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Abstract

In this work, a special elementary transfer matrix is constructed for generalized Ising models and Potts
models with the general form of a finite Hamiltonian with a multi-spin interaction in a space of arbi-
trary dimensionality, the Napierian logarithm of its maximum eigenvalue is equal to the free energy of
the system. In some cases, it was possible to obtain an explicit form of the eigenvector corresponding to
the largest eigenvalue of the elementary transfer matrix.

On this basis we obtained systems of nonlinear equations for the interaction coefficients of the Hamil-
tonian for finding the exact value of the free energy on a set of disorder solutions. Using the Leven-
berg-Marquardt method, the existence of nontrivial solutions of the resulting systems of equations for
plane and three-dimensional Ising models was shown. In some special cases (the 2D Ising model, the
interaction potential, including the interaction of the next nearest neighbors and quadruple interac-
tions; the 3D model with a special Hamiltonian symmetric relative to the change of all spin signs, for
which it is possible to reduce the system of equations to the system for a planar model) three parame-
ters are written in explicit form. The domain of existence of these solutions is described.
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AHHOTanUsA

B pa6oTe mocTpoeHa cnenuanbHas 3jeMeHTapHasa TpaHcdep-MaTpHLA AJs 0606IIEeHHbIX MoJesel
W3unra u MmogeJieil [loTTca ¢ 061uM B1A0M GUHUTHOrO raMU/IbTOHHAHA C MyJIbTUCIIMHOBBIM B3aUMO-
JledCTBUEM B IPOCTPAHCTBE IPOU3BOJIbHON pa3MepHOCTH, HaTypabHbIH JIorapupM MaKCUMaIbHOTO
COGCTBEHHOI0 3HAYeHUs1 KOTOPOW paBeH CBOGOJHOM 3HEPIUH CUCTEMbl. B HEKOTOPBIX CAy4asx yzia-
JIOCh IIOJIYYUTb IBHBIN BUJ] COGCTBEHHOT'0 BEKTOPA, OTBEYAIOIero Haubo iblieMy CO6CTBEHHOMY 3Ha-
YeHHUI0 3JIeMeHTApHOH TpaHcdep-MaTpurbl. Ha ocHOBe 3TOro BbIBeJeHbI CUCTEMbl HeJMHEHHBIX
ypaBHeHUH Ha K03 UIMEeHThl B3aUMOJeHCTBUA raMU/IbTOHUAHA [JJI1 HAX0XK/JeHUsA TOYHOI'0 3Have-
HUSA CBOGO/IHOM 3HEPTMU HA MHOXECTBE HeynopsijoueHHbIX pelienuit (disorder solutions). MeTogom
JleBen6epra-MapkBap/Ta I0Ka3aHO Cyl[eCTBOBAaHUE HETPUBUA/IbHBIX pellleHUH MOJyYaroluxXcs CHU-
CTeM ypaBHEHUH [l IJIOCKUX U TPeXMePHbIX Mojiesielt 3uHra. B HEKOTOPBIX 4acTHBIX ciyvasx (2D
Mo/Jesb M31Hra, NOTeHIal B3aUMO/IeiCTBHA, BKJIIOYAIOIUI B3aUMOAEHCTBHE CeyI0IUX OIMKal-
KX coceJiel ¥ YeTBepHble B3auMo/eiicTBUs; 3D Moziesib co crieliaibHbIM FAMUJIBTOHUAHOM, CUMMe-
TPUYHBIM OTHOCHUTEJIBHO IlepeMeHbl BCeX 3HAKOB CIMHOB, JJI1 KOTOPOH yJAeTcsl CBECTH CHUCTEMY
YPaBHEHUH K CUCTeMe /JIs IUIOCKOH MOJIe/IN) pellleHHs], 3aBUCHALIMe OT TpeX NapaMeTpPOB, BbIMHCAHbI
B IBHOM Bu/ie. OnrcaHa 06/1aCTh CyLeCTBOBAHUS 3THX PeLIeHUH.

KnroueBble €/10Ba: 06061eHHas Mojielb M3uHra, 06061eHHas Mogeb [1oTTca, raMU/IbTOHUAH,
MyJIbTUCIIMHOBOE B3aMMOJENCTBUE, TpaHCdep-MaTpHlia, HeynopsijodyeHHble peueHus (disorder
solutions), craTucTUYeckasi CyMMa, CBOG0/{HAsI SHEPTHUsL.

