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Keywords Abstract

Cipher; perfectly secret Perfectly-secret ciphers according to the Claude Shannon’s theory, which are considered as unbreakable,
encryption scheme; unbounded and more specifically random keystream ciphers, are discussed. An analysis of the sources mentioned in the
computing power. reference list showed that all of them come to the point that the perfect ciphers according to Claude Shan-

non’s theory are unbreakable.

The article introduces some concepts, such as: the probabilistic model of cipher; the perfect cipher, which
is secure against a plaintext recovery ciphertext-only attack; the perfect cipher, which is secure against a
key recovery ciphertext-only attack; effective plaintext or key recovery attack; ineffective plaintext or key
recovery attack; decipherable model of cipher; undecipherable model cipher. The introduced concepts
were used to clarify Shannon’s mathematical model and to prove that a statement about unbreakability of
the perfect ciphers according to the Claude Shannon’s theory, including random keystream cipher, were
wrong. The purpose of the article is to attract the attention of specialists to the problem of developing
methods for decrypting Vizhener cipher and using them in solving the problem of determining the cipher
key of a random gamming according to a ciphertext, as well as developing methods for estimating the com-
plexity and reliability of deciphering the cipher class in question.

Kiaw4yeBsble ci0Ba AHHOTanUA

[llndp; coBeplIeHHO CeKpeTHbIe B cTaTbe paccMOTpeHbl coBepleHHble MUPPLI Ha ocHOBe Mogenu K. llleHHOHa, KOTOpble CYUTAIOTCS He
cxeMbl U POBAHUSA; HEOTPAHU- JeumndpyeMbIMU My dpaMy, B YaCTHOCTH, IUPPHI C/Iy4allHOro raMMUpOBaHUA. AHAJIU3 NIpe/ICTaBIeHHbIX
YeHHas BbIYUCIUTe/IbHAA B CTaTbe UCTOYHUKOB II0Ka3aJ, YTO B HUX JleJlaeTcsl BBIBOA O HeJeluppyeMOCTH COBEPLIEHHBIX IUPPOB
MOLIIHOCTb. no K. [llenHoHy. B cTaThe BBeJieH psifi MOHATUH, TAKKX KaK: BEPOSTHOCTHOM MoJiein mudpa; mudpa, co-

BepIIEHHOr0 M0 HaMNa/leHUI0 Ha OTKPBITBIH TEKCT MpHU NepexBaTe MHPPOBAaHHOrO TEKCTA; Udpa, COBep-
IIEHHOTO0 110 HaMa/{eHUIO Ha KJII0Y [PU NepexBaTe M POBAHHOTO TeKCTa; 3¢ PpeKTUBHO aTaKku Ha OTKPbI-
TBbIH TEKCT WM KJI10Y; HeapPEeKTUBHON aTaKy Ha OTKPBITBIH TEKCT WM KJIIOY; AelndpyeMoi Moeau
mudpa; He gemndpyemoii Mmogesu mudpa. C ucrnosb3oBaHHEM BBeIeHHbIX IOHATHH yTOYHEHa MaTeMaTH-
yeckast MoZieJb K. [lleHHOHa 1 joKa3aHa OIIMGOYHOCTb YTBEPXK/IEHHUs 0 He/lelnPyeMOCTH COBEPLIEHHBIX
mrdpos 1o K. [lleHHOHY, B YacTHOCTH IIKPPOB CIy4yalHOro raMMHUpOBaHuUsl. Lle/Iblo CTaThH SABJSETCS NPHU-
BJIedeHHe BHUMAHHUs CIIeLHaICTOB K Ipo6ieMe pa3BUTHsI METOAOB JelndpoBanus mwudpa Brkenepa u
MX UCIOJIb30BAaHUs B PellleHNH 33/1a4y ONpe/iesIeHus K/lo4a udpa ciydyaifHoro raMMHUpPOBaHUs 10 K-
POBAHHOMY TEKCTY, a TaKXKe pa3paGoTKH1 METO/OB OLIeHKH TPYAO0EMKOCTH U Ha/IeXKHOCTH AellndpoBaHUs
paccMaTprBaeMoro KJacca muppos.
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Preface possibility in principle to get any information about plaintext or used

Searching of the links through the Yandex search system gives
22 mln. results on the request “perfect ciphers” and 43 mln. results
on the request «schemes perfectly secret». Some of them related to
the subject domain of information security were chosen for detailed
analysis [1-29].

