Valentin V. Nechaev, Anton S. Bashirov, Theoretical questions of computer science, computational mathematics, 317
Natalia I. Lebedeva, Mikhail A. Fedin computer science and cognitive information technologies

VAK 004.453
DOI: 10.25559/SITITO.14.201802.317-324

ADAPTATION OF SOFTWARE SYSTEMS TO USER TASKS BASED ON THE METHOD
OF CONFIGURATION MODELING

Valentin V. Nechaev, Anton S. Bashirov, Natalia I. Lebedeva, Mikhail A. Fedin
MIREA - Russian Technological University, Moscow, Russia

AJTATITAIIUA TIPOTPAMMHBIX CUCTEM K 3AZJAYAM I10/1b30BATEJIEM HA OCHOBE
METOJA KOH®UT'YPAIIMUOHHOT'O MOAE/IMPOBAHUA

B.B. Heuaes, A.C. bamupos, H.U. Jle6eneBa, M.A. ®enuH
MHPIA - Poccuiickuii TeXHOJIOTMYECKUH YHUBepcUTeT, I. MockBa, Poccus

© Nechayev V.V., Bashirov A.S., Lebedeva N.I., Fedin M.A., 2018}

Keywords Abstract

Adaptation; configuration mod- In this paper, we discuss task of adaptation of software systems (PCs) and complexes (PCs) on the basis of
eling; conceptual modeling; sys- the configuration modeling (MCM) method is considered. The article describes designated purpose of
tem modeling; software system; ~ MCM in the field of SSs development, describes background and justification for the development of adap-
configuration. tive SSs, and many of the advantages of creating configurable SSs. The main attention is paid to the analysis

and research of the software engineering and implementation of adaptive SSs using the configuration
mechanism as a mean of adapting SSs to the problem of interest. The potential for using configuration
modeling in this area is determined. The meaning of the concepts «configurator», «configuration» and
«reconfiguration» in the context of the description of MCM implementation of adaptive SSs creation is
considered. The article gives a real example of an adaptive SS describing MCMs application in the process
of software engineering. A conceptual model of such a SS is described, and its interpretation is implement-
ed in the form of a modular complex data processing system (CDPS). The example of the CDPS shows the
structural scheme of the conceptual model of the data handling process, decomposes the CDPS into the
basic modules, including the built-in configuration module. Special attention to a detailed description of
the problem of interest and the functionality of each module is paid, as well as to the description of the
relationships between them. On the basis of the CDPS, the solution of the problem of adapting PSs with the
elements of dynamic configuration based on the input data is realized. The example of the CDPS describes
user-accessible operating modes of the SS corresponding to various system configurations determined
according to the tasks to be solved. The article makes it possible to obtain an abstract presentation on the
methods and principles for the creation of adaptive SS. Moreover, a concrete understanding of the imple-
mentation of adaptation by using the configuration management mechanism is covered. Additionally, the
article highlights direct benefits and potential profit from using of configurator in software engineering.

Kiaw4yeBsble c10Ba AHHOTaLUsA

Apanranus; koHOUrypanoHHoe B JaHHOM paGoTe paccMaTprBaeTcs 3aZada afantanuy nporpaMmusbix cucteM (I1C) u kommiekcos (1K)
MO/JIe/IMPOBaHUE; KOHLENTyalb- Ha OCHOBE MeToJa KoHdurypauuoHHoro mogesnupoBanus (MKM). CTaThsi JeTalbHO paccMaTpHUBaeT
HOE MOJeJIMpOBaHKe; MOZIEJIMPO- pejHa3Ha4YeHHe U 1ejieBoe npuMeHeHre MKM B o6siactu paspa6oTku [1C, npuBOASATCS MPeHOChIIKH U
BaHMe CUCTEM; MPOrpaMMHasi CU- 060CHOBaHME aKTYaJbHOCTH Pa3paboTKU afanTUBHBIX [1C, a Tak»Ke OMUCBIBAETCS PsiJi OCHOBHBIX [JOCTO-
cTeMa; KOHGUTYpaLusl. HHCTB co3/aHust KoHpurypupyembix [1C. OCHOBHOe BHUMaHHUe Y/e/IsIeTCs aHAIU3Y U UCCIeJOBAaHHIO BO-

poca NPOeKTUPOBAHUS U peann3anuu aganTuBHbIxX [IC ¢ Mcmob30BaHHEM MeXaHU3Ma KOHGUTYPUPO-

BaHUs Kak cpejcTBa ajgantanuu [1C K peliaeMbIM 3aa4aM, OlpesessieTcsl MOTeHI[Mall HCI0JIb30BaHus

About the authors;

Valentin V. Nechaev, Candidate of Technical Sciences, Professor, Professor of the Department of Instrumental and Applied Software, MIREA - Russian
Technological University (78 Vernadsky Prospekt, Moscow 119454, Russia), ORCID: http://orcid.org/0000-0001-7171-3874, nechaev@mirea.ru
Anton.S. Bashirov, student of the Department of Instrumental and Applied Software, MIREA - Russian Technological University (78 Vernadsky Pros-
pekt, Moscow 119454, Russia), ORCID: http://orcid.org/0000-0002-4113-0704, antonbashir@mail.ru

Natalia I. Lebedeva, student of the Department of Instrumental and Applied Software, MIREA - Russian Technological University (78 Vernadsky Pros-
pekt, Moscow 119454, Russia), ORCID: http://orcid.org/0000-0003-3421-4923, natalia.i.lebedeva@yandex.ru

Mikhail A. Fedin, student of the Department of Instrumental and Applied Software, MIREA - Russian Technological University (78 Vernadsky Prospekt,
Moscow 119454, Russia), ORCID: http://orcid.org/0000-0001-9398-8297, vbif.32@ya.ru

