

Modern Information Technologies and IT-Education

Vol. 14, no. 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

Big Data and applications

111

УДК 004.04
DOI: 10.25559/SITITO.14.201801.111-125

A DYNAMIC INDEXING SCHEME FOR MULTIDIMENSIONAL DATA

Manuk G. Manukyan1, Grigor R. Gevorgyan2

1 Yerevan State University, Yerevan, Armenia

2 Russian-Armenian (Slavonic) University, Yerevan, Armenia

Abstract

We present a new dynamic index structure for multidimensional data. The considered index
structure is based on an extended grid file concept. Strengths and weaknesses of the grid files were
analyzed. Based on that analysis we proposed to strengthen the concept of grid files by considering
their stripes as linear hash tables, introducing the concept of chunk and representing the grid file
structure as a graph. As a result we significantly reduced the amount of disk operations. Efficient
algorithms for storage and access of index directory are proposed, in order to minimize memory
usage and lookup operations complexities. Estimations of complexities for these algorithms are
presented. A comparison of our approach to support effective grid file structure with other known
approaches is presented. This comparison shows effectiveness of suggested metadata storage
environment. An estimation of directory size is presented. A prototype to support of our grid file
concept has been created and experimentally compared with MongoDB (a renowned NoSQL
database). Comparison results show effectiveness of our approach in the cases of given point lookup,
lookup by wide ranges and closest objects lookup when considering more than one dimension, and
also better memory usage.

Keywords

Grid Files, Linear Hash Tables, Multidimensional Data, Data Warehouses.

ДИНАМИЧЕСКАЯ СХЕМА ИНДЕКСИРОВАНИЯ МНОГОМЕРНЫХ ДАННЫХ

М.Г. Манукян1, Г.Р. Геворгян2

1 Ереванский государственный университет, г. Ереван, Армения

2 Российско-Армянский (Славянский) университет, г. Ереван, Армения

Аннотация

Мы представляем новую динамическую структуру индекса для многомерных данных.

© Manukyan M.G., Gevorgyan G.R., 2018

About the authors:

Manuk G. Manukyan, Candidate of Physical and Mathematical Sciences, Associate Professor, Yerevan State University
(1 Alex Manoogian St., Yerevan 0025, Republic of Armenia); ORCID: http://orcid.org/0000-0002-8578-3440,
mgm@ysu.am

Grigor R. Gevorgyan, Ph.D. in Engineering Science, Russian-Armenian (Slavonic) University (123 Hovsep Emin St.,
Yerevan 0051, Republic of Armenia); ORCID: http://orcid.org/0000-0003-1706-568X, grigor.gevorgyan@gmail.com

Современные информационные технологии и ИТ-образование

Том 14, № 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

112

Большие данные и приложения

Рассматриваемая структура индекса основана на концепции сеточных файлов. Был
проведен анализ сильных и слабых сторон сеточных файлов. На основе результатов
данного анализа предложено усиление концепции сеточных файлов путем расмотрения
полос (stripes) этих файлов как линейных хеш-таблиц, введения понятии сегмента (chunk) и
представления структуры сеточного файла в виде графа. В результате мы существенно
сократили количество дисковых операций. Предложены эффективные алгоритмы
хранения и доступа к директории индекса, имеющие целью минимизацию затрат памяти и
сложности операций поиска. Приведены оценки сложности этих алгоритмов. Предложено
сравнение нашего подхода к поддержке эффективных сеточных файлов с известными
подходами усиления концепций сеточных файлов. Сравнение показывает эффективность
предложенной среды хранения для метаданных. Предложена оценка для размера
директории. В нашем случае директория занимает минимальное количество байтов
памяти. Разработан прототип для поддержки приведенной концепции сеточных файлов.
Выполнено экспериментальное сравнение прототипа с MongoDB (широкоизвестная NoSQL
база данных). Результаты сравнения показывают эффективность нашего подхода в
случаях поиска по заданной точке, поиска по широким диапазонам значений и поиска
ближайших соседних объектов в случаях использования более одного измерения, а также
более эффективное использование памяти.

Ключевые слова

Сеточные файлы; линейные хеш-таблицы; многомерные данные; хранилища данных.

1. Introduction

The emergence of a new paradigm in science
and various applications of information technology
(IT) is related to issues of big data handling [18].
This concept involves the growing role of data in all
areas of human activity beginning with research
and ending with innovative developments in
business. Such data is difficult to process and
analyze using conventional database technologies.
In this connection, the creation of new IT is
expected in which data becomes dominant for new
approaches to conceptualization, organization, and
implementation of systems to solve problems that
were previously considered extremely hard or, in
some cases, impossible to solve. Unprecedented
scale of development in the big data area and the
U.S. and European programs related to big data
underscore the importance of this trend in IT.

In the above discussed context we consider the
concept of grid files [12, 15] as one of the adequate
formalisms for effective management of big data.
The grid file can be represented as if the space of
points is partitioned in an imaginary grid. The grid
lines parallel to axis of each dimension divide the
space into stripes. The number of grid lines in
different dimensions may vary, and there may be
different distances between adjacent grid lines,
even between lines in the same dimension.

Intersections of these stripes form cells which hold
references to data buckets containing records
belonging to corresponding space partitions.

An example of 3-dimensional grid file is
presented in Figure 1. Here X, Y and Z are the
dimensions of considered 3D space, which is
partitioned into stripes v1, v2, v3 in X dimension, w1,
w2 in Y dimension, and u1, u2, u3 in Z dimension.

Dynamic aspects of file structures where all keys
are treated symmetrically, avoiding distinction
between primary and secondary keys, are studied in
[12]. The article introduces the notions of a grid
partition of the search space and of a grid directory,
which are the keys to a dynamic file structure called
the grid file. This file system is able to adapt to its
contents under insertion and deletion operations,
and thus achieves an upper bound of two disk
accesses for single record retrieval. It also
efficiently handles range queries and partially
specified queries. Several splitting and merging
policies, resulting in different refinements of the
grid partition, are considered.

