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Abstract

The dark states of a group of two-level atoms in the Tavis-Cummings resonator with zero detuning are 
considered. In these states, atoms can not emit photons, despite having non-zero energy. They are sta-
ble and can serve as a controlled energy reservoir from which photons can be extracted by differentiat-
ed effects on atoms, for example, their spatial separation. Dark states are the simplest example of a 
subspace free of decoherence in the form of a photon flight, and therefore they are of interest to quan-
tum computing. It is proved that a) the dimension of the subspace of dark states of atoms is the Catalan 
numbers, b) in the RWA approximation, any dark state is a linear combination of tensor products of 
singlet-type states and the ground states of individual atoms. For the exact model, in the case of the 
same force of interaction of atoms with the field, the same decomposition is true, and only singlets 
participate in the products and the dark states can neither emit a photon nor absorb it. The proof is 
based on the method of quantization of the amplitude of states of atomic ensembles, in which the roles 
of individual atoms are interchangeable. In such an ensemble there is a possibility of micro-causality: 
the trajectory of each quantum of amplitude can be uniquely assigned.

Keywords: Tavis-Cummings Model, Dark States, Decoherence Free Subspace.

Acknowledgements: The work is supported by the Russian Foundation for Basic Research within 
the scientific project No. 18-01-00695 a.

For citation: Ozhigov Yu.I. Space of Dark States in Tavis-Cummings Model. Sovremennye informa-
cionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2019; 
15(1):13-26. DOI: 10.25559/SITITO.15.201901.13-26

© Ozhigov Yu.I., 2019



ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ИНФОРМАТИКИ, ПРИКЛАДНОЙ МАТЕМАТИКИ, 
КОМПЬЮТЕРНЫХ НАУК И КОГНИТИВНО-ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Том 15, № 1. 2019          ISSN 2411-1473          sitito.cs.msu.ru

Современные 
информационные 
технологии 
и ИТ-образование

Пространство темных состояний в модели Тависа-
Каммингса
Ю. И. Ожигов1,2

1 Московский государственный университет имени М.В. Ломоносова, г. Москва, Россия
2 «Физико-технологический институт имени К.А. Валиева» Российской академии наук, г. Мо-
сква, Россия
ozhigov@cs.msu.su

Аннотация

Рассматриваются темные состояния группы двух-уровневых атомов в резонаторе модели Тави-
са-Каммингса с нулевой расстройкой. В этих состояниях атомы не могут испустить фотона, хотя 
обладают ненулевой энергией. Они устойчивы и могут служить управляемым энергетическим 
резервуаром, из которого можно извлечь фотоны путем дифференцированного воздействия на 
атомы, например, их пространственного разделения. Темные состояния — простейший пример 
подпространства, свободного от декогерентности в виде улета фотонов, и потому представля-
ют интерес для квантовых вычислений. Доказано, что а) размерность подпространства темных 
состояний атомов есть числа Каталана, б) В RWA приближении любое темное состояние есть 
линейная комбинация тензорных произведений состояний синглетного типа и основных со-
стояний отдельных атомов. Для точной модели в случае одинаковой силы взаимодействия ато-
мов с полем справедливо то же разложение, причем в произведениях участвуют только сингле-
ты и темные состояния не могут ни испустить фотона, ни поглотить его. Доказательство 
основано на методе квантования амплитуды состояний атомных ансамблей, в которых роли 
отдельных атомов взаимозаменяемы. В таком ансамбле имеется возможность микро-причин-
ности: траекторию каждого кванта амплитуды можно определить однозначно.

Ключевые слова: модель Тависа-Каммингса, тёмное состояние, подпространство, свобод-
ное от декогерентности.
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Introduction. Background

Interaction between light and matter described by quantum elec-
trodynamics (QED) is the most fundamental force, and at the same 
time it represents the simplest illustration of the power of quantum 
theory (see [1],[2]) in its single-particle form, described by the 
Feynman diagrams. From a logical point of view, fully justified is 
quantum electrodynamics of a single charge, which can be renoral-
ized by the theorem of Bogolubov and Parasuk (see [3] and also 
[4]).
For the many body quantum electrodynamics the corresctness rests 
not on the possibility to renormalize it but rather on the adequacy 
of the transition to tensor products of spaces of states that by de-
fault is considered an absolutely legal mathematical technique for 
systems of many bodies. This method never failed in cases where 
we could calculate the amplitude of the transition to the end, and 
gave predictions surprising on the accuracy. However, extrapolation 
of this technique to systems of many non-identical charges can not 
give any verifiable result due to the exponential growth of computa-
tional complexity with increasing number of charges. This led to the 
fundamental idea of a quantum computer ([5]), as a necessary tool 
for modeling complex multi-charge systems. A quantum computer 
with computational capabilities goes beyond the scope of the com-
putational apparatus of physics accessible to us (fast quantum com-
putation — see [11]), and therefore its very idea needs a particular-
ly careful experimental verification and necessary refinements.
The results of numerous experiments conducted since the early 
1980s showed that it is hardly possible to build a quantum comput-
er straightforwardly according to the original Feynman scheme 
([5]) because of the decoherence phenomenon associated with the 
inability to isolate the quantum system from the medium (a review 
of approaches to open quantum systems, see the book [12]). There-
fore, the problem of finding quantum states that would be isolated 
from the medium by its very form and would have sufficient flexibil-
ity to map all quantum states in general (a known attempt in this 
direction is a topological quantum computer, see [13]) has come to 
the forefront.
In this paper we study the simplest states of ensembles of two level 
atoms: dark states. It is proved that such states are exclusively su-
perposition of tensor products of EPR singlets, e.g. states of the 
form 01 10− . This means that optical darkness for two-level sys-
tems is closely related to the spin description: singlet states have 
zero total spin. Such a transparent connection exists only for 
two-level systems, that is, for spin 1/2.
Another aspect of the problem of quantum computers is overcom-
ing the com — putational difficulties that inevitably arise when ap-
plying QED to the modeling of quantum computing. Quantum com-
putation itself can be performed on the states of charged particles 
(spatial positions or spins), but the main source of decoherence is 
the interaction of charges with the field. Therefore, the simulation 
of a quantum computer must take place within the framework of 
QED, which is much more com — plicated than ordinary quantum 
mechanics, in which the field is manifested only in the form of a 
scalar potential.
Of particular importance are finite-dimensional models of QED, in 
which it is possible to reduce the complex states of the electromag-
netic field to several qubits, meaning the presence or absence of a 
photon of a certain mode in a limited space — time region. The 
main of these models was proposed by Jaynes and Cummings for a 
two-level atom located in an optical Fabry-Perot resonator [6]), and 