Modern
Information
Vol. 14, no 2. 2018 ISSN 2411-1473 sitito.cs.msu.ru Technologies
ey 2'd [T-Education

TeopeTnyeckmne BONPOCHl MHDOPMATHKK, MPUKAALHON MATEMATUKN,
KOMMbHOTEPHbBIX HAYK U KOTHUTUBHO-UHMDOPMALWOHHbIX TEXHONOMMN

B.B. Heuaes, A.C. bawunpos,
H.W. Nebenesa, M.A. DeanH

318

KOHQUTYpaLMOHHOT0 MO/IeINPOBaHUA B JaHHOU cdepe. PaccMaTprBaeTcsl CMbIC/ OHATUH «KOHUTY-
paTop», <KKOHPUTYpUpPOBaHUE» U «PEKOHPUTYPUPOBAHHE» B KOHTEKCTE onucaHus npuMeHeHuss MKM k
co3aanuio agantuBHbIX [1C. B cTaThe npuBogUTCS peasbHbIM puMep afanTuBHo [1C c onvcaHueM npu-
MeHeHUss MKM B npouecce eé npoekTupoBaHus. OnucbiBaeTcs KOHLeNTyalbHas Mojeb Takod [IC u
OCyLIecTBJIsIeTC €€ HHTeprpeTanus B popMe MOJYIbHON KOMIJIEKCHOW CUCTEMbI 06paboTKH JaHHBIX
(KCOZJ). Ha npumepe KCO/l mpuBOAUTCA U paccCMaTPUBAETCSl CTPYKTYPHAs cxeMa KOHLeNTYyaJlbHOU Mo-
JleJIv polecca 06paboTKU JaHHBIX, pejcTaBiseTcs AekoMmno3sunus KCO/| Ha 6a30Bble MOJY/IH, BKJIIO-
4asi BCTPOEHHbIH MoAy/b-KOHPUrypaTop. OTAesbHOEe BHUMaHUeE YZessieTcss NOoJPOGHOMY ONMCAHUIO
peliaeMbIX 3aZjad U GpYHKIHMOHAJbHBIX BO3MOMXHOCTEH KaX/I0ro OTJEeJbHO B3ATOr0 MOAYJs, a TaKkKe
ONMCaHUIO B3auMocBs3el Mexay HUMU. Ha ocHoBe KCO/] peanusyeTcs pelieHue 3afa4du agantayuu [1C
C 3J71eMeHTaMH JJMHAaMUYeCKOT0 KOHQUTIYPUPOBaHUS 110 BXOAHBIM JJaHHBIM. B mporecce paccMoTpeHus
npuMeHeHuss MKM nHa npumepe KCO/] npuBOAUTCA ONMCaHHWe HECKOJbKUX JJOCTYNHBIX [10Jb30BATEJI0
pexxuMoB pa6oTsl [I1C, COOTBETCTBYIOIIUX PAa3/IUYHBIM KOHQUIYpALUMAM CHCTEMBI, ONpe/ie/isieMbIX CO-
[JIAaCHO pellaeMbIM 3a/ia4aM. CTaTbs M0O3BOJISIET MOJYYUTh Kak aGCTPAKTHOe NpeJCTaBJeH e 110 MeTOo-
JIMKaM ¥ IPUHIUIIAM co3/jaHus afanTUuBHbIX [1C, TaKk U KOHKpeTHOe TIOHUMaHue 0CO6eHHOCTEH peanunsa-
LMY aJlalTallly MyTEM UCI0/1b30BaHUsA BcTpoeHHOro B [IC MexaHM3Ma yrpaBJyieHUs] KOHQUTYPaLUSMU.
JloNOJIHUTE/IBHO, B CTaThe Bbl/IeJISIeTCs HENOCPeICTBEHHAs 110/1b3a U IOTeHLHaJIbHasi IPUOBLIb OT BHe-

JpeHust KoHGUrypaTopa npu npoektuposanuu I1C.

Introduction

Modern large software systems (P-systems) are developed and main-
tained in conditions of constantly evolving requirements. Changes in
existing P-systems are associated with additional costs, increasing
with the passage of time. It is the desire to reduce the volume of such
changes which was the main reason for creating adaptive software
(AS) systems. AS-systems should have the property of purposeful de-
velopment under the influence of external conditions. At the same
time, the goal of the AS system should be achieved, despite the chang-
es. To ensure compliance with these requirements, the most rational
is the modular architecture of the AS system [1]. It makes it possible
to easily exchange data with the serviced system [2]. Adaptation acts
as an object management tool in the absence of its exact model. Adap-
tation acts as an object management tool in the absence of its exact
model. Adaptation can be implemented through the use of paramet-
ric, organizational, structural methods, as well as evolutionary algo-
rithms [3,4]. To solve the problem of adapting the software system
the authors of this paper use the method of configuration modeling
[5]. The configuration is a qualitative characteristic of the structure
that determines its spatial, logical, temporal, and also combined -
complex - organization of the P-system. From the conceptual point of
view, a configuration is a structure of structures or a meta-structure.
Configuration modeling, as a method of adapting modular P-systems,
makes it possible to significantly expand their functionality and re-
duce additional resources in the development of software products.
The P-system can be defined as configurable if it can be configured
without programming additional functions and / or without chang-
ing the source code of the program. The presence of configuration
mechanisms in the AS-system provides flexibility in the use of soft-
ware within the scope of the tasks and the existing environment. It
should be noted that the configuration method was initially used to
form configurations of computing systems, complexes and networks
[4]. However, it can be relatively easily used also for P-systems. It
should be noted that the ability to configure software products has
existed for a long time. However, the creation of P-systems, the struc-
ture of which was initially based on broad possibilities for adaptation
in the presence of certain goals, was used relatively recently.