Modern Information Technologies and IT-Education

Vol. 14, no. 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

Big Data and applications

113

Figure 1. An example of 3-dimensional grid file

In [16] algorithms which generalize the standard
lookup by single key techniques and apply them to
search of records using several keys are specified.
Two index file organization techniques,
multidimensional dynamic hashing and
multidimensional extendible hashing, which are
multidimensional generalizations of dynamic and
extendible hashing correspondingly, are specified
and the average index size values for both cases, as
well as their asymptotic expansions, are estimated.
Multidimensional extensions of linear and
extendible hash tables have also been proposed in
[4, 13, 14].

In fact, the concept of grid files allows to
effectively organize queries on multidimensional
data [4] and can be used for efficient data cube
storage in data warehouses [8, 15]. We have
developed a data definition language of integrable
data in the frame of a canonical data model based
on the conception of grid files [9, 10, 11]. The
weaknesses of grid file formalism are non-efficient
memory usage by groups of cells referring to the
same data buckets and the possibility of having a
large number of overflow blocks for each data
bucket [4].

In this paper an extension of the grid file concept
is proposed addressing the above discussed
weaknesses of grid file. First of all, we introduce the
concept of the chunk: set of cells whose
corresponding records are stored in the same data
bucket (represented by single memory cells with
one pointer to the corresponding data buckets).
Chunking technique is used to solve the problem of
empty cells in grid file. Second, we consider each

stripe as a linear hash table which allows to
increase the number of buckets more slowly (for
each stripe, the average number of overflow blocks
of chunks crossed by that stripe is less than one). By
using this technique we essentially reduce number
of disk operations. We also introduce an inner grid
file structure representation as a directed acyclic
graph, aiming to reduce the index directory volume.
A directory definition language has been developed,
which is independent from data management
paradigms. Grid file operations are described and
their complexities are estimated in the context of
index modifications and disk operations. More
detailed analysis of grid file operations and their
algorithms have been suggested in [5, 6, 7].

This paper is organized as follows. An approach
to grid file structure modification is proposed in
Section 2. Further modification of this structure
aiming to reduce the index file size is provided in
Section 3. Section 4 contains representation of the
grid file structure as a directed acyclic graph.
Related work overview is set out in Section 5.
Finally, conclusions are provided in Section 6.

2. Modification of the grid file structure

One of the problems intrinsic to grid files is the
problem of non-efficient memory usage by groups
of cells, referring to the same data buckets. We
propose an alternative index structure, based on the
grid file concept and aiming to avoid storage of
duplicate pointers to the same data buckets, as well
as to maintain slow index size growth and provide
reasonable operation costs.

In this approach we do not store the grid file as a
multidimensional array. The reason for this is that
during each bucket split operation one of the stripes
crossing it is also split into two stripes, thus
doubling the number of cells of the original stripe,
wherein many of the new cells contain duplicate
pointers to the same data buckets. Instead, all cells
whose corresponding records are stored in the
same data buckets are grouped into chunks,
represented by single memory cells with one
pointer to the corresponding data buckets. Chunks
are the main units for data input/output, as well as
are used for data clusterisation. Chunks are used as
a mechanism to solve the problem of empty cells in
the grid file. For each dimension the information
about its division is stored in a linear scale, each
element of which corresponds to a stripe of the grid
file and is represented as an array of pointers to the
chunks, crossed by that stripe.

Современные информационные технологии и ИТ-образование

Том 14, № 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

114

Большие данные и приложения

Each stripe is considered as a linear hash table.
Overflow blocks are used to reduce the amount of
grid file chunks. The number of overflow blocks
may be different for different chunks, however we
ensure that for any stripe the average number of
overflow blocks for the chunks crossed by that
stripe is less than one. This allows us to significantly
reduce the total number of chunks, while
guaranteeing not more than two disk operations for
data access in average.

An example of 2-dimensional modified grid file
is presented in Figure 2. It contains five chunks,
each referencing to corresponding data bucket. Two
chunks use overflow blocks. The solid lines
represent borders between chunks, and dashed
lines mean imaginary space divisions.

Figure 2. An example of 2-dimensional modified grid file

Splitting and merging policies similar to the ones
described in [12] are used. Dimensions for both
operations are selected so that the numbers of
stripes in different dimensions do not differ by
more than one. During the split operation we chose
the dividing hyper plane in such a way that the
numbers of points that end up in the resulting
buckets differ as little as possible. For this purpose
for each bucket we store statistical information
about the average values of its points' coordinates.
Merging is performed when the occupancy of
resulting buckets is around 70 percent to achieve
reasonable performance [12].

2.1. Estimations of the proposed concept
characteristics

A grid file can be represented as a triple
 where is the set of dimensions, is
the set of stripes, and is the set of chunks. Each

stripe corresponds to exactly one dimension and
crosses a non-empty subset of the set of chunks.

In this subsection we investigate several grid file
characteristics and derive estimations of their
values. Let us denote the number of dimensions as n
and the average number of chunk split operations
performed in one dimension as m.

Number of cells. Since each of n dimensions is
divided into m parts in average, there exist mn cells
in average.

Number of stripes in one dimension. At most
one new stripe is created during each split
operation, and the number of stripes may be
reduced during merge operations, so we can say
that number of stripes in one dimension is limited
by the number of split operations and has an order
O(m).

Total number of stripes has an order O(nm)
since there are O(m) stripes in average in each of
the n dimensions.

Total number of chunks. New chunks are
created only during split operations, wherein as a
result of one split operation the number of chunks
is incremented. This means that the total number of
chunks is limited by the total number of performed
split operations and has an order O(nm).

Number of cells per chunk in average is the
ratio of total number of cells to the number of

chunks and has an order

 .