then was gen — eralized to ensembles of such atoms (the Tav-
is-Cummings or Dick — see [7]) and on several cavities connected 
by an optical fiber (the Jaynes-Cummings-Hubbard model [14]). 
Within these models and their multiple options, it is possible to de-
scribe accu — rately the effects important for applications, for ex-
ample, DAT (dephasing assisted transport — [15],[16]). On the ba-
sis of finite-dimensional models of QED it is possible to obtain 
nonlinear optical effects, which in principle opens door to construc-
tion of elementary gates for quantum computations (see [19]).The 
JCH model serves as an important generalization of the so-called 
continuous quantum walks ([17]) and can be used for their practi-
cal implementation.
The states of atoms with nonzero energy, in which they do not emit 
a photon are called dark states. Such states are not subject to deco-
herence because, even if they have a high energy of atomic exci-
tations, they can stay in this state theoretically indefinitely for a 
long time without emitting photons. For two-level atoms, such 
states can be obtained in an optical cavity, for example, using the 
Stark-Zeeman effect ([18]).
It is possible to extract energy in the form of photons from an atom-
ic system in a dark state by spatial separation of atoms, dephasing 
noise or other differentiated impacts to atoms. In this case, the res-
onator is needed only to obtain a dark state, the atomic system can 
be then removed from the cavity, while retaining the property of 
darkness, provided that we keept atoms together (for example, us-
ing optical tweezers).
Dark states have numerous uses. In particular, their role in the orga-
nization of inter-atomic interaction was considered in the work 
[26], for the control of solid-state spins — in work [22], for the con-
trol of macroscopic quantum systems — in work [27], one of the 
effects of the dark state in the light-harvesting complex can be 
found in the work [25]. Some methods for obtaining dark states in 
quantum dots can be read in papers [20], and also in [21]. The de-
struction of dark states by a magnetic field or modulated laser po-
larization was considered in [24]. In the works [8],[21],[10] singlet 
states are also considered as states with zero total spin forming the 
core of the decreasing operator, however, there is no detailed analy-
sis of the structure of the subspace formed by them in these articles.
The purpose of this paper is an explicit description of the of dark 
states. It follows from their definition that they form a subspace, 
which we will call dark subspace. We will be interested in the struc-
ture of this subspace and its dimension. The structure of dark states 
in the systems of kudits ( d  -two systems) is most thoroughly stud-
ied in the work [23]. In particular, for two-level systems in the work 
[23] it is proved that the dark states are precisely the stationary 
points of the tensor product of the groups SU ( )2 . These stationary 
points are called in this work ’’singlet states”, since two-atom sin-
glets of the EPR-pair type 01 10−  are invariant for this group.
We shall prove that the dark states can be represented as a linear 
combination of products of simple singlets, that is, tensor products 
of EPR pairs. This fact justifies the term ’singlet state”, having a 
chemical origin: singlet states of electron spins are pairing for at-
oms, that is, they make it possible to form a covalent bond.
We consider Tavis-Cummings model, consisting of the optical cavi-
ty — the res— onator, and a group of identical two-level atoms in-
side it. The cavity length L c c= π ω/  is equal to half the wavelength 
of a photon with a frequency ωc , which differs from the frequency 

of atomic transition ωa  by the small detuning δ ω ω δ ω= −A a A, 

. A small detuning value provides a constructive interference of the 
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electric field of the photons inside the cavity and a long retention 
time of the photons of frequency ωc

 inside the cavity.
In this case, we can write the Hamiltonian of the interaction of at-
oms and the field inside the cavity in the dipole approximation in 
the Jaynes-Tavis-Cummings form:
H a a H H a aTC A a q q i i

q

n

q q q
q

n

= + + = + ++ +

=

+ +

=
∑ ∑ ω ω σ σ σ σ, ( )( ),

1 1

g (1.1)

where +  means conjugation, a a+ ,  are field operators of creation — 
annihilation of photon,σ σq q

+ ,  are raising and lowering operators of 
q -th atom, acting on its ground 0

q( )  and excited 1
q( )  states as 

σ σq q q q q
0 0 1 0= =,  (here and below, by default, it is assumed 

that the remaining state components are acted upon by the identity 
operator). Here the force of interaction of an individual atom q  
with the field gq q a q qd E L E sin x L= =ω ε π/ , ( / )2

0
 is the distribu-

tion of the photon field intensity along the resonator, xq
 is the coor-

dinate of the atom along the axis of the cavity, V  is the effective 
cavity volume, d  is the dipole moment of an atom, ε0

 is the electric 
constant. We suppose, for simplicity, that the detuning ω ωA a−  is 
zero. The frequencies and strength of the interaction are always as-
sumed to be nonzero.
We denote the part of the interaction of the Hamiltonian of the form 

gq q q
q

n

a a( )
+ +

=

+∑ σ σ
1

 by HRW A
, and the other part of interaction 

gq q q
q

n

a a( )
+ +

=

+∑ σ σ
1

 by HnonRW A
.

In the case of weak interaction g j a� �ω 1we can leave only sum-
mands a aq q

+ +σ σ , conserving the energy, e.g. HRW A
 and the other 

two, which do not conserve the energy HnonRW A
, we can omit (rotat-

ing wave approximation RWA).
A state that can emit a photon is called a bright state. A state, which 
is not a bright will be thus dark (see, for example, [28]). A state that 
can not absorb a photon, we call transparent. A transparent dark 
state we call invisible. In other words: invisible is a state of atoms in 
the cavity, which can neither emit nor absorb a photon, e.g. the en-
semble in this state does not interact with the field.
A complete state of the system of atoms and the field has the form of 
a superposition of the basic states j j jp a gen j j p

j j
p a

p a

:
,

,

Ψ = ∑ λ , 

where the natural number j p  denotes the number of photons in the 
field, and the binary string ja  denotes the state of distinguishable 
atoms taken in a fixed order, so 0 and 1 denote the ground and excit-
ed states of the corresponding atom. Elements j j jn1 2

, , ,

 of the 
string j j j ja n= ( , , , ),

1 2


 uniquely corresponding to atoms, we call 
qubits. A complete state of the system Ψ

gen
belongs to the tensor 

product   = ⊗p a
 of the state spaces of the field and states of 

atoms. In this article, we are only interested in processes with the 
emission of at most one photon, so the main object will be the atom-
ic states having the form  Ψ =

=

−

∑λ j a
j

N

j
0

1 , 

which by default we call states, and the index a  we omit.

If we assume RWA approximation, an example of a dark two atomic 
state can be: d

1
00= , an example of a transparent t1 11= .

We introduce the notation σ σ=∑ q
q

. From the form of the interac-

tion of matter and light it follows that the operator of emission of a 
photon in the RWA approximation is the action of the operator a +σ ,  
and for the exact model — of the operator a + ++( ).σ σ  Similarly, the 
photon absorption operator for the RWA approximation is aσ + , and 
for the exact model it coincides, to within an inversion of the field 
component, with the photon emission operator: a( ).σ σ+ + There-
fore, the subspaces of dark and transparent states in the RWA ap-
proximation are the kernels of operators σ  and σ +  corresponding-
ly, and the invisible is the intersection of these sets. In the exact 
model the dark, transparent and invisible states are the same — the 
kernel of the operator σ σ+ + .
So, the properties of darkness and transparency, taken separately 
from each other, depend on the applicability of RWA approximation 
to the considered model. The states d1

and t1
 are dark and trans-

parent only if it is applicable. If we refuse from the RWA approxima-
tion, these states will lose these properties. For example, the state 
d1

 becomes bright if the Hamiltonian has the form (1.1), since 
0

1p
d  can go to a state with one photon of the form 

1

2

1 01 10
p

+( ) .

Throughout, we will identify the base state j with the string of the 
binary expansion of the natural number j.
Let us consider an example of two-qubit states in the RWA approxi-
mation. First, let the interaction force of both atoms with the field 
be the same: g g

1 2
= .  We choose as the new basis the triplet and 

singlet states of the form
 
t t t s

0 1
00 11

1

2

10 01
1

2

10 01= = = +( ) = −( ), , , .
 

From them the singlet alone is invisible, and the triplet is neither 
dark nor transparent. Now suppose that g g

1 2
↑ ,  for example, at-

oms occupy different positions in the resonator. Then the state 
g g

2 1
10 01−  (the atoms are numbered from left to right) will be 

dark, the state g g
1 2

10 01−  is transparent, and there will be no 
invisible states at all.
In the future, we consider the case of atoms with the same interac-
tion energy with the field: g g i ni = =, , , , ,1 2   the detuningω ωc a−  
between the frequencies of atoms and the cavity is assumed to be 
zero, and we will consider only RWA approximation (unless explic-
itly stated otherwise), up to the last paragraph, where we consider 
the general case.
The weight (Hamming) ν j

 of the basic state j  is the number of 
units in it. The ground state of the atoms j is called equilibrium if 
its weight is half the number of all atoms. Equilibrium states, there-
fore, are possible only for systems with an even number of atoms. 
The superposition of equilibrium basis states is called the equilibri-
um state of atoms. A more general property of atomic states is lin-
earity. The atomic state Ψ  is linear if all its basic components have 
the same weight.
We will show that the invisibility property does not depend on the 
applicability of the RWA approximation, in particular, all invisible 
states are equilibrium.