CoBpeMmeHHble
MH(OPMaLMOHHbIE
TeXHonormm

n UT-o6pasoBaHue

1. The objective of the work

The objective of the work is to consider the features of the configura-
tion modeling method applied to flexible software systems, the use of
this method as a tool for adapting such P-systems to user-specific
tasks, as well as demonstrating the applicability of the configuration
mechanism by creating an author’s P-system.

The article includes: an analysis of the relevance of the issue of creat-
ing a demonstrated P-system; description of adaptation of P-systems
based on configuration modeling; a conceptual model of the adaptive
P-system; implementation of the AS-system using the example of an
integrated data processing system (IDPS).

2. The urgency of developing adaptive software systems
Modern P-systems are widely used in almost all spheres of society.
The needs of users are constantly growing. The functionality that the
P-system performed yesterday may now be insufficient or not rele-
vant. Thus, there is a need to update the already commissioned P-sys-
tem. It should be emphasized that the volumes of the source codes of
modern P-systems reach the sizes at which when summing the entire
program code of the average P-system in one file, it can not be sup-
ported. Eventually, this situation leads to an increase in the complex-
ity of the distribution of the functional of the P-system in accordance
with the needs of users [6].

3. The method of configuration modeling and the problem of
adaptation of P-systems

To solve the task in this paper, the method of structural adaptation is
used. The P-system is implemented on the basis of a modular ap-
proach. For adaptation the configuration modeling method [1] is
used. To concretize, as an example, two adaptation tasks are defined.
The first is the task of updating an existing active P-system. The sec-
ond is the problem of decomposition of the active functional of the
P-system in accordance with the needs of the user. Adaptation is
achieved through the execution of the configuration mechanism [7].
The configuration mechanism is to reform the structure of the P-sys-
tem by changing the current set of its modules and their interrela-

Tom 14 N° 2 (2018) ISSN 2411-1473 sitito.cs.msu.ru

Valentin V. Nechaev, Anton S. Bashirov,
Natalia I. Lebedeva, Mikhail A. Fedin

Theoretical questions of computer science, computational mathematics,
computer science and cognitive information technologies

319

tionships. The configuration management of the P-system is provided
through a separate software module - the configurator. The configura-
tor (K) is a component of the P-system, the purpose of which is the
purposeful configuration and reconfiguration of the main part of the
P-system. It is assumed that the P-system can be in different states
and has several different operating modes. The mode of operation is
understood as the cumulative cross-section of the current parameters
of the P-system that determine its state, as well as sets of tasks that
the system solves while in any mode.

In the role of the configurator (we denote it by the symbol K) there
can be an external program with respect to the P-system, operating
in the same environment as the configurable one. However, it should
be taken into account that the presence of the K configurator as a
separate component from the P-system of the software component,
poses the challenge of creating a control channel that would provide
lossless transfer of control information from the configurator K to
the configurable P-system, as well as information (demand) from
the P-system to the K configurator, see Figure 1. Using the modular
architecture of the P-system in combination with the K configurator
allows performing partial updates of the P-system within a limited
number of modules, without affecting other parts of the system. This
solves the above problem of adapting the P-system for updating its
active copy [1].

Configurable

software
Input data system Qutput data
stream stream

Fig. 1. Schematic diagram of the PS configuration
management control

Puc. 1. Cxema I1C ynpaBiieHUs1 KOHUTYpaLUAMU

The task of decomposition of the P-system functional in accordance
with the user’s needs is solved through the use of configurable modes
of its operation. In other words, using the configurator K, we can
change the current configuration of the modules according to the us-
er’s needs at a given time or, for security reasons, limiting the user-ac-
cessible area of the system functionality to the dedicated set of mod-
ules. Under changing requirements for the system, the merits of using
this approach are:

- no need to make improvements to an existing system, which can
lead to an increase in the cost of the project and the timing of its im-
plementation;

- the possibility of making changes to the functionality of an existing
system by highlighting the modes of its operation, determined by the
structure and composition of the interacting modules without modi-
fying the modules themselves;3

- no need to create a system from scratch to meet new requirements.
As an example of the practical implementation of the adaptation task
through configuration modeling, let us consider an integrated data
processing system.

Vol. 14, no 2. 2018 ISSN 2411-1473 sitito.cs.msu.ru

4. Integrated data processing system

Integrated data processing system with the provision of a calculation
mechanism consists of two subsystems: client file processing (KO)
and server processing of files with a computational mechanism (CO).
The advantage of creating and using a configurable IDPS is deter-
mined by the fact that it has a number of properties, among which we
distinguish the following:

- the possibility of step-by-step commissioning of a separate function-
al that implements a certain range of automation tasks for business
processes;

- automation of a long process of data calculation;

- reduction of the probability of human errors in the calculation;

- saving resources by designing a rational system configuration.

The structural scheme of the data processing process is shown in Fig-
ure 2.

5. Structural diagram of the conceptual model of the data
processing system

The conceptual model of the system in the narrow sense is the collec-
tion of components of the system and their interactions. The process of
data processing can be considered in two ways: as a process consisting
of several actions; a program as a set of components, where the compo-
nent is understood as the program module executing the processing of
data.

From the process approach point of view, data processing consists of
the following set of actions: data aggregation, data conversion, data
storage, data usage, generation of results of data use.

The process of data processing can be repeated until the end result
satisfies the user’s needs. In this case, each subsequent iteration of
the process will be applied to the result of using or converting data of
the previous one.

The component scheme of the data processing process is as follows:
DH=<D, A, C,S, U, R>, where

D is the set of data sources

A - data aggregator

C - set of data converters

S - database

U is the set of data users

R is the set of results of data usage

The final conceptual model of the data processing process is shown in
Figure 3.

6. Functions of the data processing system

The main goal of the system is to automate the calculation of data.
To achieve this goal, you must perform the following functions:

1. Data aggregation. The P-system should implement a mechanism for
collecting user data from several sources into one central one.

