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Abstract

In this paper, we perform a comparative analysis of new methods for constructing approximate
solutions of differential equations. As a test problem, we chose the boundary value problem for a
substantially nonlinear second-order differential equation. This problem arose when modeling the
processes of heat and mass exchange in a flat granule of a porous catalyst. Previously, we solved this
problem with the help of artificial neural networks, using it as a model problem for testing methods
developed by us. Our generic neural network approach has been applied to this problem both in the
case of constant parameters and parameters varying in some intervals. In the case of constant
parameters, the result coincided with the data available in the literature on the subject. Models with
variable parameters, which are part of the inputs of neural networks, were first built in our works.
One of the significant drawbacks of this approach is the high resource intensity of neural network
learning process. In this paper, we consider a new approach, which allows doing without the
training procedure. Our approach is based on a modification of known numerical methods - on an
application of classical formulas of the numerical solution of ordinary differential equations to an
argument change interval with a variable upper limit. The result is an approximate mathematical
model in the form of a function, and the parameters of the problem are among the arguments of the
function. In this paper, we showed that the new methods have significant advantages. We have
considered two such methods. One method is based on a neural network modification of the shooting
method. The second method differs in that the shooting is conducted on both sides of the gap. The
obtained models are characterized by simplicity and a wide range of parameters for which they are
suitable. The models we have built can be easily adapted to observations of real objects. The models
we have built can be easily adapted to data observations of real objects.
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MHOT'OC/JI0MHBIE MAPAMETPUYECKHWE MO/IEJIU ITIPOLIECCOB B TPAHYJIE
INOPHUCTOT'O KATAJIM3ATOPA

0.4. Boposckas, T.B. J/lazoBckas, K.B. Ckosuc, JI.A. Tapxos, A.H. BacuibeB
CankT-IleTepOyprckuil nonutexHuuecku yuupepcuret [letpa Besinmkoro, r. CankT-IleTep6ypr, Poccus

AHHOTanus

B daHHoll cmambe Mbl npogoduM CpasHUME/AbHbLIU aHA/AU3 HOBbIX Memodo8 nocmpoeHus
npubausNcéHHbIX peweHull duggdepeHyuaavHbix ypasHeHull. B kayecmee mecmosoll 3adayu Mmbl
8blbpaau Kpaegyrw 3adady 0.5 CyujeCmeeHHO HeAuHeliHoz2o JdudpdepeHyuarbHo20 ypasHeHUs
8mopozo nopsidka. [laHHas npob.iema 803HUKAQ hpu MOJeAUpOo8aAHUU NPOYecco8 obMeHa menaa u
MACCbl 8 NIOCKOU 2paMy.Jie nopucmozo kamaausamopa. Panee Mol pewaau amy 3adavy ¢ nomoubro
UCKYCCMBEHHbIX HeUpPOHHbIX cemell, UCho/b3ysi eé Kak modesbHyw 3adadvy 0.5 anpobayuu
pa3pabomaHHbIX Hamu memodos. Haw yHugsepcaivbHblll Helipocemegoll nodxo0d Obla NPUMEHEH K
daHHoll 3a0ave Kak 8 cjy4ae NOCMOSIHHbIX NApamMempos, mak u 018 napamempos, U3MeHsIIoUUuxcsl
8 HeKomopbuix UHmMepeaaax. B ciyyae nocmosiHHbIx napamempos pe3y.1bmam coenaja ¢ 0aHHbIMU,
UMEeWUMUCS 8 AUmepamype no daHHol memamuke.