Structure of the dark subspace

Let j  be the base state of the system of n  qubits; we introduce the 
notation N n= 2  — this is the dimension of the entire quantum state 
space of the n — qubit system. We denote by 1( )j  the Hamming 
weight of this state, i.e. number of units in it; then the number of 
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zeros in it is 0 1( ) ( ).j n j= −  We define a binary relation on the basis 
states, denoted by Emission j j( , ),′ which is true if and only if ′j  is 
obtained from j  by replacing the single unit by zero. In other 
words, ′j  is obtained from j  by the action of the decreasing opera-
tor J −

on one of the atoms in the excited state. In this case 
1 1 1( ) ( ) .′ = −j j
The emission of a photon by an atomic system in a state j ,  has the 
form 0 1

p p
j j→ ′ ,  (2.1)

where Emission j j( , ).′

For a basic state ′j we call ′j — family the set of basic states ′j ,
such that Emission j j( , )′  is true. In the other words, ′j — family 
consists of basic states ′j ,  for which the transition of the form 
(2.1) is the photon emission. ′j — family we denote by ′[ ]j  and call 
the state ′j  its parent.
Note that two different families can have no more than one common 
member. Let us now consider an arbitrary atomic state 
Ψ =∑λ j

j
j .  From the definition of emission of a photon it fol-

lows that the state Ψ  is dark if and only if the system of equations 
of the form

λs
s j

=
∈ ′[ ]
∑ 0,  (2.2)

is satisfied for all ′ = −j n
0 1 2 1, , , .

 Note that it is sufficient to re-
quire that these equalities be satisfied only for ′ = −j n

0 1 2 2, , , ,

 
because the family 2 1

n −   is empty: no state can pass to the basic 
state consisting of only excited atoms when the photon is emitted.
We denote by Bk

n  the set of basic n — qubit states j ,  such that 
1( ) ,j k=  and by k

n  — the subspace spanned on Bk
n .  Then for any 

basic state ′j  its family completely belongs to B j
n
1 1( )

.′ +
 Consequently, 

every dark state is a superposition of dark states belonging to sub-
spaces k

n k n, , , , .= −0 1 1

We denote by Dk
n  the subspace k

n ,
consisting of dark states. Then D Kerk

n
k
n= ∩ ( ).σ  

We will always number the qubits from left to right, denoting by the 
symbol ∗  the missing qubit, so that, for example, instead of 0 1

1 3

 
we write 0 1∗ .

The examples of states from Dk
n  are the so called n k,( ) -singlets: 

the states obtained by the tensor product of k  samples of states of 
the form 0 1 1 0

p q p q
− , where1≤ < ≤p q n  and n k− 2  states of 

the form 0 1
q

q n, .″ ″  For n k= =4 2,  n k,( ) -singlets will be, for 

example, the following states
4 2 0 1 1 0 0 1 1 0 0011 0110 1001 1100

4 2

1

2

, ,

,

( ) = ∗ ∗ − ∗ ∗( ) ∗ ∗ − ∗ ∗( ) = − − + )
( ) = 00 1 1 0 0101 0110 1001 1010

4 2 0 1 1 0 01 10

2

3

−( ) = − − +

( ) = ∗∗ − ∗∗( ) ∗ ∗ − ∗ ∗

⊗
,

, (( ) = − − + )0011 0101 1010 1100 .

 (2.3)

These states will be linearly dependent, but any two of them are 
linearly independent and form a basis of D

2

4
,  which is easy to verify 

directly.
We note that for n k= 2  all n k,( )— singlets are invisible without 
RWA.
Theorem
 dim maxD C Ck

n
n
k

n
k( ) = −{ }−1

0, .

1  So defined distance — through the number of substitutions are more convenient than Hamming because Hamming distance between elements of Bk
n
−1  are always even.

 Any state from Dk
n  is the linear combination of n k,( )— singlets

Proof
At first we prove the point 1.
Since a state Ψ =∑λ j

j
j  is dark if and only if the system of equa-

tion (2.2) is satisfied, the belonging Ψ ∈Dk
n  is equivalent to the 

satisfaction of the system Sk
n  consisting of all equalities of the form 

(2.2) for all ′j ,  such that 1 1( ) .′ = −j k  If k n= , then dim Dk
n( ) = 0

and point 1 is satisfied; since it is sufficient to consider the case 
k n< . Then to the different ′j  will correspond the different equa-
tions from Sk

n . Since the system Sk
n  has Cn

k  variables and Cn
k−1  

equations to prove point 1 it would suffice to show that all equa-
tions from Sk

n are independent.
Any permutation of ≠  from the group Sn  acts naturally on the set 
B n={ }0 1, of all binary strings j  of length n ; the result of such ac-
tion is denoted by ≠ j . In particular, the substitution a b Sn,( )∈ acts 
as a transposition of two qubits with the numbers a  and b  of the 
given string. We will call such a transposition essential if it affected 
two qubits with the different values. Then those and only those 
transpositions that change the string on which they act will be es-
sential.
Lemma 0. For any string j B∈  and any π ∈Sn the string ≠ j  has the 
form a b a b a b js s s s, , ,( )( ) ( )− −1 1 1 1


, where all numbers 

a a a b b bs s1 2 1 2
, , , , , , , 

are different and s  equals the double 
Hamming distance between j  and ≠ j .
Proof. Let s  be minimal of such numbers that for some set of sub-
stitutions a b q sq q, , , ,( ) =1 2  the string ≠ j  has the form 
a b a b a b js s s s, , ,( )( ) ( )− −1 1 1 1


. We prove that all numbers 

a a a b b bs s1 2 1 2
, , , , , , , 

 are different. Indeed, let it be wrong and 
some qubit is affected twice. Since always a b b a, ,( ) = ( )  and the 
substitutions of the
form a b,( ) and c d,( )  for the different a b c d, , ,  commute we can 
change the places of substitutions a bq q,( )  so that two of them 
a b a bq q q q, , ,( ) ( )− −1 1

, such that b aq q− =1  bcomes ajacent. Since s  are 
minimal among the numbers of qubits a b a bq q q q, , ,− −1 1

are exactly 3 
different and we can assume that the numbers of qubits a a bq q q−1

, ,

are different. The values of these qubits in the binary string
′ = ( )( ) ( )− − − −j a b a b a b jq q q q2 2 3 3 1 1

, , ,
 we denote by a b c, , . Thanks 

to minimality of s  we have a b↑  and we can assume that 
a b= =0 1, . If c = 0 , the substitution a bq q,( )  is undue. If c =1 , then 
a b a b j a b jq q q q q q, , , ,( ) ( ) ′ = ( ) ′− − −1 1 1

 and the condition of mnimality 
is violated again. Hence, all qubits participating in the considered 
substitutions have the different numbers and their values in each 
substitution are different as well. It involves that s is double Ham-
ming distance between j  and ≠ j . Lemma 0 is proved.
We define the natural metrics on the set Bk

n
−1 as follows. The dis-

tance d j j, ′( )  between basic states j j Bk
n

, ′∈ −1
is defined as the half 

of Hamming distance between them that is by Lemma 0 is the min-
imal number of substitutions (permutations of a pair of qubits) in 
the transition from j  to ′j .1

Sequence of substitutions j j jr0 1
→ → we call correct if all pas-

sages j j i ri i→ = −+1
0 1 1, , , ,

are essential substitutions and any 
qubit is affected in it no more than once.
We fix the arbitrary j Bk

n
0 1
∈ − .

Lemma 1. Let j j j jr0 1 2
, , , ,

 be a sequence of states fromBk
n
−1 . If for 

any q r= −0 1 1, , ,
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d j j d j j d j jq q q q, , , , ,
0 1 0 1

1 1( ) = ( ) − ( ) =+ +  (2.4)

then there exists the correct sequence of substitutions of the form 
j j jr0 1
→ → , in which substitutions are determined uniquely 

and vice versa, if there exists such correct sequence then for all 
q r= −0 1 1, , ,

 the equalities (2.4) are true.