2. Data storage. The collected data of the P-system should be kept for
later use.

3. Uploading data. The P-system should have a mechanism for obtain-
ing the final set of collected data for performing subsequent analysis
and calculating new data.

4. Calculation of new data. The P-system must implement the re-
quired processing and calculation algorithm to obtain a new data set
in line with user requirements..

5. Saving the calculation results. The P-system should save the calcu-
lated results.

Modern
Information
Technologies
and IT-Education

320 TeopeTnyeckne BONPOCHI MH(OPMATUKN, NPUKNALHON MaTeMaTuKK, B.B. Heuaes, A.C. Bawnpos,
KOMMBIOTEPHbIX HAYK U KOTHUTUBHO-WHMOPMALMOHHbIX TEXHONOMMI H.W. Nebenesa, MA. DeaunH

Subsystem "client image files"

& Integrated data processing
Preparing for download < tem with the provision of
fuser mode) a ealculation mechanism
Select Category
of data
¥
Select local
file
¥
Select server
file: Subsystem “Server
processing of files and Preparation for calculation
computing mechanism™ (user mode)
Downloading
Create a new » server file
file
Preparing for deletion "“““W-
(user mode)
A N Selecting a
Sending a file Loading the list local file
to the server 7 * of server files
Download file l
{program mode) select file
to delete —
Cnmhlr:‘rig.llu file Wiriting to Solurl:::z the
™ the existing one anewfie & of the new file

Deleting a file
\+| {Program mode) Performi
a calculation

Saving the file Deleting a file
1o the server from the server Calculation of data
{program mode)
Forming the list _
of server files Saving data
to a local file

Fig. 2. Structural scheme of the data processing

Puc. 2. CTpykTypHas cxeMa npouecca 06paboTKH JaHHbIXI]

S

Data sources

Data aggregator

: Storage Transformation Formation of results E
' 4 :
; N N Resul :
\ < < esults i
' P Data B g
! Database of data '
; Converters usage E
' J \ J :
| A '

: Using :

4 ;

: i

1 Data Users :

: '

Fig. 3. Structural diagram of the conceptual model of the data processing process

Puc. 3. CTpyKTypHasi cxeMa KOHLeNTyaJbHOH MoJieJiu polecca 06paboTKH JJaHHbIX

CoBpeMmeHHble
MH(OPMaLMOHHbIE

TexHonorum Tom 14 N° 2 (2018) ISSN 2411-1473 sitito.cs.msu.ru
n UT-o6pasoBaHue

Valentin V. Nechaev, Anton S. Bashirov,
Natalia I. Lebedeva, Mikhail A. Fedin

Theoretical questions of computer science, computational mathematics,
computer science and cognitive information technologies

321

The functional scheme of the P-system implementing the data pro-
cessing processes is shown in Figure 4.

Automation of
data processing

¢ v ¢

Data Calculation Uploading
Aggregation of new data data
Data Saving
storage calculation
results

Fig. 4. Functional diagram of the data processing system

Puc. 4. PyHK1MOHa/NIbHAsS cXeMa CUCTEMbI 06PaBGOTKH JJAHHBIX
7. Basic functional modules of the IDPS

The P-system consists of the following basic modules:
1) Data access module (service)

2) The data interface module (head)

3) The interface module for calculating data (head)

4) File Combining Module (working)

5) Data verification module (manager)

6) Data calculation module (working)

7) Data storage module (service)

8) The module for deleting the incorrect data (working)
Let’s consider in more detail each of the modules of the system and a
list of descriptions of the tasks they solve.

8. Functions of IDPS modules

8.1. Data Access Module

1.1. creating a file on the server;

1.2. transferring a file from the server to the computer;

1.3. deleting the server file;

1.4. reading from the server file;

1.5. adding data to an existing server file.

8.2. Data federations interface module

2.1. demonstration of the main data about the file being sent;

2.2. demonstration of the field for entering a new name of the server
file;

2.3. demonstration of the status of sending the file to the server;

2.4. demonstration of data about the region being deleted.

8.3. Calculation interface module

3.1. demonstration of the window for selecting two options for work-
ing with files;

3.2. demonstration of the field for selecting a server file and perform-
ing actions on it;

3.3. demonstration of the status of the settlement;

3.4. demonstration of the basic data for the calculation.

8.4. File Merge Module

4.1. merging of a local file of the first category with a server file of the
first category;

4.2. merging of a local file of the second category with a server file of

Vol. 14, no 2. 2018 ISSN 2411-1473 sitito.cs.msu.ru

the second category.

8.5. Data Validation Module

5.1. checking the filename;

5.2. checking file extension;

5.3. checking the data category in the file;

5.4. checking the existence of the file.

8.6. Data calculation module

6.1. calculation according to the data of the first category;
6.2. calculation of the second category;

6.3. creating a file with the results of the calculation.
8.7. Storage Module

7.1. file storage;

7.2. files transfer.

8.8. The module for deleting incorrect data

8.1. removing incorrect data from the server file;
8.2. deleting the server file.

9. Mechanism for configuring and reconfiguring of the soft-
ware system

To define the configuration mechanism, we define the categories of
users. By the category of users we mean a large, usually not strictly
outlined class, in its comparison with other similar classes [5]. In this
system, we distinguish three categories of users:

- a user who has access to create and modify server files;

- a user with access to the removal / unloading of information from
the server and making calculations;

- an administrator with full rights and access.

Depending on the user’s category, the P-system must provide him
with a number of possible operations, determined in a particular con-
figuration of the system. We denote the configuration variants by the
symbols W1, W2, W3 (Figure 5). For users of the first category (config-
uration W1), a mechanism for configuring and reconfiguring of work
files is provided. For users of the second category (configuration ¥2),
a mechanism for configuring the calculated data is provided. For us-
ers of the third category (configuration ¥3), mechanisms for config-
uring and reconfiguring of work files are provided, as well as a mech-
anism for configuring the calculated data.