BJy1arogapHOCTH: ctaThst IOArOTOBJIEHA IPU MOA/EPKKe rpanTa Poccuiickoro doHga dpyHmaMeH-
TabHbIX UccaegoBaHui N2 18-01-00695 a «KoHeuHOMepHbIe MOJieJId KBAHTOBOH 3JIEKTPOJAUHAMHU-
K.
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Introduction (LoLy 1y L, 1o L, ~1) = (0, Ly L, ~ 1,0 L, ~1) = ... = (0,0,...,L, ) = (0,0,..,0) (1)

The search for the exact values of free energy and other physical
characteristics of various physical models attracted the attention of
scientists all over the world over many years. The most brilliant
achievement in this direction undoubtedly is the accurate solution
of the two-dimensional Ising model without an external magnetic
field, obtained by Onsager [1]. For the Ising and Potts models, few
accurate solutions are known (with an analytical expression for the
partition function or the free energy of the system) in the case when
the interaction Hamiltonian includes a magnetic field, good reviews
Wu EY. [2], Baxter [3]. Some examples are in Verhagen [4] for aniso-
tropic models on a triangular lattice and Rujan [5] for the Ising and
Potts models, respectively. These solutions belong to the class of so-
called disorder solutions (Stephenson J. [6], Welberry T R and Gal-
braith R [7], Enting .G [8]): these are solutions obtained on a cer-
tain subset in the parameter space of the physical system.

Different methods were used to obtain these solutions for different
models: methods related to crystal growth (Welberry TR and Miller
GH [9]), Markov processes (Verhagen [4], Rujan [5]), or the angular
transfer matrix method (corner transfer-matrix) (Baxter [10]). The
transfer-matrix apparatus is widely used in statistical physics [11-
12]. In most cases, the task of calculating a partition function was
compared with an equivalent one in another area, where the corre-
sponding methods made it possible to solve the problem. A local cri-
terion for obtaining such solutions is given in Jaekel and Maillard
[13]. With its help, for the anisotropic Ising and Potts model with a
magnetic field, a variety of values (disorder solutions) for the parti-
tion function for a chessboard type grid have been obtained. Publica-
tions [14-22] are also a devoted to the topics of disordered solutions.
In this paper, the author considers the generalized Ising and Potts
models with a general view of the multi-spin interaction with
boundary conditions with a shift (similar to screw ones), and the
cyclic closure of the set of all points (in natural ordering); builds
elemental transfer matrices for these models (for two-dimensional
models, matrices of similar structure were used in [23]), writes out
systems of equations for finding their maximum eigenvalues (and
the exact form of eigenvectors corresponding to these maximum
eigenvalues). The Napierian logarithm of the largest eigenvalue is
the free energy of the system with parameters that satisfy the re-
sulting system of equations. For a wide enough variety of models,
exact solutions of these systems of equations are given in explicit
form, depending on several parameters, as well as the range of per-
missible values for the solutions are obtained. In other cases, the
Levenberg-Marquardt algorithm [24] showed the existence of non-
trivial solutions of the written systems.

The high symmetry and repeatability of the components of the
found eigenvectors, which disappear when the set of exact solu-
tions is exceeded, is the reason for the search for phase transitions
in the set neighborhood.

Disorder exact solutions will certainly help in the computational
investigation of models. Comparison of the results of numerical
simulation with exact results, at least on some set, will certainly
raise the accuracy of numerical simulation.

Generalized Ising model

Analyze v - dimensional grid

7= {t =(totyyenstyslygseent, ),t, = 0,1, L, i = 1,2,...,v}, where
sty Listoyreont, )= (1 0,0 +1,00t) , i=12,v =1
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Due to such a procedure of identifying points, the grid ~; has the
size [, x L, x...x L, the total number of grid points L=_LL,...L,. Eo
ipso on the ¢, special boundary cyclic screw conditions (with a
shift) are specified. Renumber all points of the grid «; :

7, =(0,0,...,0),7, =(1,0,...,0),7, =(2,0,...,0) ...,

7, =(L,,0,..,0)=(0,1,0,...,0), 7, ., =(1,1,0,..,0) -7, =(0,....0) =7, (2)
This numbering determines the natural cyclic round of all points (in
the positive direction) and local (cyclic) ordering.

Assume thatin the each point ¢ =(z,,,...,#,) thereis a particle. The
state of a particle is determined by the spin o,, which at each point
of grid ¢ =(t,,t,,...,t,) can take two values: ¢, € X = {+1,—1}.

Let us assume that Q = { 17 } is some fixed finite subset
(of a certain form) ofpomts ., we call it the carrier (or the carrier
of the Hamlltonlan) whose lowest point Mt = (0 ,0), the old-
est ™ = (t mx t e t mx) (it does not mean all points

t',i=0,1,2... L belong to For  example,

Q {t—(tl,tz,...,tv)ef/ s =0,1, 1—1 2,.. v} - unit v

-dimensional cube).