Induction on r . The basis is evident. Step. Let Lemma 1 be true for 
r −1  and prove it for r . Let at first equations (2.4) be satisfied. By 
the induction hypothesis, there exists a correct sequence P  of sub-
stitutions j jr0 1

→ −
, and by d j jq q+( ) =1

1,  the passage j jr r− →1  — 
is a substitution as well. This substitution must change zero and 
one, because otherwise we would have the contradiction with the 
condition d j j d j jr r−( ) = ( ) −1 0 0

1, , . Then, if this step violates the 
correctness, there is a qubit that participates twice in transposi-
tions from j jr0 → →

and it is affected just at the last step 
j jr r− →1 . But then we could reduce this sequence of substitutions, 

having received a contradiction with condition 
d j j d j jq q, ,

0 1 0
1( ) = ( ) −+ . Indeed, without loss of generality we can 

assume that the sequence P  moves units from qubits with num-
bers 1 2 1, , , r −  to the positions r r r, , ,+ −1 2 2

 in random order, 
on which initially standed zeroes, and the last substitution j jr r− →1  
moves the 2 2r − -th qubit either to the place r −1 , or to the place 
2 1r − . In the first case the sequence P  can be reduced to sharter 
since its result can be reached by the mobement of only r − 2 qubits. 
In the second case we can reduce the sequence j j jr0 1

→ → , be-
cause it factually replaces only r −1  units by zeroes, and by Lemma 
0 it means that d j j d j jr r−( ) = ( )1 0 0

, , , which contradicts to the con-
dition.
Let the sequence j jr0 → →

 be a correct sequence and by the 
inductive hypothesis the equalities (2.4) are true for all 
q r= −0 1 1, , ,

. The second equality will be true because j jr r− → −1  
is a substitution. If the equality d j j d j jr r−( ) = ( ) −1 0 0

1, ,  is violated 
then the passage from j0  to jr  can be fulfilled in less than r  substi-
tutions and Hamming distance between j0  and jr is less than 2r  
that contradicts to the correctness of the sequence j jr0 → →

, 
because in it each qubit is affected only once and the Hamming dis-
tance between j0  and jr  is then 2r . Lemma 1 is proved.
We define the partial order on Bk

n
−1 , putting j j

1 2
< , if and only if 

there exists the correct sequence of substitutions of the 
j j j

0 1 2
→ → → → 

. Then we can arrange all the states in Bk
n
−1  

at the nodes of the graph D , in the initial vertex of which is j0 , and 
for any vertex ′j  all vertices j  lying above ′j connected to ′j  by an 
edge satisfy the equalitiesd j j d j j, ,

0 0
1( ) = ′( ) +  and are obtained 

from ′j  by exactly one substitution. In this case, any monotonically 
increasing path on this graph will contain vertices in increasing or-
der of d j j, .

0( )  The existence and uniqueness of such a graph D  
follows from Lemma 1. We enumerate tiers of this graph beginning 
with zero tier, consisting of only j0 .
The basic states ′∈ −j Bk

n
1 , lying in the tier p , will be called the par-

ents of rank p . The rank of such a parent is equal to the total num-
ber of qubit numbers that are equal to one in j0 , and zero to ′j , that 
is, the Hamming distance between these vertices. We will denote 
the set of these qubit numbers by rem j ′( ) . The rank of the state 
j Bk

n∈  is the minimal rank of the parent ′∈ −j Bk
n

1  whose family 
contains j : ′∈ ′[ ]j j . The rank of state j Bk

n∈  is denoted by r j( ) .
Lemma 2. Let the parent ′∈ −j Bk

n
1  have rank p . Then exactly p  of 

its family members have rank p −1 , the remaining n k p− + −1  
have rank p .
Proof. We first we note that 0 1 1≤ ≤ − − +{ }p min k n k, . It follows 

from the definition of the rank of the elements Bk
n  that the mem-

bers of the family ′[ ]j  having rank p −1  are exactly the basic states 
j  obtained from ′j  by replacing zero by a unit in some qubit from 
rem j ′( ) . Then all other members of the family ′[ ]j  have rank p  
(see Figure 0). Lemma 2 is proved.
We note that, for example, for k n= , there is a unique family, whose 
parent has rank zero, and this family consists of exactly one mem-
ber, in which all the qubits have the value one. The rank of this 
member will also be zero.
We define the amplitude values λ j

0  for all j Bk
n∈ depending on the 

rank j  as follows. Let p r j= ( ) . We put

λ j
p

s

p
p

n k s

0

0

1

1

= −( )
− + −( )

=
∏

!  (2.5)

Fig. 1. ′j  — parent of rank 3, obtained from j0  by the substitutions pointed in 
the upper part of the picture. Two members of its family have ranka 3, nd three 

members have rank 2: instead of substitution of unit instead of zero in any q -th 
qubit from rem j ′( )  we can omit the substitution with q -th qubit in the 

passage j j0 → → ′


 and so obtain instead of ′j  the new parent of the rank 2 
for the member of family ′[ ]j

The correctness of this equation follows from Lemma 2, which 
guarantees the absence of zeroes in the denominator. Indeed, since 
p n k≤ − +1 the only possibility of appearance of such zeroes is the 

value s p n k= = − +1 . But the total number of such states j Bk
n∈ , 

for which p n k= − +1 , by Lemma 2 equals zero.
The equation (2.2) will not then be true for ′ =j j0 , because the sum 
of amplitude values for the members of family of rank zero by Lem-
ma 2 is ( n k n k− +( ) − +( ) =1 1 1. For the members of family of non-
zero rank p  the equation (2.2) is satisfied. Really, in view of Lemma 
2 in such a family there are exactly p  members of rank p −1 , and 
exactly n k p− + −1  of rank p . Substituting the amplitude values 
λ j

0  from (2.5) for p  and p −1we transform the equation (2.2) to 
the sum of numbers of the form

−( ) −( )

− + −( )
+ −( ) − + −( )

− + −( )

−

=

−

=
∏

1
1

1

1
1

1

1

0

1

p

s

p
p

s

p p

n k s

p n k p

n k s

! !

00

0p

∏
= .

Fulfillment of the equation (2.2) for any family of nonzero rank and 
its violation for a family of zero rank with the chosen values of vari-
ables proves that the equation (2.2) for ′ =j j0  does not depend on 
other equations of this kind. Since j Bk

n
0 1
∈ −  is arbitrary, all the 

equations in (2.2) are independent, as required.
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The point 1 of the Theorem is proved.
We note that from this point it follows that every state invisible in 
the RWA approximation is an equilibrium state. Indeed, if the state 
is dark, then 2k n″ , because otherwise the dimension of the dark 
subspace is zero. On the other hand, if the state is transparent, then 
when zeros are replaced by ones and vice versa, it becomes dark, 
and we have 2k n> , whence n k= 2 .

Fig. 2. Structure of the singlet state. The tensor product includes all pairs of 
qubits connected by any arc, so that the values of the qubits are selected either as 

shown in the figure or in the opposite way. The sign of the pair is positive, if 
1precedes 0 (as indicated in the figure), and negative otherwise

We now prove item 2. Any n k,( ) -singlet can be represented, up to 
a permutation of qubits, in the following non-normalized form, 
where the factors of the form 0  are omitted (the number of such 
factors is n k− 2 ):
 = ∗ ∗∗ ∗ − ∗ ∗∗ ∗( ) ∗ ∗∗ ∗−∗ ∗∗ ∗( )

∗ ∗ ∗ ∗−∗ ∗ ∗ ∗(
1 0 0 1 1 0 0 1

10 01

       

    ))

 (2.6)

which is schematically depicted in Figure 1.
The linear span of the set A  is denoted by L A( ) , the orthogonal 
complement to the subspace L is denoted by L⊥ , the cardinality of 
an arbitrary set A  is denoted by A .
Let p q,  be a pair of numbers of qubits, p q↑ . Consider the two 
qubit space l p q,( ) , generated by the qubits with numbers p  and 
q , and introduce the following notation for singlet and triplet states 
in this space:
s t t tp q p q p q p q p q p q p q p q p q p q, , , ,

, , , .= − = + = =−
0 1 1 0 0 1 1 0 0 0 1 1

0 1 1  (2.7)

The first is a singlet, the other three are triplet states. These states 
form an orthogonal basis in l p q,( ) .
Consider an arbitrary state Ψ ∈ ( )L Bk

n and let p q,( ) Ψ  denote 
the state obtained from Ψ by permuting the qubits p  and q . We 
introduce the antisymmetrization procedure for the state Ψ — by 
the equality
An p qp q, , .Ψ Ψ Ψ= −( )