;’ Configuration ¥,

E ! Configuration ¥ ‘

i ¢ b DataAccess i'| Data Calculation
b 3 Module ! interface Module
E : Data fusion ;

1| interface module | ! !

¥ '| Datavaligation || DataCaiculation
i Module i Module

o Data fusion E

i module !

o ' The module for
E } ‘ Storage Module | deleting

1! ! H incorrect data
E : ’

Fig. 5. Schematic of variants of software system configurations oriented to different
categories of users
Puc. 5. CxeMa BapyuaHTOB KOHPUTypaL Ui NporpaMMHON CHCTEMBI,

OpPHUEHTHUPOBAHHBIX HA pa3JIMYHbI€ KATETOPHUU moJib30BaTeJiei

Modern
Information
Technologies
and IT-Education

322

TeopeTnyeckmne BONPOCHl MHDOPMATHKK, MPUKAALHON MATEMATUKN,
KOMMbHOTEPHbBIX HAYK U KOTHUTUBHO-UHMDOPMALWOHHbIX TEXHONOMMN

B.B. Heuaes, A.C. bawunpos,
H.W. Nebenesa, M.A. DeanH

1. Subsystem for client file processing (KO).

The KO subsystem includes the following modules:

1) data aggregation interface module;

2) data access module;

3) file merging module;

4) the data verification module;

5) data storage module.

The task of the subsystem is to allow the user to merge several files
with a strict data organization structure and send the resulting file
to the server. During the work, the files selected by the user for
downloading must undergo all necessary checks (the correctness
and category of the data contained in them, the file format, etc.). In
case of unsuccessful verification, the file should not be sent to the
server.

Thus, during the configuration and reconfiguration process, the user
can create and edit work files and then send them to the server.

In the KO subsystem, the single configuration mode W1 is implement-
ed, in this mode a user can get the access to the server files and com-
bine them with local ones.

Data Validation DataAccess | | Storage
Module Module Module
Input data Data Fusion . Output
) Interface Data fusion N
Module mesuls

Fig. 6. Structural diagram of the configuration mode W1

Puc. 6. CTpykTypHas cxeMa pexxrMa paboTsl KoHburypanuu W1

2. Subsystem of server processing of files with a computational mech-
anism (CO).

The list of modules that are part of the CO subsystem:

1) data interface interface module;

2) data access module;

3) module for calculating the data;

4) data storage module;

5) data verification module;

6) module for deleting the incorrect data.

The subsystem CO provides the user with the ability to perform com-
plex mathematical calculations based on the data received from the
server file. Calculations can be performed for two possible categories
of data, so the subsystem provides a mechanism for selecting the nec-
essary chain of calculations, depending on the type of data from the
file received by the program.

Two modes of functioning of the W2 configuration are implemented
in the CO subsystem. The composition and interaction of the modules
are shown in Figure 7 and Figure 8, respectively.

In mode [, the user can download server files and perform calcula-
tions with data received from local files. Mode II allows the user to
remove incorrect data from server files.

The team-work of the two subsystems allows the user to access all the
functionality developed within the framework of the considered
IDPS. In this case, the configuration W3 takes place. It implements
four possible modes of operation. Since the modes I, I, III coincide
with the operating modes of the configurations W1 and W2, we will
discuss in more detail only the IV mode of operation of configurations
Y3 (Figure 9.).

In the IV mode of the configuration W3, the user has access to all pos-
sible operations: merge files, upload files to the server and download

CoBpeMmeHHble
MH(OPMaLMOHHbIE
TeXHonormm

n UT-o6pasoBaHue

them from the server, perform calculations with data from local files,
and delete incorrect data from server files.

In this system, the configuration mechanism was used as a means of
adapting the software system to the tasks being solved. Due to the
reorganization of the structure of the system through the formation of
configurations from dedicated modules, it became possible to differ-
entiate the availability of the system functionality for different catego-
ries of users without making changes to the program code.

Data Validation DataAccess |, Storage
Module Module Module
Input data Data Calculation - Output
Interface Data Calculation
—_— Module module —

Fig. 7. Block diagram of the I mode of the configuration W2 operation

Puc. 7. CtpykTypHas cxeMa pexxuMa | pa6oTel koHburypauuu ¥'2

Data Validation Data Access | | Storage
Module Module Module
Input data pata Calculation Module for Output
— 3 Interface deleting I
Module incorrect data

Fig. 8. Block diagram of the Il mode of the configuration W2 operation

Puc. 8. CtpykTypHas cxema pexxuma Il pa6otsl koHdurypanuu W2

Module for Output
> deleting —
incorrect data
Qutput
|__,|Data Calculation i
Module
Data Validation Data Access . Storage
Module Module L Module
Qutput
Datafusion [~
>
module
Input data Data Fusion Jr
——— > Interface
Module Data Calculation
Interface
Module

Fig. 9. Block diagram of the operation mode IV of the configuration ¥3

Puc. 9. CtpykTypHas cxeMa pexxrMma IV pa6oTbl koHburypanuu ¥3
Conclusion

The article considers the method of configuration modeling, focused
on solving the problems of adaptation of modular software systems.
Configuration modeling makes it possible to create software systems
that adapt to the changing needs of users through an embedded - in-
ternal or independent external software component - the configurator.
The adaptation process is implemented as a result of changing the op-
erating modes of the system modules in accordance with the data flow
received from the external environment. Thanks to the configurator,
the P-system can automatically change its state to the target-oriented
meeting the new requests of a particular user. Theoretical and me-
thodical aspects of the use of the method of configuration modeling
are tested on the example of a complex P-system for data processing.
Positive results were achieved. It should be noted that the proposed
approach to the creation of P-systems dramatically reduces the cost of
their support and maintenance in the process of their operation.