The book [1: 32] contains a definition (2.3) of the concept «per-
fectly secret cipher» as follows: “An encryption scheme over a mes-
sage space M is perfectly secret if for every probability distribution
over M, every message m € M, and every ciphertext c € C for which
P(c) > 0:

p(m/c)=p(m).

(The requirement that P(c)>0 is a technical one needed to pre-
vent conditioning on a zero-probability event.)”. Such ciphers were
introduced by Claude Shannon [13], who called them perfectly secret.

Goal of research

Our strategic aim is to draw attention of the information protec-
tion specialists to questions of cryptanalysis of the random keystream
cipher (Vernam cipher) and particularly to the question of develop-
ment of the Vigenére cipher decryption techniques and use them to
determine a key of random keystream cipher from ciphertext.

Substantiation of the perfectly secret ciphers
unbreakability in the works cited

The next sources [1-11] present the results of considerations of
various encryption schemes that are secure even when the adversary
has unbounded computational power. Such schemes are called per-
fectly secret. Qualitative descriptions of the ciphers under consider-
ation are submitted below.

«In this chapter, we look at the other extreme and study encryp-
tion schemes that are provably secure even against an adversary who
has unbounded computational power. Such schemes are called per-
fectly secret» [1: 35].

«The hotline between the United States and the former Soviet
Union was (is it still active?) rumored to be encrypted with a one-time
pad. Many Soviet spy messages to agents were encrypted using one-time
pads. These messages are still secure today and will remain that way for-
ever. It doesn’'t matter how long the supercomputers work on the prob-
lem. Even after the aliens from Andromeda land with their massive
spaceships and undreamed-of computing power, they will not be able to
read the Soviet spy messages encrypted with one-time pads (unless they
can also go back in time and get the one-time pads» [2: 26 ].

«The one-time pad is the only available for us encryption tech-
nique, the absolute security of which can be proved» [3: 104].

«Theoretically, perfectly secret cipher (in other words, absolutely un-
breakable cipher) does exist, but the only such cipher is only one of the
forms of the so called “one time pad”, in which the plaintext is encrypted by
combining it with the key, which is truly random, and available for us algo-
rithm of the same length» [4: 22]. It seems like to prevent any misconcep-
tion the authors of this work [4] dropped a hint of doubt: ‘keys produced by
some truly random number generator will be high-quality with a probabil-
ity that does not differ from unity more than a negligible quantity’» [4: 23].

“Considering the issue of theoretical unbreakability of ciphers,
somebody can pay no attention to the real cost of complexity aspects
and time needed for breaking a cipher (that determines an approach to
the practical security of the cryptosystem). Pride of place goes to the
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key. For the first time ever this approach was investigated by Claude
Shannon [13]. Examining that model of cipher with which we are al-
ready well acquainted, he considered a single ciphertext-only crypt
attack. Let us follow his reasoning. As we already specified, the ulti-
mate objective of any cryptanalyst is a message text or a cryptographic
key. However, even some probabilistic information about the plaintext
can be very useful. For example, even before looking at a ciphertext the
cryptanalyst may have a priori information about message because of
his assumption only that plaintext is written in English [5: 172].

Russian cryptanalysts consider these ciphers as theoretically
unbreakable [9-11]. Authors of these sources insist that these ciphers
are undecipherable by an adversary who has unbounded computa-
tional power. Following their approach, all other ciphers, i. e. imper-
fect ciphers, must be considered as decipherable ones. As a rule, they
refer random keystream cipher as an example of perfectly secret ci-
pher [1-13].

