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Abstract

In this paper, we apply neural network modeling to solve the inverse problem of mathematical
physics with a system of nonlinear partial differential equations of hyperbolic type. In the problem,
the initial conditions are unknown and are reconstructed from measurements made at a later point
in time. For this we use the methodology developed by us to construct approximate mathematical
models with respect to differential equations and additional data. It is known that inverse problems
are difficult to apply classical numerical methods for solving boundary value problems for partial
differential equations and require the use of various artificial methods. Our approach allows us to
solve both direct and inverse problems in almost the same way. We reconstruct the initial profile of
the pressure distribution in the tube in which the shock wave propagates, as measured by the sensor
at the end of the tube. In this neural network model we use a perceptron with one hidden layer with
an activation function in the form of a hyperbolic tangent. It is known that such a neural network is
a universal approximator, ie. allows us to arbitrarily accurately approximate a function from a
sufficiently wide class (in particular, the desired solution of the problem belongs to this class). We
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also tried other architectures of neural networks, in particular, a network with radial basis
functions (RBF), but for this task they were less suitable. Previously, we applied this approach to
problems with a known analytical solution in order to verify the results of the application of the
method. Our method proved to be sufficiently accurate and robust to errors in the original data. A
feature of this work is the application of the method to the problem with real measurements. The
obtained results allow us to recommend the proposed method for solving other similar problems.
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Inverse problem; neural networks; shock wave.

HEWMPOCETEBOM METO/] BOCCTAHOBJIEHUSA HAYAJ/IBHOT'O IPO®UJIA YIAPHOH
BOJIHbI

T.A. llemakunal, I.A. Tapxosl, A.P. Beasesal, I.Y. 3y, ibkapHai?
1 CankT-IleTepbyprckuil nonutexuuyeckui yaupepcuteT [leTpa Besnkoro, r. Cankt-IleTep6ypr, Poccus
2 BalIKUpPCKUN rocyfapCTBEHHbIN yHUBepCUTET, I. Yba, Poccus
AHHOTan A

B daHHoUl pabome Mol npumeHsieM Hellpocemegoe ModeauposaHue 015 peuleHuss 06pamHol 3adaqu
Mamemamu4eckoll Uu3uKu ¢ cucmemoli HeAuHeliHbIX dugepeHyuabHbIX YPABHEHUL 8 YACMHbIX
npoussodHbIX eunepboauveckoeo muna. B 3adave HauasnbHble yCca08US Heu3eecmHul U
80CCMAHABAUBAIMCSL NO U3MEPEHUSIM, NPOBEJEHHbIM 8 60.1ee N030HULl MOMeHmM 8pemeHU. /]as
3Mo020 Mbl UCNO/Ab3YeM pa3paboMAHHYH HAMU Memodo02ul0 NOCMPOEeHUsT NPUOAUNCEHHBIX
Mmamemamuyeckux modeaell no duggepeHyuanbHbIM YPABHEHUSAM U AONOAHUMEAbHBIM OAHHBIM.
HzsecmHo, umo o6pamHbvle 3adavu s68/50Mcs1 MpyoOHbIMU 0/151 NPUMEHEHUs KAACCUYECKUX
YUC/EHHbIX Memodo8 peweHus1 kpaeswvlx 3ad0a4 015 dugdgpepeHyuUasbHbIX YpasHeHUll 8 YaCMHbIX
npou3godHbIX U mpebyem npuMeHeHUs PA3/AUYHbIX UCKYCCMBEeHHbIX npuémos. Haw nodxod
no3eo.isiem pewams KaK npsiMvle, mak u 06pamHule 3adayu npakmuyecku 00UHAKOBbIM 00PA30M.
Mbl 8occmaHasaugaem HavyaabHbulll npoduib pachpedeseHus 0dsseHus 8 mpybe, 8 Komopoll
pacnpocmpansiemcsi y0apHast 80/Hd, N0 pe3y/ibmamam udmepeHull Ha damyuke, pacnoa0HeHHOM
8 KOHUYe mpy6bl. B amolii Helipocemesoli mModeau Mbl NpUMeHsIeM NepcenmpoH ¢ 00HUM CKPblMbLM
cnoem ¢ @yHkyuell akmusayuu 8 sude eunepboaudeckull maueeHc. H3gecmHo, umo makas
HelipOHHAsl cemb s18/151€MCsl YHUBEPCAAbHbIM ANNPOKCUMAMOPOM, M.e. N038015em CKOJAb Y200HO
Mo4HO hpubau3umMs @YHKYur u3 docmamoyHo WUPOK020 Kjaacca (8 4acmuocmu, K makomy
KjAdaccy npuHadJjexcum u uckomoe peuieHue 3adavu). Mui onpo6osaau u dpyzue apxumekmypbl
HellpOHHbIX cemell, 8 YACMHOCMU, ceMmb C paduaabHbiMu 6aszucHbiMu dyHkyusimu (RBF), Ho 045
daHHOll 3ada4yu OHU 0KA3aAUCL MeHee hodxodsuumu. PaHee mul npumeHsau makot nodxod k
3adayam c u3BeCMHbIM AHAAUMUYECKUM peuleHUeM C Yeblo NPo8epKU pe3yibmamos NpuMeHeHUsl
Mmemoda. Haw memod nokasas ce6s1 docmamo4Ho MOYHbIM U YCMOUMUBLIM K OWUOKAM 8 UCXOOHbIX
daHHblx. OcobeHHocMblo 0aHHOU pabomul s18A51emcsl npuMeHeHue Memodd K 3adaye ¢ peaabHbIMU
usmepeHusmu. IlosyyeHHble pe3ylbmambl NO38045H0M PEKOMEHA08aMb NPedI0NCeHHbIL Memod
0415 pewieHUs1 U dpy2ux nodo6HbIX 3a0ay.