We note that if Ψ  was dark then Anp q, Ψ  will be dark as well for 
all p q, .
By r p q,( )  we denote the set of basic states r  of the set of all at-
oms but two: p  and q . We denote by Lp q, the subspace k

n , con-
sisting of states of the form s Rp q, ⊗ , where R L r p q∈ ( )( ), . 
These subspaces in general case are not orthogonal for the different 
pairs p q, .2

Lemma 3.
For p q↑  and Ψ ∈Lp q,  the following equalities take place: 
Im An Lp q p q, ,( ) = , Ker An L Anp q p q p q, , ,( ) = =⊥ Ψ Ψ2 .
Proof. By the definition, antisymmetrization on p q,  always gives a 
state belonging to Lp q, . We have: Lp q,

⊥ consists of the states of the 
form
t t tp q p q p q, , ,

,
0 0 1 1 1 1ψ ψ ψ+ + − −

2  It is easy to show that dot product of two states from Dn
n

2  which are tensor products of EPR-singlets is always some degree of two.

where ψ s L p q∈ ( ),  for s∈ −{ }0 1 1, , . The application of anti-
symmetrization to such states gives zero. Antisymmetrization ap-
plied to the states from Lp q, , gives their doubling. If 
Φ ∈ ( )Ker Anp q, , then, since, according to what has been proved, 

the orthogonal component of the state vanishes by antisymmetriza-
tion, and the straight component — doubles, we have Φ ∈( )⊥Lp q, . 
Lemma 3 is proved.
We introduce the projector p q, on the subspace Lp q,  in a natural 

way:
p q p q

k r p q
p qs k s k

, ,

,

,
= ⊗ ⊗

∈ ( )
∑1

2
. (2.8)

Lemma 3 can then be written in an equivalent form as the following 
Corollary:
Corollary.
Anp q p q, ,

= 2 .

A state D D kk
n∈ >, 0  we call singular if it is orthogonal to all 

n k,( )— singlets.
To prove part 2 of the theorem, it suffices to show that the singular 
state must be zero. For this we need a number of additional facts 
concerning the subspace Dk

n  of the dark states.
Lemma 4.
For k > 0  D L Lk

n
p q

p q

⊂










≠
,

.

Proof.
In this Lemma it is necessary to represent any dark state in the form 
of a sum of states, in each of which a certain two-qubit singlet pres-
ents as a tensor factor. The difficulty here is that singlets are not 
orthogonal, and two such states may overlap. Therefore, in order to 
prove this Lemma, we need to consider in more detail the trajecto-
ries of individual small portions of the amplitude before they are 
completely calcelled by virtual emission of a photon.
The action of the group Sn  on qubits as their transpositions can be 
naturally extended to the operators on the whole space of quantum 
states  , namely: on the basic states of atoms the transposition 
aη∈Sn  acts straightforwardly to the atomic component and leaves 
the field component unchanged and
 η λ λ ηj j p j j ap

jp j
a

jp j

j j j j, ,
, ,

∑ ∑= . 

For the Hamiltonian aH , acting on the whole space of states   we 
denote by GH  the subgroup Sn , consisting of all transpositions τ  of 
atomic qubits, such that H ,τ[ ] = 0 . Let A n⊆ −{ }0 1 2 1, , ,

be sub-
set of basic states of n — qubit atomic system. Its linear span L A( )
we call connected with respect to H , if for all two states i j A, ∈  
there exists the transposition of qubits τ ∈GH , such that τ i j( ) = . 
In this case for any basic state of photons j p  the subspace 
j L Ap ⊗ ( )we call connected with respect to H  as well. The state 
Ψ ≠ 0  of n — qubit system we call connected with respect to H , if 

it belongs to a connected subspace with respect to H ; in this case 
the state of the whole system of the field and atoms of the form 
j p ⊗ Ψ  we call connected with respect to H  as well.

Proposition.
If Ψ =∑λ j

j
j  is connected with respect to H , then any two col-

umns of the



20 ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ИНФОРМАТИКИ, ПРИКЛАДНОЙ МАТЕМАТИКИ,  
КОМПЬЮТЕРНЫХ НАУК И КОГНИТИВНО-ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ Ю. И. Ожигов

Том 15, № 1. 2019          ISSN 2411-1473          sitito.cs.msu.ru

Современные 
информационные 
технологии 
и ИТ-образование

matrix H  with numbers J j j J j jp p1 1 2 2
= ( ) = ( ), , ,  and with arbi-

trary equal field component j p , such that λ j1  and λ j 2  are nonzero, 
differ from each other only by permuting the elements.
Indeed, for such basic states j1  and j2 , according to the definition of 
the H -connection, there exists τ ∈GH , such that j j

2 1
= ( )τ . Col-

umns with numbers J J
1 2
,  consist of the amplitudes of the states 

H J1 and H J 2 , respectively. From the commutation condition, 
we have τ τH J H J H J

1 1 2
= = , and this just means that the col-

umn J 2  is obtained from the column J1  by permuting elements 
induced by τ . The Proposition is proved.
Example. We consider Tavis-Cummings Hamiltonian HTC

RW A  with 
zero detuning for n  atoms interacting identically with the field. 
Then G SH n= that can be verified straightforwardly: for the ran-
dom transposition τ = ( )p q,  of two atomic qubits and a basic state 
of the whole system atoms and field J j jp=  the coinsidence of 
states τH J and H Jτ  follows from the equality of forces of in-
teraction between atoms and field. It means that any transposition 
of atomic qubits commutes with Hamiltonian. Let k k

n
a p, be the lin-

ear span of such basic states, in which atomic parts have energy 
kaω  (contain ka  unitsa), and photonic part is a kp ph

, where 

k ka p,  are natural numbers. Then w k k
n
a p,

will be connected with 
respect to HTC

RW A .
Our goal is to show that if the state Ψ of the whole system of atoms 
and field is connected with respect to the Hamiltonian H , then the 
amplitudes of all the basis states in Ψ  can be broken up into small 
portions — amplitude quanta, so that for each quantum its trajecto-
ry will be uniquely determined under the action of the Hamiltonian 
H  on a small time interval, in particular, it will be uniquely deter-
mined, with which exactly other quantum of amplitude it will cancel 
when summing the amplitudes to obtain the subsequent state in 
unitary evolution exp H−( )i t  .
Let Ψ = ⊗∑j jp j

j
λ  be an arbitrary connected with respect to 

H  state of the whole system. In what follows we will use the nota-
tions i j, and b for designation of basic states of the whole sys-
tem of atoms and field, if the opposite is not written directly.
We introduce the important concept of an amplitude quantum as a 
simple formalization of the transformation of a small portion of the 
amplitude in evolution on a small time interval when passing be-
tween different basis states. 
 Let T i i= + − + −{ }1 1, , , be a set of 4 elements, called amplitude 
types: real positive, real negative, and analogous imaginary. The 
product of types is determined in a natural way: as a product of 
numbers. A quantum of amplitude of the size e > 0 is a train of the 
form
κ ε= ( ), , , , ,id b b t tin fin in fin  (2.9)

where b bin fin,  are two different basic states of the system of at-
oms and photons, id  is a unique identification number that distin-
guishes this quantum among all others,t t Tin fin, ∈ . Transition of the 
form b bin fin→  is called a state transition, t tin fin→  — a type 
transition. Let’s choose the identification numbers so that if they 
coincide, all other attributes of the quantum also coincide, that is, 
the identification number uniquely determines the quantum of am-
plitude. There must be an infinite number of quanta with any set of 
attributes, except for the identification number. Thus, we will iden-
tify the amplitude quantum with its identification number, without 
further specifying this. We introduce the notation:
t t t t s b s bin in fin fin in in fin finκ κ κ κ( ) = ( ) = ( ) = ( ) =, , ,

Transitions of states and types of amplitude quanta actually indi-
cate how this state should change over time, and their choice de-
pends on the choice of the Hamiltonian; the quantum size of the 
amplitude indicates the accuracy of the discrete approximation of 
the action of the Hamiltonian using amplitude quanta.
The set θ  of amplitude quanta of the size ε  is called quantization of 
the amplitude if the following condition is fulfilled:
Q. In the set θ  there is no such amplitude quanta κ1  and κ2 , that 
their state transitions are the same, t tin inκ κ

1 2( ) = ( )  and wherein 
t tfin finκ κ

1 2( ) = − ( ) , and also there are no such quanta of amplitude 
κ1  and κ2 , that s sin inκ κ

1 2( ) = ( )  andt tin inκ κ
1 2( ) = − ( ) .