Average length of chunk side. The average
length of a grid cell side, equal to the average stripe
width, is used as the unit of measure. Without loss
of generality assuming that the average shape of a
chunk is an n-dimensional cube, the average length
of its side has an order

 .

Average number of chunks crossed by a stripe.
A stripe has an average length of m cells in n-1
dimensions. Since the average length of a chunk
side is

 ,

a stripe will cross

chunks in average. For simplicity of reasoning we
shall relax this estimation to .

Directory size. Since each of the stripes
crosses chunks in average, the total number
of stored references will be . Also each

Modern Information Technologies and IT-Education

Vol. 14, no. 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

Big Data and applications

115

chunk stores one reference to the corresponding
data bucket. Hereby, the grid file directory size is
 .

2.2. Grid file operations

In this section we consider grid file operations,
adapted for use with the proposed index structure.
Operation cost estimations are provided in the
context of index modification and disk operations.

Lookup by key. In order to find all records for a
given value d0 of dimension d we first find the stripe
s of that dimension which d0 belongs to, then
consider all the chunks crossed by s. For each of
these chunks it is necessary to load corresponding
data blocks and check if they contain records
matching the query. Since all of these chunks have
to be considered, and no other chunk may contain
any query results, only necessary and sufficient
chunks will be considered. The average number of
such chunks is O(nm) according to Section 2.1. The
stripe corresponding to the given coordinate can be
found in O(log m) time using binary search on the
sorted linear scale of the given dimension. Hereby
the complexity of lookup by key operation is O(nm
log m). Besides that, it is possible to use effective
data structures for stripe lookup, such as van Emde
Boas trees [1]. In [5, 6] a method of van Emde Boas
trees usage when points’ coordinates are
represented as 32 bit integers is described, allowing
to significantly reduce the amount of operations for
stripes lookup compared to logarithmic algorithms.
Number of disk operations, due to overflow blocks
usage, in average equals to doubled amount of
considered chunks and has an order O(nm). In [5, 6]
is described also a method of hash-functions usage
to exclude chunks which a priori do not contain any
records matching the query from consideration,
which allows to reduce the number of disk
operations.

Lookup by several coordinates. To find values
by given k coordinates we first find the stripes,
corresponding to them, then intersect the sets of
chunks crossed by these stripes and consider only
the data buckets, corresponding to the chunks of
intersection. Similarly to the conclusions provided
in the description of lookup by key operation, the
stripes lookup requires O(k log m) time. To find the
intersection of chunk pointers sets of obtained
stripes, we consider chunks crossed by one of these
stripes, and for each of them check if it is crossed by
other stripes as well. This takes O(k) time, since we
can check if a stripe crosses a chunk by comparing

coordinates of their bounds. Hereby, the sets
intersection operation requires O(knm) time, and
the total complexity of lookup by k coordinates
operation is O(k log m + knm)=O(knm).

To perform intersection of sets of chunks
crossed by obtained stripes fast set intersection
algorithms [3] can be used, allowing to achieve

effective bound of

 where w is the size of

machine word. It should be noted that further
modification of the grid file structure, proposed in
Section 3, makes it difficult to apply such algorithms.

Given point lookup is a special case of the
previous operation where k=n. The complexity of
this operation is O(n2m), and the usage of fast set
intersection algorithms allows to reduce it to

 Since in this case only one chunk,

containing the given point, has be considered, the
amount of disk operations in average does not
exceed 2.

Closest objects lookup. To find the points,
closest to the provided one, we first find the chunk
it belongs to, and check the corresponding data
buckets. It may happen that, however, the closest
point belongs to one of the adjacent chunks and
they need to be considered as well. In the worst
case we shall need to consider 2n adjacent chunks.
Hereby, the complexity of closest objects lookup
operation does not differ from the complexity of
point lookup operation. However, the amount of
disk operations can increase when considering
adjacent chunks -- in the worst case 2(2n+1) disk
operations will be required.

Lookup by ranges of values. This operation is
similar to the lookup by several coordinates
operation, but in this case in each dimension we
may need to consider more than one stripe. This
makes it difficult to use fast set intersection
algorithms, since the sets of chunks, crossed by
stripes of the same dimension, have to be united
first. Assuming that given ranges will cover t stripes
in each dimension in average, similarly to the
estimation of lookup by several coordinates
operation we get that complexity of this operation is
O(tnmk). The amount of disk operations in average
equals to the doubled number of considered chunks.

Insert. To insert a value we first locate the
chunk it belongs to by given coordinates, similarly
to given point lookup operation, then load the
corresponding data block and perform insertion.
Since we consider each stripe as a linear hash table,
in case of insufficient space it may be possible to

Современные информационные технологии и ИТ-образование

Том 14, № 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

116

Большие данные и приложения

add an overflow block. However, if after insertion
there exists a stripe for which the average number
of overflow blocks for the chunks crossed by that
stripe exceeds 1, we need to split current chunk into
two parts and reorganize corresponding data
buckets.

Split. Consider a chunk c which is necessary to
split. First, we choose the dimension in which the
split shall be performed. For that purpose we
choose such dimension d which currently contains
the least number of stripes. This is done to maintain
symmetry of the grid file structure regarding its
dimensions. Then we choose some coordinate d0 in
dimension d which defines the dividing hyperplane.
Chunk c is then split into two chunks c1 and c2, and
all records from segment c for which the
corresponding points have coordinate in dimension
d less than d0 are stored in c1, and the rest stored in
c2. The coordinate d0 is chosen in such a way that
the numbers of points in the resulting chunks are as
close as possible. As a result of split operation, some
stripe s in dimension d is also divided into two
stripes s1 and s2. Pointers to the newly created
chunks are added to pointer lists of all stripes
crossing them. According to Section 2.1, the sets of
chunk pointers for the newly created stripes consist
of O(nm) elements. Also O(nm) pointers to the new
chunks are added to the sets of pointers of other
dimensions stripes. Hereby the split operation
complexity is O(nm). To redistribute the records we
shall need in average not more than 6 disk
operations - 2 to read the data of chunk c and 4 to
write data of chunks c1 and c2.