KiloueBsle cj10Ba

O6pamuas 3adayva; HelipoHHble cemu; Y0ApHAs 8O/IHA.

1. Introduction Mathematical modeling of nonlinear phenomena
in complex systems is very important nowadays.
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Different sorts of inverse problems arise in solving
scientific and technical problems in construction,
energy, engineering, metallurgy, environmental
protection and other [2, 4, 10, 14, 15, 21, 24, 35]. It
is a restoration of the initial state using the final
state, restoration of the coefficients of equations by
the measurement data etc. to solve inverse
problems it was developed a lot of methods, among
which we would like to mention the Monte-Carlo
methods [1, 6, 8, 16, 30, 34]. In particular,
Mosegaard and Tarantola [29] make Ilarge
perturbations of the mass density distribution when
keep the total mass approximately constant.

Some scholars [13, 25] developed a numerical
method, that explores an analogy between the
process of physical annealing and the mathematical
problem of obtaining the global minimum of a
function. Later this approach was developed by
Rothman [36-38].

A well-designed geophysical inverse problem we
can see in [9]. Metropolis and Ulam [27-28] and
Hastings [17] developed so-called the Metropolis—
Hastings algorithm when Geman [13] suggested the
Gibbs sampler that is similar to a Metropolis
random walk because performes a random walk in
an n-dimensional parameter manifold.

We can find inverse problems in research of
waves and seismic waves in particular [5, 11, 12, 19,
20, 23, 31, 32, 39]. Recovery process and identifying
the causes of the accident or disaster is one of the
important problems of technogenic safety. Blast
waves are one of the objects of study such processes.
The consequence of an explosion could be the
formation of surface discontinuities currents, which
are referred to as shock waves.

Differential equations describing fluid dynamics
are usually so complex that they do not have an
analytical solution. Numerical decision methods at
the end of the 20th century solved the problem, but
required large computer capacity, which initiated
the development of neural network modeling of the
solution of such equations. Thus, in 1998 in [26] it
used artificial neural networks for solving partial
differential equations for both boundary value and
initial value problems. 1. E. Largris and A. Likas
build a trial solution of the differential equation as a
sum of two parts and applied for the second part a
feed-forward neural network, that contains
adjustable parameters. Then the network is trained
to satisfy the differential equation under the
initial/boundary conditions. In [3] a new method
based on neural network has been developed for
obtaining the solution of the Stokes problem that

sitito.cs.msu.ru

comes from fluid dynamics. The mixed Stokes
problem was transformed into three independent
Poisson problems to solve which it is used a
multilayer perceptron having one hidden layer with
five hidden units and one linear output unit. In [18]
it was developed an unsupervised feedforward
Neural Network to solve Burger’s equation that is
the one-dimensional quasilinear parabolic partial
differential equation. Later, Canh and Cong [42]
developed a new technique for numerical
calculation of viscoelastic flow based on the
combination of neural networks and other
techniques.

In this work neural network modeling is
considered in order to clarify the processes of
occurrence and propagation of the shock wave. The
object of study is the primary incident shock wave
in an atmospheric shock tube. The pressure
distribution profile at the initial time is based on the
use of differential equations and experimental data.
The authors used neural network approach to the
study of approximate models of complex systems.
This method was developed in works [7, 22, 33, 40,
41, 43, 44].