HamiltonLijin of the model has the form

Y=Y 2 Jup 0,00, ()
=0 (P jeu

where ¢’ = (z],..,1))e ¥, Q, Q+T'{tt, S eQ, -

some nonempty subset Q J ~-are correspondmg

translation-invariant coefficients of multi—spin interaction.
Such a notation allows formula (3) to describe any Hamiltonian

with a finite support. Note that the same subset

{ I3 t o } — Q. can occur when different 7'. In this case,

when recordlng Hamlftonlan (3) in standard form

A (o)== J,. .0,0..0, 4)
(i T

we get Jog :,w,* IZZ;‘\CQ Jis.w (5)

We introduce the coefficients K,l‘,z ,,,,, e ']r',r2 ,,,,, - /(kBT), where T -
temperature, kB - Boltzmann constant. Then the statistical sum of
the model is written as

2,=F o7 @)/ ) = ' ©
> exp(Z 2 Ky 00000

(o} M2t e, ’

summation is performed over all states of spins.

We introduce an elementary transfer matrix .7 = /;r of size

correspond toa pair

’*'max ) }

Dimax 5 7 fmax , nonzero elements of which /; P
of sets {(0 1,0 115030 11 1)5(0 1150 iase
at the same time (Fig. 1).

et(l-o) o, — 0.1.2.. . 2 _ 8
p= Z 72 2% P Lt Rt RS 4 ( )
el (1-6 ) -
o z(ir’*'*kzk,r:O,l,L...,Z"‘“ ~1. )
k=0 2
005 10 s 018 205 1) = exp({ } Z} . Kip 00050, )=",,,(10)
Then .
ZL - z {(o 050 15050 -1 )?(0}1 30 250000 )}

{O‘TO AT }
NS
_ L
o =TT ) ay

{(5 150 2> ), (‘712 50 350

Imax rimax 4|

(0 1150 0540 0 20 00 1550

imax rimax
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Note that nonzero matrix elements of the matrix ./~ = ./ - will be
equal if the set (G >0 15...,0 ) includes the same subset
G(QT )= {G te Q } Wlth fIxed spin values {G te QT |3
Let

Q, =0\t i=0,1,. (12)
The eigenvector of the elementary transfer matrix ./~ = ./, cor-
responding to the highest eigenvalue F’ is sought in the form

E={b(ao,al,..,,o, 0, €X,i=0,1.i, ~1}= ,(13)
'1- o
{b,,b,>0,p= Z( 5 ) ,p=0,1,....,2%" —1}
at the same time we c9n51de~r that
(GTO O ""’Grimax’l) = b(G(QTO ))‘ (14)

that is, the components of the vector b will be the same if the set
((7 0150 1550 4, ,1) includes the same subset O'(Q ) (total
different components b(c;(Q ) will be 5[20]). Next will be
shown the feasibility of this assumptlon According to the Per-
ron-Frobenius theorem [25], the maximum eigenvalue of a matrix
with positive matrix elements (they will be positive for the transfer
matrix to some degree; when multiplying the matrix by itself, it is
easy to see the nature of the inevitable filling of the matrix with
nonzero elements) all components of the vector 5 must be positive.
In this case, we can write the system of equations for the eigenvec-
tor of the matrix ./~ -/, assuming that the components of the
eigenvector {b(a(Q )} ‘and the interaction coefficients K1 o

in the Hamiltonian are unknown: )

F =

5

(15)
-1}

{(0'10 30 1550 ina

.
Z {(0'10 0 1550 oy -1 )»(UT1 0 250 )}

max

o, €
7/max

( {I<t1 Lot })b{(GTI O 2o

O imax )}
where F' - higher eigenvalue of an elementary transfer matrix
7/~ =.7, .. Taking into account (14) let’s rewrite the system of

equations (15) as

bo(@Q)F=

/z(otg,cr.,. a1 O 10 200 ),b(G(er ),

r ~ (16)

where 0, isincluded in the set G(Q )

pimax .
0 17
"h(o(Q,))F = (17)
> e Y K. .0,0..0)bQ,)
O imax €X {2 Je,

0 equations. Evaluate F in every equaﬁloﬂ and equating
to the value F' from the first equation, we get 2' “' —1 equation.
The Fuﬁnber of coefficients of multi-spin interactions K _____ B

1 (empty set we remove) Given the fact that the various
, we get, that the solution of
the system (17) is multlparameter and itallows you to find not only
free energy
f = ln(F), but some other characteristics. Considering that free

will
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energy f does not depend on the size -, then it remains the same
as the size of the model tends to infinity. That is, we obtain free en-
ergy for a system of infinite size.