Modeau ¢ nepeMeHHbIMU Napamempamu, 8AIWUMUCI YaCMbl 8X0008 HellpOHHbIX cemetl, ObLIU
anepeble NOCMpoeHbl 8 Hawux pabomax. O0HUM U3 cyujecmeeHHbIX HedoCmamko8 makoz2o nodxodd
s18/155emcsl 604bWasl pecypcoémKkocms npoyecca obyveHust HellpoHHbIX cemell. B daHHol pabome
paccmampusaemcss pa3pabomaHHsllil Hamu HoBblll nodxod, nosgoasrWull o06olmucs 6e3
npoyedypul o6yveHus. Haw nodxod ocHosaH Ha modudukayuu u38ecmHbulX YUCAEHHbIX Memodos —
HA NpUMeHeHUU KAACCUYEeCKUX )OpMy/1 HUCAEHHO20 peuleHUsl 00bIKHOBEHHbIX U PepeHyUuaAbHbIX
YpasHeHUll K UHMepeaJy U3MEHEHUs apsyMeHmd C nepemMeHHbIM GepXHUM hpedesom. B
pe3yibmame noJy4aemcst NpUOAUNCEHHAST Mamemamuveckast Modesb 8 gude PYHKYuUU, Npuvém
napamempbl 3a0a4u 8xodsim 8 Yuc/a10 ap2ymeHmos pyHkyuu. B danHoill cmamve Mbl nokasaau, ymo
Hogble Memodbl UMerom cyujecmeeHHble npeumyujecmsd. Mol paccmompeau dea makux memoda.
O0duH memod ocHosaH Ha Helipocemegoll modupukayuu memoda npucmpesku. Bmopoii memod
omauyaemcsi mem, 4mo npucmpeka 8edémcs ¢ dgyx CmMoOpoH npomexcymkd. [las nosyveHHbix
Modesell xapakmepHbl hpocmoma U WUpokasi 0641acmes U3MeHeHUsl napamempos, 015 KOmopbix
OHU npuzodHbl. [locmpoeHHble HAMU Modeau Mo2ym 6bimb Je2ko adanmupo8aHsl No0 O0dHHble
Ha6.1100eHUll 3a pealbHbIMU 06BeKMAaMU.

KiloueBsle cj10Ba

I'panyna kKamaausamopa;, kpaeeas 3adaua;, npubauxceHHoe peweHue; Helipocemegoe
ModeaupogaHue;  UCKYCCMEEHHAsl  HEeUpPOHHAss  cemb;  MHO20C/A0UHOe  ModeauposaHue;
Modugdukayus Yuc,1eHHo20 Memoda.

we chose a boundary value problem for an

Introduction essentially nonlinear differential equation of the

In this paper, we perform a comparative analysis second order. Some analytical and numerical
of new methods for constructing approximate methods of solutions to similar problems are
solutions of differential equations. As a test problem, described in detail in [1-5].
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Various mathematical methods can be used to
describe a wide range of chemical reactions [6,7].
The test problem arose in the simulation of heat and
mass exchange processes in a plane porous catalyst
granule. The need to obtain solutions to such
problems is associated with the widespread use of
granular media in the chemical industry, which led
to the development of modeling in the field of
reactions and processes occurring in the presence
of a catalyst [8]. Thus, due to the high degree of use
of catalytic chemical reactions, there are a large
number of diverse modeling techniques specific
boundary value problems by using numerical
methods [9-12].

Analysis of the heat-and-mass balance in a
porous catalyst pellet at a catalytic chemical
reaction leads to the study of boundary value
problem with Zaremba’s conditions for nonlinear
ordinary differential equation [3, 22].

Two methods of numerical solution to the
discrete analog of the problem - its difference
approximation - are given in the article [21] from
the proceedings of the VI International conference
NPN]J'2006: Lahae’s method [26] and the method of
discrete continuation on the best parameter [27].
The results of calculations on these original
methods, unfortunately, are not given, but authors
argue that they coincide with the results obtained
by the method of integral equations, which are
given in the famous monograph [22].

Previously, we solved this problem with the help
of neural networks. The variety of types [13] and
methods of realization of neural networks [14, 15]
allows using them for the solution of nonlinear
differential equations taking into account certain
boundary conditions [16, 17]. In this paper, we
showed that our new methods have significant
advantages. We considered two methods. One is
based on a neural network modification of the
shooting method. The second differs in that the
shooting is conducted on both sides of the interval
using the Euler method [18].

The publication of the authors [28] proposed a
variant of the construction of an approximate
neural network solution to this problem in the case
of fixed system parameters. There was a good
agreement of the obtained neural network solution
with the results given in the book [22]. Later in the
paper [19] the original neural network method of
constructing approximate solutions of differential
equations [20] was given. This method has been
tested on the problem of modeling processes of heat
and mass transfer [21, 22, 29]; the generalization of
the catalyst problem was considered in the case of
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interval values of system parameters. The resulting
parametric neural network models were also used
to describe processes in the non-isothermal
chemical reactor.