2. The statement of the problem

Classic  experiment of occurrence and
distribution of the shock wave is considered in this
work. The cylindrical tube with a closed inlet and
outlet is divided by diaphragm into two chambers:
the left one is a high-pressure chamber (HPC), and
the right one is the low-pressure chamber (LPC).
The tube is thermally insulated and the gas motion
is adiabatic. The driver gas is in the high-pressure
chamber. The atmospheric air is used as the driver
gas and the pressure drop is created by filling the
sealed LPC with the working gas the pressure of
which is less than atmospheric pressure. The
experiments were conducted at the initial pressure
of 30, 60, 90 mm Hg in LPC. The diaphragm is
destroyed at some time. After the rupture of the
diaphragm the driver gas rushes from the high-
pressure chamber to the low-pressure chamber,
forming a compression wave which forms a shock
wave. The characteristics of the gas before the
explosion (initial pressure, the molecular weight
and the adiabatic index) were known from direct
formulation of the problem [11]. The rupture of the
diaphragm is produced instantly. The dependence
of the characteristics (pressure, velocity of the
shock wave, waves of rarefaction etc.) was found
after the rupture. In our experiment, pressures are
recorded by the pressure sensors before and after
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the destruction of the diaphragm. As a result, the
pressure does not change by a leap, at the moment
when the wave passes through the tube the
pressure increases very quickly. We assume that it
does not change by a leap because the pressure
changeably on the left and right of the diaphragm at
the initial moment (there is a leak). The rupture of

ISSN 2411-1473 sitito.cs.msu.ru

the diaphragm is not instantaneous. The pressure
profiles were recorded by sensors in the LPC shock
tube. These data were transformed using the
computer program "L-Graf’ in the dependence of
pressure on time that elapses while the shock wave
passes through the LPC. For example 120 mm Hg is
presented in Figure 1.

(K]

FIG. 1: Dependence of pressure on time (P(t))

Unsteady flows of gas and spread of disturbance
is observed in the shock tube after the rupture of
the diaphragm. This process is described by a
system of differential equations [11]:

8u+u6u 1 op _

ot OX P@X_O’

op 2 ou op _
ot TP U =@

with the initial conditions:

u@,x) =0, p(0,x)= Py,
where the unknown function U is the speed of
propagation of a shock wave (m/s);

p= py is pressure (mm Hg);
Po isinitial pressure (mm Hg);

p is density;

Yy = 1.4 is a ratio of specific heats.

Here the change of variables is made to simplify
the process of neural network modeling:

u
V = — is arelative magnitude of the velocity;
C

y 7
¥
- p
c(r-1)
where ¢ = 346 is sound speed in the gas (m/s).
The time t (ms) has been replaced by the new

independent variable 7=—, b=",
C

|, =3.54 is the length of the low-pressure

is a new unknown function;

q:

where

chamber (LPC) (m). The new independent variable
y has been introduced from the relationship:

X
Y = —, where xis the old independent variable;
P

|p is the location of the pressure sensor relatively

to the tube.
After the alteration a new system of equations is
obtained in the following form:

ov oq
+V + =
oka oy oy
o +6V+V6q =0,
or oy oy

with the initial conditions:

o,
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v(0,y)=0, d(0,y)=q,

The neural network model is built to restore the
initial pressure profile. The model uses the data
from the pressure sensors along the tube. The
output of the neural network model at the initial
time gives the initial distribution.

3. Neural network approach

The approximate solution is constructed in the
form of an artificial neural network by methods [1-
6] in the form of perceptrons with one hidden layer:

sitito.cs.msu.ru

- killvz (o, yk)+lel(Q(T| 1)—q, )2 is an

error corresponding to the initial conditions and the

measurements; Yk is the sampling point from the

interval [0, 1] ; 7] are the points corresponding to

the experimental observations. 0 >0 is a
"penalty"multiplier. The initial pressure profile is

restored by the values of ( (0 y) by means of the

change of variable. This variable is inverse to the

v(z,y) = Za o(z, y,a) q(z,y) = Zb o(z,Y, ﬂ)prewous one.

Function th(c(z —7,)+d(y—Y,)) was used

as the activation function (0 You can use other

functions of such as Gaussian

exp(—c(r —7.)°=d(y-y,) ) In books [4-6], it

was stated that it is convenient to use the neural
networks that are based on Gaussian or other such
functions (called RBF-network) in problems that
have a smooth solution. The problems where the
solution or the approximation is spasmodic, it is
better to use a neural network with sigmoid-type
basis functions. This function is a hyperbolic
tangent. Computational experiments conducted for
this task confirmed the correctness of this
assumption. The adjustrlnent of linear and nonlinear

r
al,ai,bi,ﬂi was
minimizing the functional, which takes into account

the error in satisfying each of the equations, and the
differences in the values of network output for

activation,

parameters carried out by

V, Q from the corresponding experimental data.