As an example, let us consider a 2-dimensional
grid file with coordinate axis X and Y. Assume that
each data block has capacity enough to contain not
more than 5 records. Analogously to linear hash
tables, we shall ensure that in each stripe the ratio
of average number of records in a block to block
size does not exceed some constant value [4]. We
shall use the value of 80\% for this purpose. Let us
denote number of records in a stripe as r and
number of chunks in a stripe as c. From the above
condition we get that r/c\leq4 inequality must take
place. Let us also denote r/c ratio as k.

Initial state (b) Inserted (1, 5) and (4, 1)

Figure 3. A simple insert operation

At first, we have one chunk A1, containing two
points (1, 1) and (5, 5). We also have one horizontal
stripe Sh

1 and one vertical stripe Sv
1. Then we insert

two points (1, 5) and (4, 1). After that, for each
stripe r=4, c=1 and k=4, so we can proceed without
splitting the chunk. Since there is enough space in
data bucket, the records will be just added there.
This process is illustrated in Figure 3.

Let us insert another point (2, 3). If we insert it
into chunk A1 we shall get r=5, c=1 and k=5>4, so we
have to split the chunk. After splitting it vertically
with x=1,5 line, we obtain two chunks A1 and A2, as
well as another vertical stripe Sv

2. Now for stripe Sh
1

parameter c equals to 2, because Sh
1 now consists of

two chunks, and k=2,5 allows us to proceed with
insertion.

It is fine to insert another point (3, 3) into chunk
A2, but after adding one more point (3, 5) we face a
necessity to split the chunk A2, because this time
k=5>4 for stripe Sv

2. We split it horizontally with
line y=4. That line also crosses chunk A1, but we do
not split it too. The result of above operations is

Modern Information Technologies and IT-Education

Vol. 14, no. 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

Big Data and applications

117

illustrated in Figure 4 (a) and (b). We represent the
imaginary split of chunk A1 with a dashed line.

Finally, let us insert 3 more points: (3, 2), (5, 1)
and (5, 3). There is enough space for (3, 2) and (5, 1)
in chunk A2, however the third point (5, 3) does not
fit there because the corresponding bucket is

already full. However, for both stripes Sh
1 and Sv

2
crossing the chunk A2 we get r=8, c=2 and k=4, so we
can avoid splitting the chunk (and increasing
directory size) by using an overflow block. The
result of such insertion is presented in Figure 4 (c).

Inserted (2, 3) (b) Inserted (3, 3) and (3, 5) (c) Overflow block usage

Figure 4. Split operations

A single split operation increments the number
of chunks and the number of stripes. Per Section 2.1,
the new stripe pointer list will contain O(nm)
elements in average. Also, O(nm) pointers will be
added into pointer lists of all other dimensions.
Hence, split operation will increase directory size
by O(nm).

Delete. To delete a value, as when inserting, we
first find the chunk it belongs to and read the
corresponding data block. After deletion the
considered data bucket may become empty. In such
case we can merge this chunk with another adjacent
chunk. It is possible to merge chunks even if the
data bucket is not empty, if in the result for each
stripe the condition of having not more than one
overflow block for the chunks crossed by that stripe
is satisfied. Complexity of delete operation equals to
the complexity of insert operation.

Merge. Consider two chunks c1 and c2 which
have a common boundary in dimension d and are
being merged into a single chunk c. For any stripe s
if its pointer list contains either a pointer to c1 or c2,
those should be replaced with a pointer to c instead.
Complexity of merge operation equals to the
complexity of split operation. A single merge
operation will remove one chunk and the number of

pointers equal to the number of stripes crossing the
merged chunks - O(nm) in average.

3. Alternative grid file structure

In this section an alternative grid file structure is
proposed, which is a further modification of the
structure, proposed in Section 2, and allows to
reduce directory size from to . To
achieve this goal we reorganize the pointers storage
structure, allowing chunks to store pointers to each
other.

Definition 1. Let there be a total order < defined
on the set of chunks. Let us also denote the
projection of chunk c to dimension d as

The set of pointers R is defined as follows:
1. For each pair of chunks a and b, s.t. a < b and a

dimension d exists s.t. , and no chunk c
exists s.t. a < c < b and , there
exists a pointer . Let us call such pointer a
pointer in dimension d;

2. For each chunk a and stripe s of dimension d,
if in R there exists no pointer to segment a in
dimension d, then there exists a pointer .

An example of a grid file constructed according
to initial structure and its modification are
presented in Figure 5. Note that in this case in

Современные информационные технологии и ИТ-образование

Том 14, № 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

118

Большие данные и приложения

modified structure each stripe's pointer list
contains a pointer to only one chunk, and the

chunks contain p ointers to each other according to
Definition 1.

(a) Grid file constructed according to initial structure (b) Modified grid file representation

Figure 5. Grid file structure modification

It has been proved in [5, 6] that the expected
directory size to store this structure is

3.1. Comparison of directory size

This section compares the obtained directory
size with two techniques for grid file organization
proposed in [16]

 - multidimensional dynamic hashing (MDH) and
multidimensional extendible hashing (MEH).
Directory sizes for both of these techniques are also

provided in [16]:

 for MDH and

 for MEH, where r is the total number of

records, s is the block size and n is the number of
dimensions. It should be noted that we consider the
case of uniform distributions.

For comparison let us express the directory size
in case of our approach using these values. Since we
allow each chunk to have one overflow block in
average, we can without loss of generality assume
that each of the overflow blocks will be half-full in

average, meaning that we shall store

 records per

chunk in average. Hereby we can conclude that it

will be required to have

chunks to store all r

records, which is equivalent to O(nm) according to
Section 2.1. Hereby, according to Section 3, our

directory size can be estimated as

 .