Generalized Potts model

Exactly the same reasoning and similar systems of equations are
obtained if we consider the generalized Potts model with the Ham-

iltonian .
2 >

Pum(o-)_ Z
=0 { JSQ g et }e

where 7' =(7],..,7,), Q, =Q+1) { 1,7, }cQ, - some
subset QO , {oc,, o5,,..., o } some set ofsplns ,u eX= {1 2,...,q},
at appropriate points { ‘' t ot }QQW J 0, - corre-

» s
’

(o) (18)

2wty Xul. M bl

sponding translation-invariant coefficients of interspin interaction,
. _ . - charac-
Lif o, =u,i=1

p ©) s
oO)=

otk 0,other cases

teristic function.

Such a notation allows you to describe an arbitrary Hamiltonian

with a finite support with the formula (18). We introduce
’ :J",l"‘ﬂ ,,,,, " / (kzT), where T - temperature, k,

Boltzmann’s constant. Then the statistical sum of the model is writ-

ten as

Z, =3 exp(=Ap,,(0)/ (kyT)) =
{o}
L-1
Z eXp(Z z Z Kﬂlvﬂizv---vl’l,\%!‘lvﬂz ----- #:(6))
(o} =0 (P R g et JEX cron e

where summation is performed over all states of spins.
We introduce a function

FNO 150 irsees O i) =

exp( Z Z

1.2 X
{050 42O g et

%u,1 S bl (6911 ))

HioH oo Hs

where GQJ = {GT ,T € Qri} the function %#,1 P (O'Q) de-

i+i,

pends not on all values of the spins in the points 7' ,7.'”1 yees T

SO we can write Y (GQ , )].
t r t T

L-1
Then Z, =" [ [ #(0..0 1110 )
o i=0

We introduce an elementary transfer matrix. ./~ = ./ with the
size q fmax 5 q ‘mx honzero elements of which . /p . are numbered
by pairs of sets

O i )}

{(.,,0 11000 i )(C 1130 ryene
TI’ Tl+], 2 T’*’max 1) Twl’ ,L_t+2) b T

7 =
{(GTO ’G‘L'l ’""Grimax )}

exp( z Z

1.2 3
{7 §2O o Bt et

—1 )’(G‘El O

rz’ ’ rhmax

(O-QTO )

HaoH 2 b s %‘ur' o esbs
in this connection

Imax

p=S (0. g p=012..g -1

k=0
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Imax -

F—Z(C’m DG p=0,1,2,.q" ~1

Then

Z,= Y

{UTO 7‘5T1 ’“"GrL—l}

T
{(Gro ,011 500 -1 ),(511 ,0'1_2 50050 )}

rimax r'max

7
{(GH O 250 (G 2,0 3,0 )}

7'max r'max 4]

=Tr(7")

7
{(GTL—I 00 ""’G,imax*Z )s(GTo O ""’o-,"max )

Note that nonzero matrix elements of the matrix ./~ = ./ - will be
equal if the set ((7 050 15eees ,max) contains the same subset
O'(Q )= {O‘ te Q } with flxed spm values {G te Q }

The eigenvector of the transfer matrix ./~ = ./
the higher eigenvalue F' matrix seek in the formula

, corresponding

Tmax

b:{ (0 .0 100 ; ,,)’o- GXI—] ’de} {bp’p Z(Gk_l)q }
077 7'max =0
at the same time we consider that
(Uro 01 ""‘GT’max’l) = b(G(QTO \gmax )) ’

that is, the components of the vector b will be the same, if the set
((7 0150 1550 4, ,1) contains the same subset cr(Q ) (the total
number of variots components b(o‘(Q )) will be q
ron-Frobenius theorem, for the maximum eigenvalue F all compo-
nents of the vector b must be non-negative.

In this case, we can write the system of equations for the eigenvec-
tor of the matrix./~ = ./, assuming that the components of the

. ~ p’ . . Ty
eigenvector {b(cﬁlﬂ )1 and the interaction coefficients thmfz et
in the Hamiltonian are unknown:
F (19)
{(Gfo I
X {(UTO 7611 r--aGijax -1 ),(G‘rl 967.'2 7-~~:Grimax )}

+imax
({Kﬂt1 s,Utz senny

where F higher eigenvalue of an elementary transfer matrix
_[ =.7  (we assume that all components of the eigenvector
o, eX,i=1,. } are positive, then,

T

oDl e

i
7'max

)}

{ (0'1,0'2, ey )2 ’max

r'max

by the Perron - Frobenius theorem, this vector will correspond to
the highest eigenvalue). Rewrite (19) as

blog F = > IR L CL )
o imax €
Where er =§~2T0 +7'
Or 7
g )= Y el Y
<0 O i eX { AR }QQro