Clarification of the concept of perfect cipher
according to the Claude Shannon’s theory

Let us introduce following terms and symbols:
M - afinite set, consisting of two or more elements, is called the plain-
text space;
K - a finite set, consisting of two or more elements, is called the key
space;
C - a finite set, consisting of two or more elements, is called the ci-
phertext space;
(fk )keK - a set (family) of injective mappings;
-1
m)=c¢

(fk )kEK - inverse mappings for (fk )kEK ,if (fk( ) , then

-1 o
Ji ©=m

fMxK—C oo .
- surjective mapping,
fimy=c f(m.k)=c
,1 _
(fk (C) =m_ decryption equation;
P(M =(p(m),me M)

over space M;

P(K) - (p(k)’ ke K) - discrete probability distribution

over space K.

fm. )= f,(m).

) - encryption equation;

- discrete probability distribution

Definition 1. Let’s consider an assembly of five introduced con-
cepts -1
(M,K,C, (f}c )keK , (ﬁ{ )keK P(M), P(K])
as a probabilistic model of the Claude Shannon’s cipher (en-
cryption scheme) or, for the sake of brevity, a cipher model.

For ease of explanation of ensuing results, we will suppose, that
foranyme M, keK,ceC

p(m)#0, p(k)#0, p(c)#0.

Probability distributions P(M), P(K) induce:

Probability distribution P(C)=(p(c),c e C) over space C;

Conditional probability distribution P(C/m)=(p(c/m),ceC)

for every M € M.
Conditional probability distribution P(K/c)=plk/c)ke K;

ceC.
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Conditional probability distribution P(C/k)=(p(c/k),c€C)
for every kek.

By way of the cipher model [M,K,C,(fk)keK,(fk l)keK, P(M),
P(K)) example, we would refer to the random keystream cipher (Ver-
nam cipher) model.

Suppose that I={1,2,..,n-1,0}, M=I", K= I", C= I". For f,(m)=c an en-
cryption equation is determined by the equality c=y,y, ...y, where
yFi+y; (mod n), je{l2,..,L}, and decryption equation is deter-
mined by the equalities y -y,+n=i (modn), j € {1,2,...,L}. A probabil-
ity distribution P(M) is established over the plaintext space M, and an
equiprobable distribution P(M) is established over the key space K.

The work [13] provides more clarity on the definition 2.3 of per-
fectly secret cipher, which was presented in [1] earlier, as follows.

Definition 2. A cipher model over a message space M and the
key space K is the perfect cipher, which is secure against a plaintext
recovery ciphertext-only attack if for established probability distribu-
tions over spaces M and K for every message m € M, and every cipher-
text c € C it is true, that:

p(m/c)=p(m).

The need for such refinement of the definition is dictated by the
fact that each cipher can have several models. For example, the simple
substitution cipher is considered as an imperfect one, although ac-
cording to the models used to encrypt a plaintext of unit length, when
“units” may be single letters, this cipher must be considered as per-
fectly secret [13].

Definition 3. An attack (mode, method) to determine a plain-
text m of cipher (i. e. solutions of the equations f(m,k) = c in the un-
known m from the space M), that requires non-zero expenditures be-
cause of time needed and complexity aspects and leads to a
meaningful effect with a non-zero probability is called an effective
attack for recovery of plaintext m of cipher model from established
ciphertext c. Otherwise the attack is called ineffective.

Note 1. A plaintext recovery attack by guessing is not called ef-
fective.

Definition 4. Cipher model is called undecipherable if the effec-
tive attacks to determine the plaintext of this cipher model from es-
tablished ciphertext do not exist. Otherwise, a cipher model is called
decipherable.

Hypothesis 1. An effective ciphertext-only attack for plaintext
recovery really does exist for imperfectly secret cipher model, which
does not perfectly secure against a plaintext recovery.