The complexity of the object modeling, due to
the dependence of the process on a set of factors
[23, 24], leads to the low accuracy of the
corresponding differential models. It is impossible
to improve the accuracy of these models without
their significant complication, which does not
always lead to success due to the impossibility of an
accurate description of the features of a particular
real object. In this regard, the requirement of
adaptability of the model comes to the fore, i.e., the
possibility of its refinement according to
observations of the object. In works [19, 20] it is
shown that our methods of neural network
modeling allow building adaptive models, and
methods for adjusting models under new data are
given.

In this work, we compare these results with the
results of our new method for constructing
multilayer solutions of differential equations [25].
Method [25] allows building much simpler models
while maintaining accuracy. Ttljdfthis fact facilitates
their use and adaptation as new data becomes
available.

Material and methods

In works [21, 22] processes of heat-and-mass
transfer in a flat granule of a porous catalyst are
modeled using the boundary value problem for a
second-order nonlinear ordinary differential

equation
2

9Y o yyexp- 22 0

dx’ 1- By
with conditions y'(O) =0, Y(l) =0. The new
approach [25] is a fundamental modification of the
known numerical methods such as the Euler
method, consisting in the application of these
methods to an interval with a variable upper limit.

In this article, we compare two specific methods
of this kind.

We obtain the first method by the modification
of Stormer's method indicated above [1]. The
peculiarity of the problem lies in the fact that
classical numerical methods are intended for
solving the Cauchy problems, and not for boundary
value problems.

To overcome the emerging difficulty, we use the
Stormer method formula to write down an
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approximate multilayer solution of the Cauchy
problem

Va6 D) = 2, (6 P) = Vi1 (%, P) +—5 T (¥ (%, D))
@)

n
where

f=at+yeel- 211 @

1-py
In formula (2), the parameter is the unknown
condition for the solution at the left end:
Yo (X, p) = p. We are looking for this parameter in
the form of a neural network function of the task

parameters P = p(a,ﬂ, ]/); we choose the weights

based on the condition on the right end y(1, p) =0.

In the second method of constructing the
solution, we constructed an approximate solution

Y(X, p) from two sides of the gap, with a smooth

docking in the middle. Ilpu saTom ypaBHeHue (1)
NepenrcbIBaeTCs B BUJE CHCTEMBI

d
dy_,
dx (2)
dz
Lot
oW
The initial conditions have the form Z(0)=0,
y(©)=p.
Next follows the implementation of 4 variants of
the algorithm.
1) The first step is done by Euler's method
y,=p+hz,=p,
z, =2(0)+hf (p) =hf (p). (4)

The second step by Euler's method leads to the
equalities

y2:y1+h21: p+h2f(p):
z,=z7,+hf(y,)=2hf(p). (5

In this case h=x/2 ,
2

X
Yo(x)=p+-,-1(p)-

2) The first step is done according to Euler's
method. The second step is done according to the
refined Euler method [1,18]

y, = p+2hz, = p+2h*f(p),
z, =2, +2hf (y,) = 2hf (p), (6)

whence

sitito.cs.msu.ru

2
X
whence yz(X) = p+X21(X) = p+? f(p).
3) We make two steps according to the Euler

X
method with h = x/ 4, whence Z,(X) = > f(p).

Next, we make the step of the refined Euler

method
2

X
V,(0) = p-+4hz,(x) = p+8n°f (p) = p+ = (p).
4) We are implementing the second option with

h—x/4, whence Z,(X) zg f(p).

Next, we make the step of the refined Euler

method
2

X
2
Y;(X) = p+4hz,(x) = p+8h°f(p) = P+ f(p).
We can see that the formulas for the second, third
and fourth variants coincide.

On the right, we make a replacement X =1—t,
the form of equation (1) does not change, wherein

dy
we reduce it to the system again dt

dz
== f(y).
pm (y)

The boundary conditions have the form
2(0)=q, y(0)=0.

We implement the same four options.

1) The first step is done by Euler's method

y5=y4+hq=hq,
z. =2,+hf(q)=q+hf (0). (7)

The second step by Euler's method leads to the
equalities

Ys = Y5 +hz5(t) = 2hg+h?f (0),
z, =z, +hf (y;) =q+hf (0) +hf (ha). (8

In this case h =t/ 2, whence

ye(x)=tq+§f(0)=(1—x)q+¥f(0).

2) The second step is done according to the
refined Euler method

Y, = Y, +2hq = 2hq+2h*f (0),
z; =q+2hf (y;) =q+2hf (hq), (9)

whence
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(L-x)°

ye(t)=tQ+%f(0)=(1—X)C1+ f(0).