2

K”’I ’/J,Z w-nu,s %;u,l 5:“,2 ""nur\ (GQ,O ))b(GQ_] )
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+ - o
o
+ - + - [T
+ - + - + - & - o
+]-[+]-[+]-]+]- -1+ 1+ -] - o
+ [* *
+ _ * *
+ * *
+ = = * *
+ + * ®
+ - * *
- 3 * *
- i * ¥
+ * *
+ [ - % *
+ + * ¥
- = * *
- + * *
+ - * *
- + * *
- - * *
Ot | O [ e

Fig. 1. The structure of the transfer matrix

7
{(O‘ro 9015050 iy -1 ),(O'rl 20 250 -

Asterisks (*) denote nonzero matrix elements. The sign “+” corresponds to the

r'max

value of spin +1, the sign “-” the value of spin -1

Next, we analyze various examples of finding free energy.
2D Ising Model

Consider a two-dimensional square grid of size L=, xL,, total
number of grid points L = [ Z,, with special boundary cyclic screw
(with a shift) conditions (1) and points renumbering (2). We as-
sume that there is a particle in each node. The state of a particle is
determined by its magnitude (spin) o,, which can take 2 values: +1
or -1. Each spin interacts with the eight nearest spins in four direc-
tions or lines. Hamiltonian model has the form

L L 1 (20)
o724 _ m__m m__m+
A (o) = E E (Jol'o! +J,0'c"" +
m=1 n=1
m m+1 m__m+l m__m+l __m+]
Jo o +Jol0 +Joo o),

1 1
+JGG o +J.o o™ o™

n+l™" n+l n+l~" n+l

+J,o'ol o

n+l

+J,6"c” "o + ho!)

where J i= 1 2 9 corresponding coefficients of interspin
1nteract10n We 1ntr0duce K J /(k T) l_l 2 9,

where T - temperature, kB - Boltzmann constant,
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H =h/ (kBT) interaction parz_;lm.eter with the external field a, = G(—l,—1,+1,1 _ 2i,K1,K2,...,K9,H)
with a coefficient. /1. Then the statistical sum of the model can be )
written as a,, = G(+1,+1,—1,1 — ZZ,KI,Kz,...,Kg,H)
L L 21 _ .
Zo, =Sexp(-7 (@) k,T)=Y exp(d. Y (Kool + D a, = G(-1,+1,-1,1-2i.K,.K,,....K,,H)
o o m=1 n=1 .
a,=G(+1,-1,-1,1-2i,K ,K,,...K,,H
Kolo)" Kool + Kool + Koo ol + o = OO AL L= 20K Ko Ko, )
K()o';"o:ilo;"” + K7G:7n6’r’n+lo:1r:l + Kgg;wrlcrr’n“a::l a7i = G(_l,_l,_l,l - 2Z,K1 ,KZ,...,K(),H)
+K,0,0),0," o) + Ho'))
a) Consider a special case when
where summation is performed over all states of spins. JS — Jé — J7 — J8 =H=0 (24)

For the model under consideration, we construct an elementary

transfer matrix ./~ = /;’r according to the formula (9) (Fig. 2).
Let
G(GT())GTI7GTL14)GTL19K13K27"')K95H): (22)
exp(chrTocrr1 + KZO'TOO'TLI_I + K36110'TL1_1 +
K0 ,0.,+K,0,.0,+K0o 0,0, +
K,0 .00, +K0 0,0, +
KQGTOGTIGTLHGTLI + HGTO )
+ - o
+ ‘ + ..
+ + - + + o
+ |-+ + +[ -]+ + + + o
B aw ﬂm
E 3 a,) a,
<+ a,) a,
+ a, a,
+ a, a,
+
+ a, a,
- b aw [l\
] a,
o a, a,
+ a, a,
+ i 4, G
il ag) a,
[— - m -
) + a,d a,
- * am am
am ﬂl
C | O] | O O

Fig. 2. Elementary transfer matrix for two-dimensional grid models with
Hamiltonian (20).

Nonzero Matrix Elements a; i=0,1,...,7, j=0,1 of elemen-
tary transfer matrix ./~ = . /;J we write in the form

(23)
a, =G(+1,+1,+1,1-2i,K ,K,,....K,,H)

a, = G(-L,+1,+1,1-2i,K,.K,,... K, H)
ay, = G(+1,~1,+1,1-2i,K,,K,,....K,, H)
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Since in this case, replacing the signs of all spins with opposite val-
ues of the Hamiltonian (20) and the function
G(0.4,0,,0 41,0 4,,K,,K, ,-s K, H') does not change, so
in this case the transfer matrix ./~ = ./ S is centrally symmetric
(Fig. 2). We will also search in a symmetric form for its own vector
corresponding to the highest eigenvalue F'.