Tom 14 N° 2 (2018) ISSN 2411-1473 sitito.cs.msu.ru

Valentin V. Nechaev, Anton S. Bashirov,
Natalia I. Lebedeva, Mikhail A. Fedin

Theoretical questions of computer science, computational mathematics,
computer science and cognitive information technologies

323

Acknowledgements

The research is carried out with financial support of the Russian
Foundation for Basic Research within the scientific project No. 16-29-
04326 ofi-m.

References

(1]

(2]

(3]

[5]
(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Vol. 14, no 2. 2018
e

Leroy X. A modular module system. Journal of Function-
al Programming. 2000; 10(3):269-303. DOI: 10.1017/
S0956796800003683

Shibanov S.V,, Mezenkov A.A.,, Shevchenko 0O.A,, Ilyushkin A.S.
Organizational and functional principles of active packets for
information exchange and distributed application configura-
tion. University proceedings. Volga region. Technical sciences.
2013; 1(25):5-18. Available at: https://elibrary.ru/item.as-
p?id=19033948 (accessed 01.05.2018). (In Russian)
Rastrigin L.A. Adaptation of complex systems. Riga: Zin-
atne, 1981. 375 p. (In Russian)

Bakanov A.B., Drozhdin V.V, Zinchenko R.E., Kuznetsov R
N. Adaptation methods and generations of software devel-
opment. Izv. Penz. gos. pedagog. univ. im.i V. G. Belinskogo.
2009; Ne 13(17):66-69. Available at: https://elibrary.ru/
item.asp?id=13051113 (accessed 01.05.2018). (In Russian)
Nechaev V.V. Configurational modeling: Part I. Theoretical
aspects. Moscow: MIREA, 2007. 92 p. (In Russian)
Vendrov A.M. Designing of the software of economic infor-
mation systems. 2nd Edition. Moscow: Finance and Statis-
tics, 2005. 544 p. (In Russian)

Rogozov U.L, Sviridov A.S. The control in the structure of
software application. Informatization and communication.
2012;5:112-116. Available at: https://elibrary.ru/item.as-
p?id=18380683 (accessed 01.05.2018). (In Russian)
Velichko Yu.l. The method of introducing the adaptation
module into the user interface. Problems of Information
Technology. 2014; 2(14):15-19. (In Russian)

Lavrischeva K.M., Petrenko A.K. Software Product Lines
Modeling. Trudy ISP RAN/Proc. ISP RAS. 2016; 28(6):49-64
(In Russian). DOI: 10.15514 /ISPRAS2016-28(6)-4

Valeev S.S., Ismagilova I.M. Statistical methods in the con-
struction of adaptive interfaces in complex distributed
technical systems. CEUR Workshop Proceedings. 2016;
1825:260-268. Available at: http://ceur-ws.org/Vol-
1825/p33.pdf (accessed 01.05.2018). (In Russian)
Kolesov Y.B., Senichenkov Yu.B. Modeling of systems. Ob-
ject-oriented approach. St. Petersburg: BHV-Petersburg,
2006. 192 p. (In Russian)

Kolesov Y.B., Senichenkov Yu.B. Modeling of systems. Dy-
namic and hybrid systems. St. Petersburg: BHV-Peters-
burg, 2006. 224 p. (In Russian)

Dvoretskiy S.I., Muromtsev Yu.L., Pogonin V.A., Skhirtladze
A.G. Modeling of systems. Moscow: Academy, 2009. 320 p.
(In Russian)

Algazinov E.K,, Sirota A.A. Analysis and computer model-
ing of information processes and systems. Moscow: Dia-
log-MIFI, 2009. 416 p. (In Russian)

Tyukin L.Yu., Terekhov V.A. Adaptation in nonlinear dynam-
ical systems. Moscow: 1zd-vo LKI, 2014. 384 p. (In Russian)
Bellagio D., Milligan T. Software Development. Change man-
agement. Moscow: DMK Press, 2016. 384 p. (In Russian)

ISSN 2411-1473 sitito.cs.msu.ru

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Nechaev V.V, Koshkarev M.I. Smart problem solver: compar-
ative analysis and architectural model. Information and Tele-
communication Technologies. 2014; 21:51-61. (In Russian)
Ramirez A., Romero].R. Ventura S. Interactive multi-ob-
jective evolutionary optimization of software architec-
tures. [Information Sciences. 2018; 463-464:92-109.
DOI:10.1016/j.ins.2018.06.034

Brogi A., Canal C., Pimentel E. On the specification of soft-
ware adaptation. Electronic Notes in Theoretical Computer
Science.2004;97:47-65.D0I:10.1016/j.entcs.2004.04.031
Kuhrmann M., Ternité T, Friedrich J., Rausch A., Broy M. Flex-
ible software process lines in practice: A metamodel-based
approach to effectively construct and manage families of
software process models. Journal of Systems and Software.
2016; 121:49-71. DOI: 10.1016/j.jss.2016.07.031

Salama M., Bahsoon R. Analysing and modelling runtime archi-
tectural stability for self-adaptive software. Journal of Systems
and Software. 2017;133:95-112.DO0I: 10.1016/j.jss.2017.07.041
Hussein M., Nouacer R. Radermacher A. Safe adapta-
tion of vehicle software systems. Microprocessors and
Microsystems. 2017; 52:272-286. DOI: 10.1016/j.mic-
pro.2017.06.014

Bashari M., Bagheri E., Du W. Self-adaptation of service
compositions through product line reconfiguration. Jour-
nal of Systems and Software. 2018; 144:84-105. DOI:
10.1016/j.jss.2018.05.069

Bartusevics A., Novickis L. Models for Implementation of
Software Configuration Management. Procedia Computer
Science. 2015; 43:3-10. DOI: 10.1016/j.procs.2014.12.002
Bajunaid N. Menascé D.A. Efficient modeling and opti-
mizing of checkpointing in concurrent component-based
software systems. Journal of Systems and Software. 2018;
139:1-13.DOI: 10.1016/j.jss.2018.01.032

Behjati R., Nejati S. Architecture-level configuration of in-
dustrial control systems: Foundations for an efficient ap-
proach. Science of Computer Programming. 2018; 160:30-
47.DOI:10.1016/j.scic0.2017.10.001

Horcas].-M., Pinto M., Fuent L. Variability models for
generating efficient configurations of functional quality
attributes. Information and Software Technology. 2018;
95:147-164.DOI: 10.1016/j.infso0f.2017.10.018

Submitted 01.05.2018; revised 10.06.2018; published online

30.06.2018.