3) We make two steps according to the Euler
method with h=t/4 , whence
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t t . (tg
z,=q+—-fO)+-f| —|.
5 =0+, 10+ (J

Next, we make the step of the refined Euler
method

_ el v (g 1-x)° (L-x)q
y7_y4+4h26_tq+4f(0)+4f(4j Q-—x)g+—+ 2 (f(O) ( 2 B

4) We are implementing the second option with

h=x/4,whence z, _q+—f(tq
2 4

Next, we make the step of the refined Euler

method

4

2 2
y, =Y, +4hz, :tq+tE f (tij: (1-x)q+ (1—2X) f ((1—x)qj.

In the subsequent calculations, the first two
variants were tested.

Version 1. Dock solutions in the middle of the
interval

¥,(0.5) =y, (0.5) Y, (0.5) =y (0.5) whence
p+— (p)——q —f(O)

LT =—a-, 10).

From these equalities we obtain an equation for
determining p

3 1
— f — f(0)=0. 10
P+1s (<1)+16 0) (10)

We will take into account that T (0) =, then
for the first half of the interval we obtain a solution

X2
Y, (X) = p—E(a+16p). (11)

and in the second half -

Ye(X) = (X

Version 2. Dock solutions in the middle of the
interval

¥,(0.5) = y;(0.5), y;(0.5) = y;(0.5), orxyna

)(3Xa a-16p). (12)

1 1
= f -=
p+8 (p) 5

From these equalities, we obtain an equation for
determining p

1 1 1
#2100, 5 (P =-a-31(0).

3 1
Zf(p)+=f(0)=0 13
p+g TP+ 1(0) (13)

We will take into account that f(O) =, then

for the first half of the interval we obtain a solution
of the form

X2
Y,(X) = p—g(a+8p). (14)
and in the second half -
o0 =82 @ -ap) + £ 0 - D 310 -p)

(15)
Calculation

The purpose of this work was to qualitatively
investigate the relationship between the mean
square error values at test points for the equation
and in the boundary conditions and various
combinations of the number of layers
corresponding to the multilayer formula and the
neurons in the network approximating the initial
condition. In this case, in comparison with [19], the

range of variation of the parameters Ol,ﬂ,]/, was

sharply expanded, each of which now varied in the
interval from O to 2.
When implementing the first method to

approach a solution Y(X, P,&@, f,7), the number

of layers in which is equal to two, we obtain the
expression
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Fig.1. Graphs a) of the solution calculated by the
approximate formula of the first method (2) in the case of
four layers using a network of 15 neurons for p(a, B, }/) ,b)
a solution constructed for a network of 100 neurons by the
method of [2] for intervals of parameter variation
ae(0.05 0.15), fe(04 06), ye(08 12), and the
solution found in package Mathematica. The values of the
parameters  =0.1, B =0.5, y =1 for which the
solution was constructed

The smallest error in the boundary conditions
was reached with the maximum number of neurons
considered to be 15, it was 0.0012, and for test
points for the equation, the smallest mean-square
error 0.0025 was obtained for a given number of
neurons. When carrying out calculations for the
three-layer and four-layer formulas, the time for
obtaining an approximate solution and root-mean-
square errors has significantly increased. The
results of calculations of calculation errors for
three-layer formulas showed that the most accurate
result is achieved with five neurons in a network
that approximates the initial condition.

_ PPy

p+0.125¢e m(1+ p)X’a |B

Fig.2. The graphs of the solution, calculated according to
the approximate formula of the first method (2) in the case
of four layers using a network of 15 neurons for p(a,,B, }/),
and the solution found in the Mathematica package. The
values of the parameters o =1, 3 =1, y =1 under which

the solution was constructed

For trial points for the equation, the smallest
mean square error was 0.0025. Subsequent
calculations, in which four layers corresponding to
the multilayer formula were considered, showed
that there is a direct relationship between the
increase in the accuracy of the approximate
calculation and the number of layers since the
smallest error was revealed precisely with the
maximum number of layers considered in this
paper. Thus, using an approximate network of 5
neurons, the mean square errors were obtained for
the trial points of the equation 0.00202 and the
boundary conditions 0.00082, respectively. These
values showed the minimum error of the
approximate solution.