=(,b,,1,b,,...1,b,,b,, 1,5, 1,...,5,,1)"

oL oL

(25)

where b2 > (. Then, by the Perron-Frobenius theorem, this eigen-
vector will correspond to the maximum eigenvalue of F. Denote

R =exp(K,), i=12,..9. (26)

From the form of the transfer matrix (Fig. 2), we obtain the follow-
ing system of equations for R, i =1,2,3,4,9, F, bz:
F=RRR,(R,R,+D, /(R4R9)) (@)

bF =(R,/ (RR))(1/(R,R,)+b,R,R,) (b)
F=R,/J(RR)bR, 1 R, + R, [R)~ (©
bF = (R, | (R,R))(D,Ry / R, + Ry Ry)  (d)

(27)

Solve the system (27).
We equate the right sides (27a) and (27c¢),

R1R2R3 (R4R9 + bz /(R4R9)) =
(Rz /(R1R3))(b2R4 /R9 + R9 /R4)

find from here b2 :

by =—(-1+ RR;R))R; | (R'R; — R})

(28)

(29)
We equate the right sides (27b) and (27d),
Ry /[ (RR,)(1/ (R,Ry) +b,R,Ry) =
(R / (R,R))(D,Ry | R, + R, | Ry)
Then b, :

(30)

by =(R{ —R'R})/ (R? = R;R))R;) (31)

We equate the b2 from (29) and (31):
—(-14+R'R;R))R; / (RIR; —R}) = (32)
(R32 - RlzRf) / ((R12 - R32Rf )Roz)
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Solve for R9 ,

Result
s _ (RS —RIR))R'R; — RY) 33)
(R -~ R2R})(1- RIRRY)
Substitute R92 from (33) (2.10) to b2 from (29) (2.6), result
(34)

_(=RIRIRY) | (R} —R'R})(R'R; —R})
’ (R12R32 - Rf) (Rlz - R;Rj)(l - R12R32R42)

Multiplying the equation (27a)(2.4a) times b, , the right-hand side
is equated to the right-hand side of the equation from (27b) (2.4b)

b2R1R2R3 (R4R9 + bz / (R4R9 ) = 9
(R, /(R R,))A/ (R,R,) +b,R,R,)

Solve for R, result

oo (R JR)U/(RR) +bR,R) -

> b,RR(R,R,+b,/(R,R,))

Substitute formula for R9 from (33) and for b2 from (34) into
(36), result

, R!R;-R; 37)
R2 = R2 _R2R2

3 1 4
Resul
PU-RRR [(R-RRHRR -R)  34)
P O(RIR;—-RY) \ (R’ - R{R})(1- RIR;R;)
R - RIR; —R; (39)
2 A\R2-R2R?

3 1 4 1

(40)

R, =| B —RRORR ~R)) "
(R’ = RIR})(1- R'RIRY)

or

2

_ —sinh(K, + K, +K,) [sinh(K, =K, + K,)sinh(K, + K, - K,) (41)
sinh(K, + K, - K,) \sinh(K, - K, - K,)sinh(K, + K; + K,)

2

sinh(K, + K, —K,) (*+2)
sinh(-K, + K, - K,)

9

1
_(sinh(-K, + K, — K,)sinh(K, + K, - K,) |* (43)
sinh(K, — K, — K, )sinh(-K, - K, — K,)

On the region of existence of solutions we get the system of inequa-
tion:
(Kl + K} + K4)(K1 + K} - K4)(K1 - K3 - K4)(K1 + K3 + K4) >0

(K, +K,+K,)(K,+K,-K,)<0 (44)

(K, +K,-K,)(-K,+K,-K,)>0
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(K, +K, - K)(K, + K, - K)K, - K, - K)(-K, - K, - K,) >0
It is tantamount to:
(K, + K| - |K.D( K|~ |K; + K,]) >0
K, + K,|-|K,| <0
|K,—K,|-|K,|>0
(K, - K,|-|K (K, + K, |-|K ) >0

(45)

The last inequation is a consequence of the first three. Therefore
(K| -k, + K. <0 e
K, +K,|-|K,|<0

K, - K,|-|K)|>0

Or
K| <|K; + K|
K, + K| <|K,|
K, - K[> [K)|

(47)

It is tantamount to:
K, + K| <|K,|

In this domain of formulas definition, you can still simplify the for-
mula for b2:

49
sinh(K, + K, + K,)sinh(K, - K, + K ) @
sinh(-K, - K, + K,)sinh(K, - K, - K )

(48)

Example.