CIMCOK UCIO0JIb30BaHHBIX
HCTOYHUKOB

(1]

(2]

(3]

Leroy X. A modular module system // Journal of Function-
al Programming. 2000. Vol. 10, issue 3. Pp. 269—303. DOI:
10.1017/S0956796800003683

lllubanos C.B., Mesenkoe A.A., lllesuenko 0.A., HawowkuH
A.C. TlpyHIMOBl OpraHU3anuyd U QYHKIMOHUPOBAHUS aK-
TUBHBIX NAKETOB JJis1 06MeHa UHboOpManued U KOHPUry-
pUPOBaHUA pacHpeje/ieHHbIX NpuaoxeHuil // UsBectus
BBICIIMX y4eOHBIX 3aBeleHUH. [loBo/KCKUi perroH. TexHuU-
yeckue Hayku. 2013. Ne 1(25). C. 5-18. URL: https://elibrary.
ru/item.asp?id=19033948 (gata o6pamenus: 01.05.2018).
Pacmpueun J1.A. ApanTtauus CJO0XKHBIX cucTeM. Pura:
3uHaTHe, 1981. 375 c.

Modern
Information
Technologies
and IT-Education

324

TeopeTnyeckmne BONPOCHl MHDOPMATHKK, MPUKAALHON MATEMATUKN,
KOMMbHOTEPHbBIX HAYK U KOTHUTUBHO-UHMDOPMALWOHHbIX TEXHONOMMN

B.B. Heuaes, A.C. bawunpos,
H.W. Nebenesa, M.A. DeanH

(4]

[5]
(6]

[7]

(8]

[9]

(10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Bakanoe A.B., [Jpoxcdun B.B, 3unuenko PE., Ky3Heyos PH.
MeToAb! afjaNTallU¥ U MOKOJEHUS pa3BUTHUS NMPOrPaMM-
Horo o6ecneueHus // WUsBectus IITIY um. B. I. Benun-
ckoro. 2009. Ne 13(17). C. 66-69. URL: https://elibrary.ru/
item.asp?id=13051113 (gata o6pamenus: 01.05.2018).
Heuaee B.B. KondurypanuoHHoe MofearMpoBaHue: YacTb
I. TeopeTnueckue acnektsl. M.: MUP3A, 2007.92 c.
Bendpos A.M. lIpoekTHpoOBaHMe NPOrpaMMHOTO o6ecieye-
HUSA S5KOHOMHYECKUX UHPOPMALlMOHHBIX CUCTEM. 2-€ U3J,,
nepepad. u gomn. M.: DuHaHChl U cTaTUCTUKA, 2005. 544 c.
Pozozos IO0.H., Ceupudog A.C. dneMeHTbl ynpaBjleHUs B
CTPYKType HHbopMayuoHHOU cuctembl // WHopma-
TH3auus U cBa3b. 2012. Ne 5. C. 112-116. URL: https://
elibrary.ru/item.asp?id=18380683 (mata o6palieHUs:
01.05.2018).

Beauuko FO.M. MeTon BHeApeHUs MOAy/s ajanTalydu B
MnoJib30BaTeNbCKUi uHTepdeiic // Ipobaemu iHpopma-
nifiHux TexHoJsorin. 2014. T. 2, Ne 14. C. 15-19.
Jlaspuwesa E.M., [lempeHko A.K. MofenvupoBaHue ceMeNHCTB
nporpaMMHbIx cucteM // Tpyasl UCIT PAH. 2016. Towm 28,
BbII. 6. C. 49-64. DOI: 10.15514 /ISPRAS2016-28(6)-4
Banees C.C, Hcmazunosa U.M. TlocTpoeHue aflal TUBHBIX UHTEP-
belicoB B C/I0XKHBIX pacrpe/ie/ieHHbIX TEXHUYEeCKUX CHCTeMax
C mpUMeHeHueM cTtatucthdeckux MetofoB // CEUR Workshop
Proceedings. 2016. Vol. 1825. Pp. 260-268. URL: http://ceur-ws.
org/Vol-1825/p33.pdf (gata o6pawenus: 01.05.2018).
Kosecos 10.b., Cenuuenkog [0.5. MogenupoBaHue CUCTEM.
06 beKTHO-OpUeHTUPOBaHHbIN noaxos. CI16.: BXB-Iletep-
6ypr, 2006. 192 c.

Kosecos 10.b., Cenuuenkog I0.5. MogenupoBaHue CUCTEM.
JuHaMudeckue U rubpuHble cucteMol. CI16.: BXB-Iletep-
6ypr, 2006. 224 c.

Asopeykuii C.H., Mypomyes F0./1., [lozoHuH B.A., Cxupmaad3ze
A.I' MopenvpoBaHue cucteM. M.: Akagemus, 2009. 320 c.
Aneaszunos 3.K., Cupoma A.A. AHaIU3 1 KOMIILIOTEPHOE MO-
JleJInpoBaHie UHPOPMALlMOHHbBIX IPOLLECCOB U CUCTeM. M.:
Juanor-MU®DH, 2009. 416 c.