J=J,+57,

M 2 2
_ o v aq| [aq v aq v
‘J1 —Z (67+V6y+8yj +(ar+8y+vayj (Tl, y,)

Is an error corresponding to the system of

equations; where yj is the sampling point from

the interval [0, 1] ; 2'j are the sampling points,

corresponding to the time of observation; (Tj, yj)

are regenerated in a few steps of the algorithm of
nonlinear optimization functionality J .

4. Numerical technique

The approximate neural network solution was
built for each value of the initial pressure drop for
different numbers of neurons n. We give the results
for n = 20. The dependence of q on T presented on
Figure 2 at the initial pressure 30, 60, 90 mm Hg in
LPC. During the research, we obtained the following
results. A sharper pressure drop in LPC is obtained
with increasing initial pressure.

The shock wave or leap is clearly shows on
Figure 2. The dotted line shows the results of the
experiment: data were taken from the sensor
through the program «L-Graf». The smooth line is
the output of the neural network. A small ledge
depicted on Figure 2 under the condition when the
i | pressure is 90 mm Hg. The graph shows that
t  pressure does not immediately come to a
constant value and there is a fluctuation. The
accuracy of approximation falls in the vicinity of the
wave. This is explained as follows. The
approximating function has a discontinuity of the
first derivative. The function corresponding to the
neural network is smooth.

00 |-
000040
000035 |-
02 04
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FIG. 3. Restored initial profile q on y at the initial pressure
FIG. 2. Dependence of q on T at the initial pressure a-30,b-60,c-90 (mm Hg)

a-30,b-60,c-90 (mm Hg)
g Graphs of function ( from the coordinate y are

presented on Figure 3. The initial profile of function

e q restores at the initial pressure of 30, 60, 90 mm
Hg. The recycled initial profile was more convex

00007 with a higher initial pressure drop.
By assumption, different time profiles of
— pressure on the sensor correspond to different
initial spatial profiles of the pressure, resulting from
s the rupture of the diaphragm. Our method allows

restoring Neural network method of restoring an
initial profile of the shock wave 5 the data profiles.

00004 But it is difficult to verify the result experimentally.
Indirectly, this can be verified, if we calculate the
‘ profile of the reflected wave using a neural network
02 04 06 08 10 model and compare it with the experimental data.
This will be the subject of additional research.

a) . -

Graphs of the function ( at the initial pressure of

120 mm Hg and of the neural network of 20
neurons after 148 steps are shown on Figure 4 and
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Figure 5. A neural network conveyed the overall
profile of the shock wave accurately enough. This is
shown on Figure 4. However, this subtle feature
appeared smoothed on top of the wave front.

00060 -
0.00058
0.00056
000054 -

00s2 -

000048 -

e e s 0 0 Y L

ISSN 2411-1473

02 04 06 08

FIG. 4. Dependence of q on T at the initial pressure 120 mm
Hg (148 steps)

The top of the initial profile q has turned smooth
too. This is shown on Figure 5. Similarly Figure 3,
the subtle feature of the restored initial profile of
function q has not been revealed. We revealed the
subtle feature of the graphs of the functions, upon
further training of the network. The graphs of the

function 9 are shown on Figure 6 and Figure 7 at
the initial pressure of 120 mm Hg and the
approximation of the neural network of 20 neurons
after 200 steps. We reveal a small ledge at the top of
the graph of function q on Figure 6 with increasing
iterations. The prototype of this ledge is restored on
the initial profile on Figure 7. Here, the amplitude of
the ledge is reflected imprecisely by a network. A
more accurate approximation is obtained by
increasing the number of neurons and the
significant increase in the time of observation.

a

Q0075 -
Qo070 -
000065 -
0.00060 -
0.00055

000050
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FIG. 5. Restored initial profile q on y at the initial pressure
120 mm Hg (148 steps)
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0.00054 —
o052 [
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FIG. 6. Dependence of q on t at the initial pressure 120 mm

Hg (200 steps)
000 a
000070
000065
000060
000055
Q00050
00 02 04 06 08

FIG. 7. Restored initial profile q on y at the initial pressure
120 mm Hg (200 steps)

5. Conclusion

Neural network modeling gives a 3D model of
the shock wave. The model represents the pressure
dependence of the coordinate and time. The results
of the calculations have shown the ability to restore
the initial pressure distribution along the tube by
means of measuring the dependence of the pressure
on the time indices on the sensor. Further
supplementary data used in the training of the
neural network will be provided. For example, we
can add an asymptotic solution. This should
significantly improve the accuracy and reduce
training time.
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