K, =-15K,=-065 K, =22,
R, =0.22313016014842982, R, = 0.522045776761016,
R, =4.639942095766785 , R, =9.025013499434122,

K, =1.5347018867996893, R, =3.391150413013755,
K, =1.2211692186958323, b, =0.01485136611090205,
F =16.541741276496538 = exp(2.8058869607477605612).

It follows that, the free energy of the system

f =2.8058869607477605612.

Itis constant, and does notdependon L, >2 and L, > 2.
Consider a two-dimensional square lattice of size L =L, xL,, with
the Hamiltonian (20) this time in general form, without restric-
tions of the form (24)

The eigenvector of the elementary transfer matrix

7= /; . (Fig. 2) we find in the shape of

50
F= (L LBy Lbyibysbyubysbbysb) b 2 0,i=1,2,3. OO

2h 2h
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Then in order to make X an eigenvector, we get the system of equa-

tions

F =ay, +b,a,, (1)
bF =a,, +b,a,
F =ba,, +ba,,
bF =ba,, +ba,,
b,F =a, +b,a,
bF =ay, + bay,
b,F =bay, +b,ay,
b,F =ba,, + ba,,

where [ - eigenvalue of the transfer matrix ./ :./;
b >0,i=1,2,3,then F isthe highest (maximum) eigenvalue of
the transfer matrix 7 (and f In(F) - free energy).

The system of equations (51) is rewritten as
F=exp(H+K1+K2+K3+K4+K5+K6+K7+K8+K9)+
byexp(H + K1+ K2+ K3-K4-K5+K6—-K7—-K8—-K9)

hF =exp(-H —K1—K2+K3—K4—K5-K6—K7+K8—K9)+
byexp(-H —K1-K2+K3+K4+K5-K6+K7—-K8+K9)
F=bexp(H-Kl+K2-K3+K4+K5-K6—-K7-K8—-K9)+
byexp(H — K1+ K2-K3-K4-K5-K6+K7+K8+K9)

bF =bexp(-H +K1-K2-K3-K4-K5+K6+K7-K8+K9)+
byexp(-H + K1-K2-K3+K4+K5+K6—-K7+K8-K9)

bF =exp(H+K1-K2-K3+K4-K5-K6+K7—-K8-K9)+
byexp(H+K1-K2-K3-K4+K5-K6—-K7+K8+K9)

bF =exp(-H —K1+K2-K3-K4+K5+K6—-K7—-K8+K9)+
byexp(-H - K1+ K2—-K3+K4-K5+K6+K7+K8—-K9)

b,F =bexp(H-K1-K2+K3+K4-K5+K6-K7+K8+K9)+
byexp(H - K1-K2+K3-K4+K5+K6+K7-K8-K9)

bF =bexp(-H + K1+ K2+ K3-K4+K5-K6+K7+K8—-K9)+
byexp(—-H + K1+ K2+ K3+ K4—-K5-K6—K7-K8+K9)

(52)

System (52) of 8 equations has 14 variables. So, the solution of sys-
tem (52) in the general case depends on 6 parameters. In order to
show that system (52) has nontrivial solutions, we indicate the
solution found by the Levenberg-Marquardt method:

K, =-0.072508931144562,

K ,=0.227087903394048,

K, =-0.033524527164916,

K ,=0.309028362673801,

K=0.081977911068159,

K6 =-0.085603418100829,

K,=-0.135244289148472,

KS =0.228449686392315,

K9 =0.112019459850970,
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H =0.010568103316912,
b, =0.611722309307112,
b, =0.572612052286677,
b, =0.861858834747567

Maximum eigenvalue by Perron-Frobenius theorem
F=2.231051645841576, free energy f =0.802473064371868.

c) Let us analyze a two-dimensional square grid of size L =1, xL,,
with Hamiltonian (20) in general terms. The eigenvector of the ele-
mentary transfer matrix .7~ = /; , (Fig. 2) we will find in the form

X=(,b,b,,b,,...,.1,b,,b,,b;;b,,b;, b, ,b,,...,

ol ok

byobsbe,b),b, > 0,i=1,2,...,7.