The condition Q means that in the transition described by the sym-
bol " "→  the final value of the amplitude quantum can not be can-
celled with the final value of a similar amplitude quantum.
We introduce the notation θ κ κj s jin( ) = ( ) ={ }: . If j i,  are ba-
sic states, t t Ti j, ∈  are types, θ  is quantization of the amplitude, we 
introduce the notation
K i j t t j t t t t s ii j in j fin i finθ κ θ κ κ κ, , , , , ,( ) = ∈ ( ) ( ) = ( ) = ( ) ={ } .
For any complex z , we define its relation to the type t T∈  in the 
natural way: z z

t[ ] = ( )Re , if t = +1  and Re z( ) > 0 , or t = −1  and 
Re z( ) < 0 ; z z

t[ ] = ( )Im , if t i= +  and Im z( ) > 0  , or t i= −  and 
Im z( ) < 0 ; z

t[ ] = 0 in all other cases.
We call θ — shift of the state Ψ  the state θ µΨ =∑ i

i
i , where 

for every basic i
µ θ ε κ

κ θ κ
i fin

s i
i t

fin

= = ( )
∈ ( )=
∑Ψ

:

. (2.10)

Quantization of amplitude θ  actually specifies the transition 
Ψ Ψ→ θ .

We fix the dimension dim ( )  of the state space, and we will make 
estimates (from above) of the positive quantities: the time and size 
of the quantum of amplitude to within an order of magnitude, as-
suming all the constants to depend only on independent constants: 
dim ( ) and on the minimum and maximum absolute values of the 
elements of the Hamiltonian H . In this case, the term strict order 
will mean an estimate from above as well as from below by positive 
numbers that depend only on independent constants.
We show that for the state Ψ  connected with respect to H  and for 
any however small ε > 0 there exists δ > 0  of strict order ε  and 
quantization of the amplitude θ  with the size of strict order ε 2  such 
that θ  approximates the state Ψ  with error ε  and the state of the 
form δH Ψ with the same error is approximated by θ -shift. Then, 
passing to the Tavis-Cummings Hamiltonian, we fix the error of our 
approximation to zero: ε → 0 , so that the overwhelming (for ε → 0
) number of amplitude quanta is cancelled with each other, giving in 
the limit the state from L Lp q

p q
,

≠













.

Lemma 4.1.
Let Ψ  be a state of the whole system of atoms and field connected 
with respect to H . Then for any number ε > 0  there exists the am-
plitude quantization θ  of the size   of the order ε 2 , the number ε1 , 
of the order ε  and the number c  of the stricked 1, such that the 
following conditions are satisfied:
for any basic state j

 1 1 1 1
κ κ κ κ

ε
∈ ∈ ∈ ∈+ − + −

∑ ∑ ∑ ∑− + −


















 − ≤

R R I I
i j Ψ  (2.11)

Where
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 R j t R j tin in+ −= ∈ ( ) ( ) = +{ } = ∈ ( ) ( ) = −{ }κ κ θ κ κ κ θ κ: , , : , ,1 1  
I j t i I j t iin in+ −= ∈ ( ) ( ) = +{ } = ∈ ( ) ( ) = −{ }κ κ θ κ κ κ θ κ: , , : ,  and
for any basic states j i,  and any types t t Tj i, ∈  the following 
inequality takes place

 1
1

κ θ

ε
∈ ( )
∑












−   ≤

K i j t t
t

i j
j

c j i j
, , ,

.Ψ H
 (2.12)

Proof. The meaning of the point 1) is that the quantization of the 
amplitude gives a good approximation of the amplitudes of the state 
Ψ ; the meaning of the point 2) is that this quantization θ  in the 

realization of transitions for all quantums of the size ε  for each 
gives an approximation with an error of the order ε  of the state 
cH Ψ  (see Lemma 4.2 Further).
Let there be given a state connected with respect to H Ψ =∑λ j

j
j

and a number ε > 0 . For j  with nonzero λ j ≠ 0  let

λ ε ε ε ε ε εj re
M

im
N

j sign sign i
j j

= ≈ + + + + + + +Ψ ( ) ( )…� ��� ��� …� ��� ���  (2.13)

where sign M sign i Nre j im j jε ε λ+ ≈  is the best approximation of the 
amplitude λ j  with precision ε ; M Nj j, are the natural numbers. 
Thus, the point 1) of the Lemma will be almost fulfilled, only with-
out determining the final states i  and finite types ti , which de-
pend on the Hamiltonian.
We approximate each element of the Hamiltonian in the same way 
as we approx— imated the amplitudes of the initial state:
i j i

R Ii j i j

H ≈ ± + + + ± + + +( ) ( )

, ,

ε ε ε ε ε ε…� ��� ��� …� ��� ���  (2.14)

where R Ii j i j, ,,  are the natural numbers; real and imaginary 
parts — with accuracy ε  each, and the signs before the real and 
imaginary parts are chosen proceeding from the fact that this ap-
proximation should be as accurate as possible for the selected ε .
Amplitudes of the resultant state H Ψ  are obtained by multiply-
ing all possible expressions (2.13) with all possible expressions 
(2.14):
λ ε ε ε εj re j im j i j i ji j sign M i sign N R i IH ≈ + ± ±( )( )

, ,
. (2.15)

Each occurrence of the expression ε 2  in the amplitudes of the resul-
tant state after the parentheses are opened on the right side of 
(2.15) will be obtained by multiplying a certain occurrence of ε  in 
the right part of (2.13) by a certain occurrence of ε  in the right part 
of (2.14). The problem is that the same occurrence of ε  in (2.13) 
corresponds not to one but several occurrences of ε 2  to the result, 
and therefore we can not associate the amplitude quanta directly 
with occurrences of ε  in (2.13).
How many occurrences of ε 2 in the amplitudes of the state H Ψ  
correspond to one occurrence of ε  in the approximation of the am-
plitude λ j j= Ψ  of the state Ψ ? This number, the multiplicity of 
the given occurrence of ε , is equal to R Ii j i j

i
, ,+( )∑ . These numbers 

can be different for an arbitrary Hamiltonian H  and states Ψ . 
However, since Ψ  is connected with respect to H , by virtue of the 
Proposition, the columns of the matrix with different numbers j  
for nonzero λ j  will differ only by permuting the elements, therefore 
the numbers R Ii j i j

i
, ,+( )∑ for different j will be the same.

3 The type of an occurrence is also defined naturally, after opening parentheses, for example, for the occurrence  − i  its type −i .