Compared to MDH and MEH techniques,

directory size in our approach is

 and

times smaller correspondingly.

3.2. Grid file operations

Lookup, insert and delete operations. A
significant difference from the structure proposed
in Section 2 is that the sets of chunks crossed by a
stripe are not stored separately for each stripe. To
visit all chunks crossed by stripe s of dimension d,
we have to consider all chunks, pointers to which
are stored in the pointer list of stripe s, and for each
of them iterate by the pointers of dimension d. This
makes it difficult to use fast set intersection
algorithms in this case, since the required sets
cannot be presented in the form of necessary
structures in advance.

Merge and split operations. It has been shown
in [9, 10] that the time complexity of merge and
split operations is .

As an example, consider splitting chunk A3 of
grid file represented in Figure 5(b) after insertion of
points (3, 6) and (6, 5). A new stripe Sv

3 and chunk
A5 are created and integrated into the structure of
the grid file. The result of such operation is

Modern Information Technologies and IT-Education

Vol. 14, no. 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

Big Data and applications

119

illustrated in Figure 6.

4. Grid file as a directed acyclic graph

The structure of our model allows us to naturally
represent the grid file as a directed acyclic graph.

Such representation is used as an implementation
of our index. Hereby, we came to a method of
effective representation of an index structure, based
on the concept of grid file, by means of graph theory.

(a) Before split (b) After split

Figure 6. Vertical split of chunk A3

Definition 2. We say that the graph
represents the grid file , if it is formed
according to the following rules:

 For each chunk there exists a vertex

 For each stripe there exists a vertex

 For each pointer , where a is a
stripe or a segment and b is a segment,
there exists an oriented edge

Figure 7 illustrates the graph representation of
the grid file from Figure 6(b).

Figure 7. Grid file graph representation

5. Related work

There is a variety of approaches for big data
management today. We shall review some of them,
briefly describe their data models, approaches for
scaling and pay attention to their data indexation
methods. More detailed analysis of big data systems
can be found in [18].

Современные информационные технологии и ИТ-образование

Том 14, № 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

120

Большие данные и приложения

SciDB [19, 20] is an open-source data
management system intended primarily for use in
application domains that involve very large
(petabyte) scale array data. SciDB uses array data
model, and its databases are organized as
collections of n-dimensional arrays. Data stored in
the arrays is being vertically partitioned. The SciDB
storage manager splits attributes in a single logical
array and handles values for each attribute
separately. Vertical partitioning, similarly to
column-storage system, reduces I/O costs. Also
SciDB storage manager takes each attributes data,
and further decomposes the array into a number of
equal sized, and potentially overlapping, chunks. In
SciDB chunks are the physical units of I/O,
processing, and inter-node communication. SciDB
uses array indexing. Coordinates are used for
determination of the chunk, containing requested
data. Non-integer dimensions are supported by
indexes, mapping dimension values into integers.

Couchbase [http://www.couchbase.com] is an
open-source document-oriented distributed NoSQL
database for interactive applications, designed for
easy scalability, consistent high-performance and
24/7 availability. Couchbase Server stores data as
JSON format documents or binary data. Documents
are hashed by IDs and then uniformly distributed
across the cluster and stored in data containers
called buckets, which represent logical groupings of
physical resources within a cluster.

Documents stored at Couchbase Server can be
indexed. Secondary indexes are defined using
design documents and views. Each design document
can have multiple views, and each Couchbase
bucket can have multiple design documents.
Couchbase indexes are distributed, with each server
indexing only the data it contains.

Column-oriented databases originate from
Google's Big Table [2]. Its data model is based on a
sparsely populated table whose rows can contain
arbitrary columns, the keys for which provide
natural indexing. Each cell in BigTable can contain
multiple versions of the same data, indexed by
timestamp. Different variations of a cell are stored
in decreasing timestamp order, so that the most
recent versions can be read first.

Apache Cassandra
[http://cassandra.apache.com] is designed to

handle big data workloads across multiple nodes
with no single point of failure. Nodes are the basic
infrastructure components in Cassandra. Data is
distributed among all nodes in the cluster, indexed
and written to an in-memory structure, called a
memtable. Once it is full, the data is written to disk
in an SSTable (Sorted Strings Table) data format.
The SSTable concepts is borrowed from Google's
BigTable, it stores data as a set of row fragments in
sorted order, based on row keys. The index
structure of SSTable is a sparse index, which maps
row keys to corresponding offsets in the data file.

Neo4j [http://neo4j.com, 17] is a representative
of graph databases. It stores data as a graph, where
it is represented as nodes and relationships, which
can have properties. Besides relationships, nodes
can also have several labels. Querying in neo4j is
performed using Cypher - a declarative, SQL-
inspired language for describing patterns in graphs.
Indexes are created per label and property
combinations.

MongoDB [https://www.mongodb.org] is an
open-source document-oriented No-SQL database,
providing high performance, availability and easy
scalability. The database consists of collections,
representing sets of MongoDB documents. Each
document is a set of key-value pairs, and is stored in
BSON (binary serialized JSON) format. MongoDB
supports different types of indexes, namely: single
field, compound, multikey, geospatial, text and
hashed indexes. MongoDB indexes are implemented
as B-Trees.

5.1. Comparison with MongoDB

We have implemented a data warehouse
prototype based on the proposed dynamic
indexation scheme and compared its performance
with MongoDB. MongoDB was chosen for
comparison for pragmatical reasons since it is
currently one of the most demanded NoSQL
databases. Testing was conducted using four main
query categories [4] - given point lookup, lookup by
individual coordinates, range lookup and closest
object lookup. Detailed testing results and
description of several techniques used for
prototype implementations are listed below.