The table below shows the mean square error
values for different combinations of the number of
layers and neurons of the approximate network. In
the upper left corner of each cell are the values for
the root-mean-square error for the parameter

change area «, 3,y € [0;1], and in the lower right
corner for the parameter

a,ﬂ,}/e[O;Z]. The selected values are the

change area

smallest for the entire series of experiments.
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Table 1
The number of layers
corresponding to the
multilayered
formula | 2 3 4
The number of
neurons in
approaching network
0.00337 0.00349 0.00377
2
0.0363 0.0299 0.0250
0.00274 0.00246 0.00201
5
0.00837 0.0124 0.00852
0.00246 0.00251 0.00230252
15
0.00802 0.00832 0.0107

Thus, the solution constructed in this way, in
comparison with the previous approach [19],
preserves the accuracy of an essentially wider set of
task parameters with a smaller number of -aon |
selectable network weights.

For the second method, the result of applying _am |
two variants of the application of the algorithm /
differs significantly. For the first variant (formulas ,
(10-12)), the error is too big. -0G |

An increase in the number of neurons does not .
lead to a significant decrease in the error. The 0 |
second variant of the second method (formulas (13- '
15)) leads to qualitatively better results.

An even more striking result was obtained when
trying to predict the result for a parameter Fig.3. The graphs of the solution, calculated according to
o= ﬂ =y =1.5 value using a network that was the approximate formula of the first variant of the second

method (formulas (10-12)) using a network of 5 neurons

for the solution p(a, ﬁy }’) found in the package
intervals. Mathematica. The neural network was trained for intervals
of parameter changes &, B.ye [0;1] . The values of the
parameters o =0.1, B =0.5, y =1 for which the
solution was constructed

-006 |

trained for parameter a,ﬂ,ye[o;l] change

33
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Fig.4. The graphs of the solution calculated by formulas
(13-15) of the second variant of the second method using a

network of 15 neurons for p(O!, ,B, }’) and the solution
found in the Mathematica package. The neural network
was trained for intervals of parameter &, ﬂ, Y€ [0;1]

changes. a) The values of the parameters
a =0.1, B=0.5 y =1 under which the solution was

constructed. b) The values of the parameters ¢ = =y =1

at which the solution was constructed

Table 2. The root-mean-square errors for the second
variant of the second method are formulas (13-15)

The number Intervals for Intervals for
of neurons changing changing
in parameters parameters
approaching | about network | aboutnetwork
network training training
a,ﬂ,ye[o,l] a,ﬂ,}/e[O,Z]
2 0.00317 0.0156
5 0.00232 0.00648
15 0.00141 0.00389

b)

Fig.5. Solution graphics, using a network of 5 neurons for

p(a,ﬂ, ]’) and the solution found in the Mathematica
package. The neural network was trained for intervals of
parameter ¢, B,y € [0;1] changes. The values of the

parameters o = 3 = y =1.5 under which the solution was

constructed. a) The approximate formula of the first
method (2) is used in the case of four layers. b) The
formulas (13-15) of the second variant of the second
method are used

Results and Discussion

Comparison of the new approach [25] with the
old one [19, 20] shows its superiority in several
aspects.

First, the application of a new campaign allows
us to drastically expand the range of parameters for
which the model is built. Moreover, the second
variant of the second method allows extrapolating
the model to a wider range of parameter changes
than the one used in the construction of the model.

Secondly, the new approach allows you to build
much less complex models while maintaining
accuracy. The model constructed with the help of
the second variant of the second method with two
neurons is a convenient approximate analytical
model that can be used not only for computer
calculations.

34
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0.391-0.44 N
—0.0839 -0.101y , Xx<0.5;

+(—0.564+ 0.752X2)tanh [O.618+ 0.799¢ -0.071p —0.09047/]

0.169+ x* (~0.224 - 0.167cr) +(0.374-0.499x" ) tanh {

x—1 0.168+ 0.374tanh[0.391— 0.440(—0.0839,8—0.101;/]—
—| —a+3Xx—8 , Xx>05
6 O.564tanh[O.618+0.798a—0.071,8—0.09047/]
Third, the new approach allows us to create a so a wider set of models makes it possible to find
wider palette of approximate formulas, which is among them more adequate.
especially relevant in the situation where equation The second method allowed building more
(1) poorly describes the real object. In such a accurate models, but it requires more accuracy,
situation, it is required to choose the model most which is shown by the first version of this method,
accurately reflecting the observations of the object, based on the formulas (10-12).
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