We introduce the notation ν = +( )∑ R Ii j i j
i

, , — this is the number of 

occurrences of ε  in any column of the the expansion of the matrix 
(2.14). The definition of connectivity involves that for any 
j N= −0 1 2 1, , , ,

, such that λ j ≠ 0 one of numbers 
i j i NH , , , , ,= −0 1 2 1

 is nonzero, hence for the sufficiently 
small ε  the number ν  will be nonzero as well and for the sufficient-
ly small   this number will be of the order 1 ε .
We denote by Zi j,  the set of occurences of the letter ε  in the right 
side of the expression (2.14), Z Zj i ji

= ,

. Then the number of ele-
ments in the set Z j  is ν .
We take the lesser value of amplitude quantum: = ε ν . We substi-
tute in expression (2.13) instead of each occurrence of ε  its formal 
expansion of the form ε

ν

= + + +  …
� �� ��

, having obtained a decompo-
sition of the amplitudes of the initial state into smaller numbers:

λ
ν ν ν

j re
M

j sign
j

= ≈ + + + + + + + + + + + +Ψ (        …
� �� ��

…
� �� ��

… …
� �� ��

�� ��������� ���������

…
� �� ��

…
� �� ��

)

(

+

+ + + + + + + +sign iim      
ν ν

++ + + + +… …
� �� ��

� ��������� ���������  
ν

N j

)

 (2.16)

Let W W Wj j
M N
j
j j1 2

, , , +  be the sets of occurrences of the letter   into 
the right side of the expression (2.16), marked with upper braces. 
Each of these sets has ν  elements, as in the defined above sets Z j . 
Hence we can build for each such set Ws

j  one-to-one mapping of the 
form ξ : W Zs

j
j→ . For each occurrence of ε  in (2.13) we natirally 

define its descendants — the occurrences of   in (2.16); descen-
dants for each occurrence will be ν .
To each pair of the form w ws

j
s
j, ξ ( )( ) , where w Ws

j
s
j∈ , we put in 

correspondence the state and the type transition naturally. Namely, 
the state transition will be j i→ for such i , that ξ w Zs

j
i j( )∈ , ; the 

type transition t tin fin→  is defined so that tin  is the type of the oc-
currence3 ws

j , and the type t fin  is the multiplication of the type tin  
by the type of occurrence ξ ws

j( ) . The sets Ws
j  do not intersect for 

the different pairs j s, , therefore we consider the domain of defini-
tion of the function ξ  all occurrences of   in the right side of (2.16) 
(see Figure 2).
We associate each occurrence of   in the expression (2.16) with a 
unique identifier and determine its amplitude quantum so that: a) 
the initial state and initial type of this quantum correspond to this 
occurrence; and b) the transition and types for a given quantum 
correspond to the mapping ξ  in the sense defined above. The con-
dition Q is satisfied, since there are no cancelling terms in the ex-
pression for the matrix element (2.14). Therefore, we determined 
the quantization of the amplitude.
Then the point 1 of Lemma 4.1 will be fulfilled by the initial choice of 
the partition (2.13). In view of our definition of the function ξ , the 
amplitude distribution in the θΨ state will be proportional to the 
amplitude distribution in the state cH Ψ  for any constant c > 0 . In 
fact, we are talking about the choice of the time value t c=  in the 
action of the operator tH  on the initial state. In order to determine 
the value of c  necessary for the fulfillment of the point 2, we calcu-
late the contribution of each occurrence of l ε  in the right side of 
equation a(2.15) and compare it with the deposit of the correspond-
ing letter   in θΨ .
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Fig. 3. A. Multiplication of the state vector by the matrix H . The deposit of each 
occurrence of ε  is multiplied by ε . B. θ — shift of the initial state. The size of 

amplitude quantum   has the order ε 2

We fix some type transition t tin fin→ and some state transition 
s sin fin→ . We call an occurrence of ε 2  in the result of opening pa-
rentheses in (2.15) corresponding to these transitions if 
j s i sin fin= =, , and this occurrence is obtained by the multiplica-

tion of the occurrence of ε  of the type tin  in the first multiplier of 
the right side of (2.15) by the occurrence of ε  in the second multi-
plier of the type ′t , so that t t tin fin′ = . Each of such occurrence of ε 2  
corresponds to unique quantum of amplitude of the size   from the 
amplitude quantization defined above through the function ξ , 
which has the same state anf type transitions: this quantum corre-
sponds to the occurrence of   that are mapped by the one-to-one 
correspondence ξ  into the initial occurrence of 2 . Hence the target 
value of c  we can find from the proportion ε 2

1=  c , whence, tak-
ing  = ε ν , we obtain c =1νε , that has the order 1.
Since the accuracy of the approximation of the final state by θ — 
shift coincides in order of magnitude with ε , we obtain the inequal-
ity (2.12). Lemma 4.1 is proved.
Lemma 4.1 straightforwardly gives

Corollary
In the conditions of Lemma 4.1. θΨ Ψ−cH  has the order ε .

The corollary means that we can assign to each quantum of the am-
plitude its own history, that is, to assign to it the portion of the am-
plitude in the state cH Ψ , which is in the natural sense the de-
scendant of a given quantum. In particular, we can say that two 
quanta of amplitude cancel each other when θ  shift, if their descen-
dants cancel each other.
Now we can prove Lemma 4.
Choose a number k N∈ −{ }1 2 1, , ,

 and D Dk
n∈ . We consider the 

subspace k
n

,0
, defined above. The state 0

0p k
nD ∈ 

,
 will be con-

nected with respect to Hamiltonian H = H kTC
RW A I− ω , because 

Dk
n

k
n⊂ , all states from Bk

n  are obtained from each other by per-
mutations of atomic qubits and all such permutations commute 
with Hamiltonian H  (see the example to the Proposition above).
Then H  coincides with the operator a a+ ++σ σ  on the subspace 
 = ⊗0

p k
n , e.g. the dark states from Dk

n  are the atomic parts of 
the states from the kernel of H , limited on . Since all atoms inter-
act in the same way with light, we can assume that all nonzero ele-
ments of H  are the same, and changing the time scale — that they 
are equal to one.
We apply Lemma 4 to the Hamiltonian H  and the initial state 
Ψ = ∈ ( )0

p
D Ker σ


. For the arbitrary ε > 0  we obtain the ap-

proximation of the state cH Ψ  with the accuracy of the order ε  by 
θ — shift for that amplitude quantization θ  with the quantum of 

the size   of the order ε 2  whose existence is asserted in Lemma 4.1. 
We have cH Ψ = 0 . Further in the transition 0 1

p p
j i→  we 

omit the photonic part.
The Corollary from Lemma 4.1 means that we can expand the am-
plitudes λ j j= Ψ  of the initial state into the sum of the terms 
±( )i   so that each occurrence of such a term in the expansion of the 
amplitude of any basic state j  in the state Ψ  there will corre-
spond exactly one term of the form ±( )i   in the expansion of the 
amplitude of some basis state i  to the resulting state θΨ , this 
correspondence will be one-to-one, and the transition j i→  will 
be the emission of a photon, that is, the atomic part state i  will be 
obtained from the atomic part j by replacing one unit with zero.
We combine some occurrences of   in the amplitudes of the decom-
position of the resultant state into mutually cancelling pairs: ±( )i   
corresponding to one basic state. Then the corresponding terms of 
the initial state will be EPR singlets, since the pair of initial basic 
states j  belongs to the same family, because of the Q property of 
quantization of amplitudes, they are different, and their amplitudes 
are opposite. Since the difference between θΨ  and cH Ψ = 0  (c
, of course, depends on ε ) converges to zero for ε → 0  by (2.12), 
the fraction of the cancelling quanta can be made arbitrarily close to 
unity as ε  decreases.
The sum of such pairs of states will belong to a set of the form Lp q,
, since such a cancellation means the presence of one singlet in the 
expansion of the basis states. Since there is a fixed number of basic 
states, letting ε → 0 , we get a sequence of linear combinations of 
states from Lp q,  that converges to some such combination, which is 
the desired representation of D . Lemma 4 is proved.
Let D0  be a singular state. By Lemma 4, we have

D s Dp q p q
p q

0
= ⊗

≠
∑ , ,

 (2.17)

where Dp q,  are the states of n − 2  qubits.

Each summand of this sum belongs to the subspace Lp q, . The diffi-
culty is that we can not say that Dp q,  are dark states, that is, the 
emission of a photon by atoms in any of these states can be compen-
sated by the emission of a photon by an atom whose state belongs 
to another Dp q′ ′, , where ′ ≠p p or ′ ≠q q .
We will overcome this difficulty with the help of an antisymmetriza-
tion operation. We put ′ =D An Dp q p q, , 0

. Then ′Dp q,  for any 
p q↑  will be singular, since the darkness and orthogonality of the 

singlet is preserved under permutation of atoms and subtraction.
We show that there is nonzero among all possible states ′Dp q, . In-
deed, let all such states be zero. Then, by Lemma 3, for any pair 
p q D Lp q≠ ∈ ⊥

0 ,
, and, the state D0  belongs to the orthogonal 

complement of the linear span of all Lp q, . But in this case it is zero, 
since it belongs to this linear span by virtue of (2.17).
Thus, among ′Dp q,  there is a nonzero; let it correspond to the pair 
p q= =1 2, : ′D

1 2,
. This state is singular, and it belongs to L

1 2,
, that 

is, it has the form s D
1 2 1,
⊗ . Then D1  is also a singular state of 

n − 2  qubits. Indeed, D1  is a dark one, since it was obtained by 
splitting one s

1 2,
 singlet from the dark state. If it is not singular, then 

it would have a nonzero projection onto the linear span of n k−( )2,

singlets obtained by the removing of the first two qubits from the 
main space. But then multiplying it by one singlet would also have a 
non-zero projection already on the linear span of n k,( ) singlets, 
which contradicts the singularity of ′D

1 2,
.