Modern Information Technologies and IT-Education

Vol. 14, no. 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

Big Data and applications

121

(a) Directory size (b) Given point lookup

Figure 8. Directory size and given point lookup

Directory size. Figure 8(a) presents charts of
index directory size growth when performing 2 mln.
insert operations. It can be seen that our data
warehouse prototype index structure requires
much less memory than B-trees used by MongoDB.

Given point lookup. Given all the coordinates,
as described in Section 2.2, we first find the
corresponding stripes in each dimension, then
intersect the sets of chunks crossed by those stripes.
That intersection consists of the only chunk,
containing the necessary point. Van Emde Boas
trees are used for efficient stripe lookup. The
considered prototype implementation uses 32-bit
integers to represent values in each dimension.
Stripes are grouped in accordance with 16 most
significant bits of their lower bounds. Usage of van
Emde Boas trees allows to find the necessary group
in log log 216 = 4 operations. Then a binary search is
performed within the obtained group. Since only
lower 16 bits are significant within a group, it takes
total of log 216 + 4 = 20 (at most) operations for
stripe lookup. Fast set intersection algorithms are
also used, as described in Section 3.3, allowing to
effectively find the necessary chunk.

Figure 8(b) presents charts, displaying the time
required to process 105 given point lookup
operations depending on the number of records in
database. It can be seen that our data warehouse
prototype index structure requires much less
memory than B-trees used by MongoDB and
processes point lookup queries faster. It can be seen
that our prototype performs nearly 3 times faster in

this case. Also let us note that the tendency of this
difference is independent from the number of
records in the database and remains the same with
its increase. This note applies to all further test
cases as well.

Lookup by individual coordinates. This
algorithm is similar to the previous one. The
difference is that not all the dimensions may be
present in query, and the resulting chunk set
intersection may consist of numerous chunks which
have to be considered. However, many of these
chunks may not actually contain any records
matching the query. To avoid unnecessary disk read
operations for such chunks, we try to identify them
using a method similar to used in [3] for fast set
intersection. We use several independent hash
functions h1...hk which map each coordinate value
into the range [1..w], where w is the size of machine
word. For each chunk ci and dimension d we store
words wij

d (j=1..k), and when a value with
coordinate vd is inserted in chunk ci we calculate
values h1(vd),...,hk(vd) and set corresponding bits in
wij

d. During lookup we calculate values of hash
functions in the same manner, and check the
corresponding bits - if they are not set, we can omit
loading the considered chunk.

Figure 9 illustrates performance of our
prototype compared to MongoDB when performing
lookup by 1 and 2 dimensions on the same database
as described in previous paragraph. It can be seen
that our approach manifests itself better when more
dimensions are present in the query.

Современные информационные технологии и ИТ-образование

Том 14, № 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

122

Большие данные и приложения

(a) Lookup by 1 dimension (b) Lookup by 2 dimensions
Figure 9. Lookup by individual coordinates

Range lookup. A query for data range lookup
defined a rectangular area of the grid, and answer
to it is composed by set of points belonging to the
chunks which are crossed by that area. Figure 10(a)
contains comparison of range queries performed in
3-dimensional space with values uniformly
distributed in range [0..232-1] and average range
length of 106. It should be noted that with increasing
of query range length our prototype performs
better in comparison with MongoDB.

Closest object lookup. To compare
performance on closest point lookup queries we
used a database of 106 2-dimensional points to
make use of geospatial indexes of MongoDB.
Comparison results are illustrated in Figure 10 (b).
It should be noted that our approach can handle
closest object lookup queries in higher dimensional
cases as well, while MongoDB provides geospatial
indexes only for 2-dimensional points.

(a) Range lookup (b) Closest object lookup

Figure 10. Range and closest object lookup

6. Conclusions

In the present paper a new dynamic indexing

scheme for effective management of big data is
proposed. Our approach to such index structure is
based on the grid file concept. In introduction

Modern Information Technologies and IT-Education

Vol. 14, no. 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

Big Data and applications

123

strengths and weaknesses of grid file concept are
discussed. Based on this analysis the grid file
concept has been extended in order to eliminate the
considered weaknesses of grid file. Namely, we
introduce the concepts of chunk, used to solve the
problem of empty cells in grid file, and modify the
concept of stripe, essentially restricting the number
of disk operations.

Estimates of the characteristics of our concept of
grid file were obtained. In particular, for directory
size we received the following estimation: O(n2 m2),
where n - the number of dimensions and m - the
average number of splits performed in one
dimension. Such estimation is the result of our
chunk concept introduction.

Further improvement of the index structure
leads us to the following estimation of directory size:
O(n2 m). This result is very important since m is a
parameter. The improved index structure allows to
effectively reduce memory usage and complexities
of split and merge operations. Efficient algorithms

for storage and access of grid file directory are
proposed in order to minimize memory usage and
lookup operations complexities. Estimations of
complexities for these algorithms are presented.

We performed comparison of our approach
directory size with two techniques (MDH, MEH) for
grid file organization proposed in [16]. Compared to
MDH and MEH techniques, directory size in our

approach is

 and

 times smaller

correspondingly, where r is the total number of
records, s is the block size and n is the number of
dimensions.

Finally, results of experimental comparison of a
prototype, implementing the proposed concept of
grid file, with MongoDB (one of the most demanded
NoSQL databases) show that our prototype is
effective in the cases of point lookup, lookup in wide
ranges, lookup of closest objects and also has more
effective memory usage.

REFERENCES

[1] Boas P. Van Emde, Kaas R., Zijlstra E. Design and implementation of an efficient priority queue. Mathematical Systems Theory. 1976;
10(1):99-127. DOI: https://doi.org/10.1007/BF01683268

[2] Chang F., Dean J., Ghemawat S., Hsieh W.C., Wallach D.A., Burrows M., Chandra T., Fikes A., Gruber R.E. Bigtable: a distributed
storage system for structured data. Proceedings of the 7th Symposium on Operating Systems Design and Implementation (OSDI’06),
Seattle, Washington, November 06 – 08, 2006. p. 205-218. Available at: http://tab.d-thinker.org/showthread.php?tid=4 (accessed
11.01.18).