Twokun H.10., Tepexos B.A. AjanTauusi B HeJIMHEHUHbIX JU-
HaMMuYecKux cucteMax. M.: U3a.-Bo JIKH, 2014. 384 c.
Beanadscuo /], Muanuzan T. PazpaboTka nMporpaMMHOr0
obGecnedeHus. YnpasieHue uaMenenusmu. M.: /IMK Ilpecc,
2016.384 c.

Heuaes B.B,, Kowkapée M.H. HnTe 1eKTya/bHble peliaTe-
JIM 33Jja4: CPaBHUTEJIbHBIM aHa/IM3 U apXUTeKTypHas Mo-
JAenb // WHbOpMaLMOHHbIE U TeJeKOMMYHHUKALlLUOHHbIe
TexHosioruu. 2014. Ne21. C. 51-61.

Heyaep BajieHTHH BUKTOPOBHY, KaHAU/JaT TEXHUYECKUX HayK, podeccop, npodeccop kadeapbl HHCTPYMEHTAIBHOIO U IPUKJIAZAHOTO IPOrpPaMM-
Horo o6ecnedyenusi, MUPIA - Poccuiickuii TexHosiornyeckuit yuusepcureT (119454, Poccus, r. Mocksa, p. BepHazckoro, . 78), ORCID: http://orcid.

org/00

00-0001-7171-3874, nechaev@mirea.ru

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

Ramirez A., Romero J.R, Ventura S. Interactive multi-objec-
tive evolutionary optimization of software architectures
// Information Sciences. 2018. Vol. 463-464. Pp. 92-109.
DO0I:10.1016/j.ins.2018.06.034

Brogi A., Canal C,, Pimentel E. On the specification of soft-
ware adaptation // Electronic Notes in Theoretical Com-
puter Science. 2004. Vol. 97. Pp. 47-65. DOI: 10.1016/j.en-
tcs.2004.04.031

Kuhrmann M., Ternité T, Friedrich], Rausch A., Broy M.
Flexible software process lines in practice: A metamod-
el-based approach to effectively construct and manage
families of software process models // Journal of Systems
and Software. 2016. Vol. 121. Pp. 49-71. DOI: 10.1016/j.
jss.2016.07.031

Salama M., Bahsoon R. Analysing and modelling runtime
architectural stability for self-adaptive software // Journal
of Systems and Software. 2017. Vol. 133. Pp. 95-112. DOI:
10.1016/j.jss.2017.07.041

Hussein M., Nouacer R, Radermacher A. Safe adaptation
of vehicle software systems // Microprocessors and Mi-
crosystems. 2017. Vol. 52. Pp. 272-286. DOI: 10.1016/j.
micpro.2017.06.014

Bashari M., Bagheri E., Du W. Self-adaptation of service com-
positions through product line reconfiguration // Journal
of Systems and Software. 2018. Vol. 144. Pp. 84-105. DOI:
10.1016/j.jss.2018.05.069

Bartusevics A., Novickis L. Models for Implementation of
Software Configuration Management // Procedia Com-
puter Science. 2015. Vol. 43. Pp. 3-10. DOI: 10.1016/j.
procs.2014.12.002

Bajunaid N., Menascé D.A. Efficient modeling and optimiz-
ing of checkpointing in concurrent component-based soft-
ware systems // Journal of Systems and Software. 2018.
Vol. 139. Pp. 1-13. DOI: 10.1016/j.jss.2018.01.032

Behjati R, Nejati S. Architecture-level configuration of in-
dustrial control systems: Foundations for an efficient ap-
proach // Science of Computer Programming. 2018. Vol.
160. Pp. 30-47.DOI: 10.1016/j.scico.2017.10.001

Horcas J.-M., Pinto M., Fuent L. Variability models for gen-
erating efficient configurations of functional quality attri-
butes // Information and Software Technology. 2018. Vol.
95. Pp. 147-164. DOI: 10.1016/j.infsof.2017.10.018

[Moctynuaa 01.05.2018; npuHsaTa B neyatb 10.06.2018;

ony6iMKoBaHa oHsaiH 30.06.2018.

BamupoB AHTOH CTaHHMCJIABOBUY, CTY/IeHT KadeJpbl HHCTPYMEHTAJBHOTO U MPUKJIAZHOTr0 TporpaMMHoro obecrnedenusi, MUPIA - Poccuiickuii Tex-
HoJsloruyeckuil yuuBepcutetT (119454, Poccus, r. MockBa, nip. BepHazckoro, 1. 78), ORCID: http://orcid.org/0000-0002-4113-0704, antonbashir@mail.ru
Jle6eneBa Hatamusa UropeBHa, cTy/ieHT Kade/Jpbl MHCTPYMEHTAIBHOTO U IPUKJIAAHOr0 MporpaMMHoro o6ecniedeHusi, MUPIA - PoccuiicKUi TeXHOJIOTH-
yeckuil ynuBepcuret (119454, Poccus, . MockBa, np. BepHasickoro, a. 78), ORCID: http://orcid.org/0000-0003-3421-4923, natalia.i.lebedeva@yandex.ru
®eanH Muxaua AHpeeBHY, CTYAEHT KadeApbl MHCTPYMEHTAIBHOTO U IPUKJIAIHOTO IporpaMMHOro obecnedenusi, MUPIA - Poccuiickuii TexHo10-
ruveckui yuuBepcutet (119454, Poccus, r. MockBa, nip. BepHajckoro, 4. 78), ORCID: http://orcid.org/0000-0001-9398-8297, vbif.32@ya.ru

o 0

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which
permits unrestricted reuse, distribution, and reproduction in any medium provided the original work is properly cited.

CoBpeMmeHHble
MH(OPMaLMOHHbIE
TeXHonormm

n UT-o6pasoBaHue

Tom 14 N2 2 (2018)
A T

ISSN 2411-1473 sitito.cs.msu.ru