Effective attacks on ciphers are divided into two classes: keyless
when attacks allow to determine a plaintext without determining a
secret key, and attacks based on preliminary determining a secret key.
In the latter case, at first a secret key must be determined, and then a
plaintext is read through decryption of ciphertext by recovered key.

Definition 5. A cipher model over a message space M and the
key space K is the perfect cipher, which is secure against a key recov-
ery ciphertext-only attack if for established probability distributions
over spaces M and K for every message m € M, and every ciphertext c
€ Citis true, that:

p(k/c) = p(k).

Similarly to the definitions 3 and 4, a concept of effective attack
on the key space of the cipher model and a concept of undecipherable
cipher model in relation to the key recovery ciphertext-only attack
were introduced.

Hypothesis 2. An effective ciphertext-only attack for key recov-
ery really does exist for imperfectly secret cipher model, which does
not perfectly secure against a key recovery.

Vol. 14, no 3. 2018 ISSN 2411-1473 sitito.cs.msu.ru

Theorem 1. An effective plaintext recovery attack does exist for
the perfectly secret cipher model which is secure against a plaintext
recovery ciphertext-only attack, and for the imperfectly secret cipher
model, which is not perfectly secure against a key recovery cipher-
text-only attack, if the conditions of hypothesis 2 are fulfilled.

Proof. According to the hypothesis 2, an effective key recovery
attack does exist. Having a key it is possible to decrypt a ciphertext
encrypted by this key and recover a plaintext.

A random keystream cipher is a decipherable one

Let’s formulate and prove the following theorem.

Theorem 1. In the cases of non-equiprobable probability distri-
bution over the plaintext space and equiprobable probability distri-
bution over the key space, a model of random keystrean cipher is not
perfectly secret against key recovery ciphertext-only attacking.

Proof. We know that an initial condition that the equality p(k/
¢)=p(k) for any values of the keys k in the ciphertext c is equivalent to
condition that p(c/k)=p(c) for any values of k and c. The equality p(c/
k)=p(m) is obvious for the plaintext m, which was encrypted by the
key k into ciphertext c. The statement of the theorem follows straight-
ly from the condition of non-equiprobable probability distribution
over the plaintext space. Consequently, a random keystream cipher
must be considered as decipherable one.

Note 2. A key space is a subset of the key space of the random
keystream ciphers. Let’s call them weak keys. Known attacks on the
Vigenere cipher are the attacks on the random keystream cipher with
a key of smaller length. For example, an attack “favorable event meth-
od”, i.e. searching applied weak key through the use of attack «the Fa-
ther or Dean of American Cryptology William Frederick Friedmany,
can be applied [13]. Description of refining of the attack is presented

n [13]. Such an attack provides the opportunity to find cipher texts
encrypted by locally periodic stream [13]. Along with attack «William
Frederick Friedman» another attack «Friedrich Wilhelm Kasiski»
(see «Die Geheimschriften und die Dechiffrirkunst») can be applied.

Calculation of the complexity parameters for decryption of the
random keystream cipher goes beyond the scope of the present study.
Therefore, we believe that some special study should focus on that
question.

Theorem 2 (it had been formulated according to the personal
communication with Aliev F. K.). A random keystream cipher I={1,...
,/1]-1,0} is undecipherable one in the cases of equiprobable probabili-
ty distribution over the plaintext space M=[" and over key space K=I".

The proof is obvious.

The results. On the basis of the reasoning submitted, we proved
that the random keystream cipher is a decipherable one. Theoretical-
ly, it is necessary to develop appropriate methods for labor consump-
tion estimation and reliability of deciphering the random keystream
cipher.

Conclusion

Formalization of concepts of breakability and unbreakability
presented in this article, as well as statements submitted on their ba-
sis, allow us to conclude that an opinion about unbreakability of all
perfectly secret ciphers is wrong. Further developing and improving
research in the field of decryption techniques can provide a good
solution of their use to determine a key of random keystream cipher
from ciphertext.
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