[3] Ding B., Konig A.C. Fast Set Intersection in Memory. Proceedings of the 37th International Conference on Very Large Databases
(VLDB 2011), Seattle, Washington, USA: Very Large Data Bases Endowment Inc., 2011; 4(1-12):255–266. Available at:
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/p255-DingKoenig.pdf (accessed 11.01.18).

[4] Garcia-Molina H., Ullman J., Widom J. Database Systems: The Complete Book. Prentice Hall, USA. 2009. Available at:
http://infolab.stanford.edu/~ullman/dscb.html (accessed 11.01.18).

[5] Gevorgyan G. An Effective Dynamic Structure for Grid file Organization. Russian-Armenian (Slavonic) University Bulletin. 2016;
(l):5-17. Available at: https://elibrary.ru/item.asp?id=30752424 (accessed 11.01.18).

[6] Gevorgyan G. An Approach to Data Integration: Model, Algorithms and Verification // PhD thesis: National Academy of Sciences of
the Republic of Armenia, Yerevan, 2016.

[7] Gevorgyan, G., Manukyan, M. Effective Algorithms to Support Grid Files. Russian-Armenian (Slavonic) University Bulletin. 2015;
(2):22–38. Available at: https://elibrary.ru/item.asp?id=30752417 (accessed 11.01.18).

[8] Luo C., Hou W.C., Wang C.F., Want H., Yu X. Grid File for Efficient Data Cube Storage. Computers and their Applications. 2006. p.
424–429.

[9] Manukyan M., Gevorgyan G. Canonical Data Model for Data Warehouse. Communications in Computer and Information Science. 2016;
637:72-79. DOI: https://doi.org/10.1007/978-3-319-44066-8_8

[10] Manukyan M. Canonical Model: Construction Principles. Proceedings of the 16th International Conference on Information
Integration and Web-based Applications & Services (iiWAS '14), Maria Indrawan-Santiago, Matthias Steinbauer, Hong-Quang
Nguyen, A. Min Tjoa, Ismail Khalil, and Gabriele Anderst-Kotsis (Eds.). ACM, New York, NY, USA, 2014. p. 320-329. DOI:
http://dx.doi.org/10.1145/2684200.2684278

[11] Manukyan M. On an Approach to Data Integration: Concept, Formal Foundations and Data Model. CEUR Workshop Proceedings.
2017; 2022:206-213. Available at: http://ceur-ws.org/Vol-2022/paper34.pdf (accessed 11.01.18).

[12] Nievergelt J., Hinterberger H., Sevcik K. The Grid File: An Adaptable, Symmetric, Multikey File Structure. ACM Transactions on
Database Systems. 1984; 9(1):38–71. DOI: http://dx.doi.org/10.1145/348.318586

[13] Otoo E.J. A Mapping Function for the Directory of a Multidimensional Extendible Hashing. Proceedings of the 10th International
Conference on Very Large Data Bases (VLDB '84), Umeshwar Dayal, Gunter Schlageter, and Lim Huat Seng (Eds.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1984. p. 493-506.

[14] Otoo E.J. A multidimensional digital hashing scheme for files with composite keys. Proceedings of the 1985 ACM SIGMOD
international conference on Management of data (SIGMOD '85). ACM, New York, NY, USA, 1985. p. 214-229. DOI:
http://dx.doi.org/10.1145/318898.318918

http://ceur-ws.org/Vol-2022/

Современные информационные технологии и ИТ-образование

Том 14, № 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

124

Большие данные и приложения

[15] Papadopoulos A.N., Manolopoulos Y., Theodoridis Y., Tsoras V. Grid File (and family). Encyclopedia of Database Systems, Springer,
Boston, MA, 2009. p. 1279–1282.

[16] Regnier M. Analysis of Grid File Algorithms. BIT - Computer Science Section. 1985; 25(2):335–358.
[17] Robinson I., Webber J., Eifrem E. Graph Databases. 2nd ed. O’Reilly, USA, 2015. 237 p.
[18] Sharma S., Tim U.S., Wong J., Gadia S., Sharma S. A Brief Review on Leading Big Data Models. Data Science Journal. 2014; 13:138-

157. DOI: https://doi.org/10.2481/dsj.14-041
[19] Stonebraker M., Brown P., Poliakov A., Raman S. The Architecture of SciDB. In: Bayard Cushing J., French J., Bowers S. (eds)

Scientific and Statistical Database Management. SSDBM 2011. Lecture Notes in Computer Science. Vol. 6809. Springer, Berlin,
Heidelberg, 2011. DOI: https://doi.org/10.1007/978-3-642-22351-8_1

[20] Brown P.G. Overview of SciDB: large scale array storage, processing and analysis. Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data (SIGMOD '10). ACM, New York, NY, USA, 2010. p. 963-968. DOI:
https://doi.org/10.1145/1807167.1807271

Submitted 11.01.2018; Revised 10.02.2018; Published 30.03.2018.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

[1] Boas P. Van Emde, Kaas R., Zijlstra E. Design and implementation of an efficient priority queue // Mathematical Systems Theory.
1976. Vol. 10, issue 1. Pp. 99-127. DOI: https://doi.org/10.1007/BF01683268

[2] Bigtable: a distributed storage system for structured data / F. Chang [et al.] // Proceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI’06), Seattle, Washington, November 06 – 08, 2006. Pp. 205-218. URL: http://tab.d-
thinker.org/showthread.php?tid=4 (дата обращения: 11.01.18).

