution in the JINR cloud for the
randomly chosen time period ¢t equal to one month
will take form as illustrated on Fig. 1.
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Figure 1. Example of the VM classification in the JINR cloud.
The X-axis shows the real CPU usage of the VM as a fraction
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of the total allocated CPU for the VM, the Y-axis shows the
real memory usage by the VM as a fraction of the total
allocated memory for the VM

Algorithm 1. Classification of VMs

Input: VMList, P, t
1: foreach VM in VMList do
2: | if VM has history for the period t do

3: | | if (VM.cpuUsage”2 + VM.memUsage”2)
<P"2do
4: ] | | Setrank of the VM equal 1

5:1 | else
6: | | | Setrankofthe VM equal 0
7: return VMs

4.2 Server classification

In the described algorithm each rank of the VM
corresponds to a server rank, therefore there
should exist a minimum of two server ranks.
However, new VMs, that has no statistics for the
defined time period [t, — t;t.], where t. is the
current time, cannot be classified at this stage. To
address the issue we use a number of unclassified
servers, which will host all new incoming VMs
scheduling them in accordance with the built-in
algorithms of the used cloud platform.

On the initial stage of the algorithm any server
may contain VMs of two classes simultaneously. To
reduce the number of VM migrations on the
following stage a simple algorithm can be used.

Choose the rank which is assigned to the greater
number of VMs in the cloud.

Sort the servers by the hosted number of VMs of
the chosen rank in descending order.

The servers are added to the list (cluster) of the
chosen rank servers one by one until it gains the
capacity suitable to host all of the VMs of the
corresponding rank.

Repeat step 3 to form a list of servers of the
other rank.

The rest of the servers are left unclassified with
no rank. Thus, after the system initialization there
will be three groups (clusters): server cluster of
rank 1, cluster of rank 0 and the cluster composed
of servers with no rank assigned (Algorithm 2). On
the current stage some part of the servers, evidently,
will host VMs of both classes simultaneously - the
system will self-organize on the next iterations of
the resources reallocation cycle.

Algorithm 2. Initial classification of Hosts

Big Data and applications
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Input: HostList, ClusterList
Input: initialRank, the rank that the maximum number
of VMs has

1: if initialRank == 0 do

2: | Sort ClusterList ascending

3: else

4: | Sort ClusterList descending

5: Sort HostList by number of VMs having initialRank
descending

6: foreach cluster in ClusterList do

7: | foreach host in HostList do

8: | | if (hostmemSize*cluster.Om +
cluster.memSize) < cluster.requiredMemSize and

9: | | | (host.cpuSize*cluster.Oc + cluster.cpuSize) <
cluster.requiredCpuSize do

10: | | | | Add host to the cluster

11: | | | | Remove host from the HostList
12: | | else

13: | | | break

14: return ClusterList

4.3 Resources reallocation cycle

The resources reallocation cycle occurs at
regular intervals t and can be split into two
subtasks:

e VM classification;
e VM migration.

The process of VM classification has been
described in above section, but the VM migration
can be considered as a bin packing problem with
elements (VMs) of different sizes and containers
(servers) also of different sizes which is known to
be NP-hard. To address this problem we consider
the following simple algorithm for forming the VM
migration map which is a modification of the well-
known Best-Fit Decreasing (BFD) algorithm:

Form a list of VMs of the same rank which are to
be migrated, i.e. those VMs the rank of which
doesn’t match the rank of the hosting them servers.

Sort the list of VMs by memory size in
decreasing order, then sort groups of VMs of the
same memory by CPU resources in decreasing order.

Sort unclassified servers and the servers of the
corresponding rank in the same way but in
increasing order.

Get the first VM in the list and compare its size to
the size of the first host in the list of ranked servers:
if it fits the server, this pair is added to the
migration map, the VM is removed from the list and
the size of the server is reduced. Otherwise, the
procedure is repeated for the next server in the list.

If no suitable server was found, the first server
from the unclassified list is added to the list of
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ranked servers and with the current VM it is added
to the migration map, the VM then is removed from
the list. If the server doesn’t fit, the next server in
the list considered. If there is no suitable server
found, the VM is skipped.

Repeat 3-5 for the rest of the VMs.

As a result the migration map and the list of VMs
that don'’t fit any server at the moment are formed.

It can be seen from this algorithm that packing
starts with large VMs first: since the smaller the
item (VM) the higher the probability to find a
suitable container (server) of enough capacity, and
because the free capacity is reduced with every
match, the probability to successfully find the next
match is also reduced with each iteration. Sorting
VMs and servers as described above reduces the
probability of not finding the suitable server in the
list.

This algorithm is repeated twice - once for each
of two classes of objects. The flowchart illustrating
the algorithm is presented on Fig. 2. The algorithm
results in a VM migration map and a list of VMs
which can’t be reallocated at the moment. The
migration map is a list in which an element is a pair
VM-server showing on which server the VM should
be placed.

It is also can be seen, that when new servers are
added to the system they will automatically be
classified during on the resources reallocation cycle
according to current needs.

Migration of the VMs is processed one by one
using the migration map to minimize the influence
on the total system performance. After all migration
are finished ranks of all of the servers, which don’t
host any VMs anymore but still have a rank, are
deleted and the servers are moved to the list of
unclassified servers.

5. Conclusion

In this paper we gave a review of an algorithm
for dynamic reallocation of VMs in a cloud
environment based on 2-rank strategy - one of the
possible implementations of the proposed earlier
method of dynamic resources reallocation [8]. The
algorithm is aimed, in the first place, to be used in
private cloud infrastructures with workload profile
similar of the JINR cloud one. Presented algorithm
may be used not only in private cloud infrastructure,
but also in commercial area: ranking cloud
resources and giving each rank its own level of
overcommitment it is possible to organize the
simultaneous use of different SLA and QoS levels in
the same cloud environment.
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START

List of same rank VVMs to migrate - VMs,
List of the same rank hosts - Hosts,
List of unclassified hosts - noClassHosts

v

Sort VMs and
noClassHosts by
memaory, cpu
descending

v

Sort Hosts by memory,
cpu ascending

< |f VMs.isEmpty .
NO
VM = VMs first
MigrationMap.add(VM Host)
VMs.remove(VM) l
Host = Hosts.next |-
YES YES
YES
It Host.hasSize(VM.size) | If Hosts.hasMext
NO
If noClassHosts.isEmpty NO—= Hosts.add(noClassHosts.next) f————
YES -

RETURN
MigrationMap, VMs

Figure 2. Flowchart showing the algorithm of forming the migration map for one of the ranks

To make implementation of this algorithm and framework [9] which was put into operation in the
others possible the authors developed the software JINR cloud. In our future research we plan to
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analyze the gathered statistical data on the thus minimizing the time the servers are idle.
algorithm functioning to get an experimental

assessment of its efficiency. We also plan to Acknowledgements
investigate the ways of integrating the system with The work was supported by the RFBR project
batch systems [22] to load the unclassified idle 15-29-0727.
servers with short-living preemptable batch jobs,
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