Thus, D1  is a singular state of n − 2  qubits. We apply the same ar-
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guments to it as to D
0

,  getting singular D2  from n − 4  qubits, 
etc. In the end, we get a singular Dk  singlet, which contradicts the 
definition of the singularity. The Theorem is proved.
Note that if in the RWA approximation the state is dark, but not in-
visible, then n k2 >  and in each component of its singlet decompo-
sition there are zero tensor factors of the form 0

j
. For an invisible 

state there are no such zero components, that is, only singlets are 
present.
So, we see that the dark states in the exact Tavis-Cummings model 
coincide with the invisible states for this model in the RWA approx-
imation. Indeed, the latter, as follows from the Theorem, are linear 
combinations of the tensor products of the EPR singlet 01 10− , 
and each such singlet itself will be dark in the exact Tavis-Cum-
mings model, as is easily seen directly, applying the Hamiltonian 
HTC  to such an EPR pair. This explains the advantage of the term 
”dark states”: it covers not only those that do not emit light, but also 
do not absorb light.
The algebraic definition of a dark state for two-level atoms is as fol-
lows: J ± =Ψ 0 , where J ±  is an increasing and decreasing opera-
tor. It is proved in the paper [23] that this is equivalent to the fulfill-
ment of the inequality U n⊗ =Ψ Ψ  for any operator U SU∈ ( )2  
(such states Ψ  in this work are called ”singlet”). Applying our 
Theorem, we find that the stationary points of the group 
U U SUn⊗ ∈ ( ), 2  are exactly linear combinations of tensor EPR-sin-
glet products, which means the equivalence of the definition of 
darkness in [23] and our definition of darkness for an exact model.
The work [23] contains a similar algebraic characteristic of the dark 
states of d  — level atoms is also given for d > 2 ; an explicit de-
scription of such states is an interesting problem.

Almost dark states

Consider the state aD = −11 00 of two identical two-level atoms 
that is not dark, but represents an example of an almost dark state. At 
low frequencies ω , this state will persist for a long time, not emitting 
a photon. Indeed, in the exact Tavis-Cummings model, the transition 
to the ground state with the emission of a photon for this state can 
occur in two ways: either the photon is emitted by an excited atom or 
it arises together with the excitation of another atom in the ground 
state. It is not difficult to see that the amplitudes of these processes 
are opposite.
This, however, does not mean that the emission of a photon is im-
possible at all. The matter is that the excited state 1  and the basic 
0  evolve differently: the phase of the excited state changes faster 

than the ground state, since ωa > 0 . Therefore, the states resulting 
from the emission or production of a photon will differ slightly in 
phase and there will be no complete cancellation of the amplitudes. 
This almost dark state differs from the singlet state: in the latter, 
both transitions are completely equal in both RWA and in the exact 
model. But if ωa  is very small compared to g 

 (the limit of strong 
interaction, opposite to RWA), then an almost dark state will be at 
rest for a long time and will not emit a photon.
The tensor product of simple EPR singlets and states of the form 
aD , and linear combinations of such states will also remain un-

changed long for small ω . Is it true that such linear combinations 
exhaust all states that have the property of almost darkness, that is, 
of arbitrarily long conservation for small ω ? This question is still 
open.

Some generalizations

First, assuming, as before, the equality of forces of interaction with 
the field of all atoms, we give up the RWA approximation, and con-
sider the case of the exact solution. The set of dark states for the 
exact Hamiltonian is Ker Ker Kerσ σ σ σ+( ) = ( )∩ ( )+ + , since σ  
lowers the Hamming weight of the basic states, and σ +  increases it. 
Given that the replacement of the zeros to ones and vice versa sub-
spaces ofKer σ( )and Ker σ +( ) are moving one to another, and sin-
glet only changes the sign, and applying to Ker σ( )and Ker σ +( )  
item 2 of the Theorem, we get that the dark state for the exact Ham-
iltonian are linear combination of 2k k,( )— singlets. These states 
will be also invisible. In particular, dark states will exist only for en-
sembles with an even number of atoms.
Now, on the contrary, we assume that the RWA approximation is 
true, but the forces of interaction of atoms with the field gq  are 
different positive real numbers.
Now dark subspace is Ker gq q

q
σ∑









 . Let s Bk

n∈  be a binary train, 

in which zeroes stand on the positions s s sk1 2
, , ,

. We introduce 
the notations r gs q

q s s sk

=
∈{ }
∏

1 2
, , ,

.

It follows from the definition of Hamiltonian and numbers rs  that 
the atomic state Ψ =∑λ j

j
j  is dark if and only if the following 

system of equations:
rs s

s j
λ

∈ ′[ ]
∑ = 0,  (4.1)

is satisfied for all ′ = −j n
0 1 2 1, , ,

, which is connected with the sys-
tem (2.2) naturally: λs

0  is a solution of (4.1) if and only if ′ =λ λs s sr
0  

is a solution of (4.1).
The point 1 of the Theorem is then satisfied because the dimension 
of the dark subspace does not depend on gq , the point 2 will be also 
true if only instead of singlet we always consider the ”distributed 
singlet”: two qubit state of the form s g g

12 1 1 2 2 1 2
0 1 1 0= − . Such a 

state is obtained from the singlet by adiabatic change of coordinates 
of atoms inside the cavity (for example, by optical tweezers), so that 
the coefficient gq  depends on the coordinate of q — th atom (see 
the first paragraph).
In this case dark states will not be transparent already when n = 2 , 
because transparent will be anti-singlet of the form 
s g g( ) = −−

12

1

2 1 2 1 1 2
0 1 1 0 . The transparency does not thus con-

nected with the stability of the state in the time in contrast with the 
darkness, which guarantees such a stability. By the same reason in 
the case of exact Hamiltonian and the different forces of interaction 
there is no dark states even for n = 2 .

Conclusion

An explicit form of the dark states of an ensemble with an even 
number of identical two-level atoms in the framework of the Tav-
is-Cummings model was studied. At the same force of interaction of 
atoms with light atomic ensembles in these states do not interact at 
all with the mode of the cavity, and therefore — theoretically — re-
main unchanged even when the ensemble of atoms is extracted 
from the resonator. Spatial separation of the dark ensemble or ther-
mal dephasing immediately leads to the emission of photons. Dark 
states can be used to protect quantum computing, as energy stor-
age, and so on.
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The dimension of the dark subspaces is equal to the Catalan num-
bers. An explicit form of their structure is established: dark states 
are linear combinations of tensor products of EPR singlet states. 
Subject to the applicability of the RWA approximation, the dark 
property is maintained at the vacuum state of the cavity field in the 
case of adiabatic dilution of atoms, in which the force of interaction 
with light becomes different. However, such ensembles will interact 
with light if the state of the field in the cavity is not vacuum.
The search for further applications of dark states and methods for 
obtaining them is a task for further research. Almost dark states, 
which are a linear combination of triplets, were also considered; 
they interact very weakly with light at small values of the excitation 
energy of atoms, which can be realized, for example, for Rydberg 
States. Classification of almost dark states as well as dark states in 
systems of d -level atoms at d > 2  represent separate problems.
In proving the key result of the paper — point 2 of the Theorem, the 
method of amplitude quanta was developed — small portions of the 
amplitude of basis states, the trajectory of which can be determined in 
advance in the course of evolution. This method assumes the passage 
to the limit, but allows us to prove the algebraic property of dark states. 
It can be of interest for studying the physics of quantum computers 
and their scalability.
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