[3] Fast Set Intersection in Memory / B. Ding, A.C. Konig // Proceedings of the 37th International Conference on Very Large Databases
(VLDB 2011), Seattle, Washington, USA: Very Large Data Bases Endowment Inc., 2011. Vol. 4, no. 1-12. Pp. 255–266. URL:
https://www.microsoft.com/en-us/research/wp-content/uploads/2011/01/p255-DingKoenig.pdf (дата обращения: 11.01.18).

[4] Garcia-Molina H., Ullman J., Widom J. Database Systems: The Complete Book. Prentice Hall, USA. 2009. URL:
http://infolab.stanford.edu/~ullman/dscb.html (дата обращения: 11.01.18).

[5] Геворгян Г. Эффективная динамическая структура для организации сеточных файлов // Вестник Российско-Армянского
(Славянского) университета: Физико-математические и естественные науки. 2016. № 1. С. 5-17. URL:
https://elibrary.ru/item.asp?id=30752424 (дата обращения: 11.01.18).

[6] Gevorgyan G. An Approach to Data Integration: Model, Algorithms and Verification // PhD thesis: National Academy of Sciences of
the Republic of Armenia, Yerevan, 2016.

[7] Геворгян Г., Манукян М. Эффективные алгоритмы для поддержки сеточных файлов // Вестник Российско-Армянского
(Славянского) университета: Физико-математические и естественные науки. 2015. № 2. С. 22–38. URL:
https://elibrary.ru/item.asp?id=30752417 (дата обращения: 11.01.18).

[8] Luo C., Hou W.C., Wang C.F., Want H., Yu X. Grid File for Efficient Data Cube Storage // Computers and their Applications. 2006. Pp.
424–429.

[9] Manukyan M., Gevorgyan G. Canonical Data Model for Data Warehouse. Communications in Computer and Information Science.
2016. Vol. 637. Pp. 72-79. DOI: https://doi.org/10.1007/978-3-319-44066-8_8

[10] Canonical Model: Construction Principles / M. Manukyan // Proceedings of the 16th International Conference on Information
Integration and Web-based Applications & Services (iiWAS '14), Maria Indrawan-Santiago, Matthias Steinbauer, Hong-Quang
Nguyen, A. Min Tjoa, Ismail Khalil, and Gabriele Anderst-Kotsis (Eds.). ACM, New York, NY, USA, 2014. Pp. 320-329. DOI:
http://dx.doi.org/10.1145/2684200.2684278

[11] Manukyan M. On an Approach to Data Integration: Concept, Formal Foundations and Data Model // CEUR Workshop Proceedings.
2017. Vol. 2022. Pp. 206-213. URL: http://ceur-ws.org/Vol-2022/paper34.pdf (дата обращения: 11.01.18).

[12] Nievergelt J., Hinterberger H., Sevcik K. The Grid File: An Adaptable, Symmetric, Multikey File Structure // ACM Transactions on
Database Systems. 1984. Vol. 9, issue 1. Pp. 38–71. DOI: http://dx.doi.org/10.1145/348.318586

[13] A Mapping Function for the Directory of a Multidimensional Extendible Hashing / E.J. Otoo // Proceedings of the 10th
International Conference on Very Large Data Bases (VLDB '84), Umeshwar Dayal, Gunter Schlageter, and Lim Huat Seng (Eds.).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1984. Pp. 493-506.

[14] A multidimensional digital hashing scheme for files with composite keys / E.J. Otoo // Proceedings of the 1985 ACM SIGMOD
international conference on Management of data (SIGMOD '85). ACM, New York, NY, USA, 1985. Pp. 214-229. DOI:
http://dx.doi.org/10.1145/318898.318918

[15] Papadopoulos A.N., Manolopoulos Y., Theodoridis Y., Tsoras V. Grid File (and family). Encyclopedia of Database Systems, Springer,
Boston, MA, 2009. Pp. 1279–1282.

[16] Regnier M. Analysis of Grid File Algorithms. BIT - Computer Science Section, 1985. Vol. 25, issue 2. Pp. 335–358.
[17] Robinson I., Webber J., Eifrem E. Graph Databases. 2nd ed. O’Reilly, USA, 2015. 237 p.
[18] Sharma S., Tim U.S., Wong J., Gadia S., Sharma S. A Brief Review on Leading Big Data Models // Data Science Journal. 2014. Vol. 13,

no. 138-157. DOI: https://doi.org/10.2481/dsj.14-041
[19] Stonebraker M., Brown P., Poliakov A., Raman S. The Architecture of SciDB. In: Bayard Cushing J., French J., Bowers S. (eds) Scientific

and Statistical Database Management. SSDBM 2011. Lecture Notes in Computer Science. Vol. 6809. Springer, Berlin, Heidelberg,
2011. DOI: https://doi.org/10.1007/978-3-642-22351-8_1

[20] Overview of SciDB: large scale array storage, processing and analysis / P.G. Brown // Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data (SIGMOD '10). ACM, New York, NY, USA, 2010. Pp. 963-968. DOI:
https://doi.org/10.1145/1807167.1807271

http://ceur-ws.org/Vol-2022/

Modern Information Technologies and IT-Education

Vol. 14, no. 1. 2018 ISSN 2411-1473 sitito.cs.msu.ru

Big Data and applications

125

Поступила 11.01.2018; принята к публикации 10.02.2018; опубликована онлайн 30.03.2018.

Об авторах:
Манукян Манук Гарушевич, кандидат физико-математических наук, доцент, Ереванский

государственный университет (0025, Республика Армения, г. Ереван, ул. А. Манукяна, д. 1); ORCID:
http://orcid.org/0000-0002-8578-3440, mgm@ysu.am

Геворгян Григор Рубенович, кандидат технических наук, Российско-Армянский (Славянский)
университет, Республика Армения (0051, Республика Армения, г. Ереван, ул. О. Эмина, д. 123); ORCID:
http://orcid.org/0000-0003-1706-568X, grigor.gevorgyan@gmail.com

This is an open access article distributed under the Creative Commons
Attribution License which unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited (CC BY 4.0).