(53)
Then in order X to be an eigenvector, we get a system of 16 equa-

tions

F=ay +b,a, 54)

bF =a,+b,a,

b,F =ba,, + b.a,,

b,F = b,a,, + bsa,,

F =b,a,, + bsa,,

bF =b,a,+b.a,,

b,F =b,a,, + b,a,,

b,F =b,a,, + b,a,,

b,F =a, +b,a,

byF =ag, +b,a;,

bF =bay, +b,ay,

b,F = bay, + bsay,

b,F'=b,a,, +bsa,,

bsF = b,as, + bsas,

bF = byag, + brag,

b,F = bya;, + ba,,
where F - eigenvalue of the transfer matrix ./~ = ./~ pr . By the
Perron-Frobenius theorem in this case ( if b > 0 i=1, 2 3)F
is the maximum eigenvalue of the transfer matrlx 7= (then

f hl(F) free energy). This system is formally w1derlihan the
general system of equations from the beginning of the article (in
this case it was necessary to restrict ourselves to a system of 8 equa-
tions), but it has nontrivial solutions (the solution was found by the
Levenberg-Marquardt method), and this example shows the possi-
bilities of expanding the search area for exact solutions:

Kl =0.019113809839761
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K2= -0.233807683866557
I(3 =-0.034832967333049
K4= -0.232974813199571
KS =0.339920870267006

K6= 0.117189864650398
K7=0.232974813199571

KS =-0.000000000000000
K9 =-0.339920870267006
H = 0.150660735316256
b = 0.899142765909877

b, =0.600000000000000 (it is specifically a priori taken so not to
coincide with the solution of point b))

b, = 0.899142765909877

b, = 1.353781209394591

b, = 0.763468696132035

by =1.753781209394591

b, = 0.763468696132035

£7=2.3973089056900103166, f =0.8743468189429043358.
Note that K, = —K., Ks = —K,, K, =0, K,, =b, = 0.6 (So
b2 was given to get a more general form of the eigenvector than in
the three-parameter case b1, b2, b3), K13 = K11

(Kiy =by, K\ =b), Kis=K,;.Le b =b, , b=b,.

The following example is similar to the previous one:

K, =0.174718289126992

K,=-0.796130400068089

K,=0.036359406404343

K ,=0.187050114181306

K=-0.191302175159284

K =-0.050020923787075

K,=-0.187050114188515

K;=0.000000000036532

K9 =0.191302175154890

H =-0.058314486090843
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b1=4.30378574-6876578

b2 =0.600000000006545

b3 =4.303785746875397
b4=5.050987834488805

b5 =0.736735440877358

b6 =5.450987834486589

b7 =0.736735440878770

by =b,,b =b,, F= 3.024765061088569,
f=1.106833422710819 free energy.

v - dimensional Ising model

Let us concretize the system of equations (17), generated by the

model with Hamiltonian (3) for the v -dimensional case, the inter-
action within the framework of a single -dimensional cube

Q={t=(t,t),....,t,):t,=0,L,i =1,2,...,v}
b(o, IF =

z exp( Z K, . 0,0..0, )b(szTl )

{7 }gQT0

(55)

o, €
rimax

Then

A

F =
}

(04,05 Oy Oy 191, Cryny 4101 41y ey 4y 4177

Oty oty oiyly oty +1°% 1y Ly ity " Ly Ly + Ly Ly gty

Iy
Z G Oy Oyt Oy~ Oty Ly 4Ly Ly g+t Ly )

(o Oy e a1t Cryny 10T Ly Ly + Ly Ly ot L ] )}

A

{og Oy Oy a9y, Crpyry +1 "“’GrLle...LV,I+L1L2...LV,2+...+L1+1}

where is the summation over & =+].
TlLy Ly 1Ly Ly g+t L1 +1

Or

5 Fo (56)

lo ttyety Oty en el g,

7007 Orp Oy 410y 1, Oy, 4100

Oty .ty #1001y Ly 1y 7T Ly Ly Ly Ly g kL

z exp( Z Kt, 40,00, ).

-+ 12 %
Otlyly by + Ly Ly g bt L4 1 {7 }ng

toy Oy O Oy Oy 4171y 1, 4l g+l o

where is the summation over all non-empty subsets

{ tl,tz,...,l‘b }C €)_ . The number of such subsets for v - di-
. 0

mensional cube will be 2° , total different components

~

{0 Oy Oy, ey 101y Oty #0141y Ceiyty +1y 41777

Oty oty g O yly oty 417l Ly 40y 70Ty Ly Ly g+ a1y Ly bt i

-( 22‘,71 —1) (we assume the very first component equal to 1 for
normalizing the eigenvector). In all system (56) has 27 42711
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equations (256+127=383 in the three-dimensional case). The sys-  Or (58)
tem of equations (56) is perfectly solved by the Levenberg-Mar- (G ey Oey Oy Oey 1 Oy 1o 1Ce 1o F =

0TI U L Ty Ly T Ly T L+l

quardt method. In order to unify the system of equations for solving
by the Levenberg-Marquardt method, to obtain only positive coeffi-
cients

A

{UTO OOy Oep 191, Oy 40141y Oty 41y 41777

o-TLL ok ’O-TLL oy 1+l ’GTLL wdy 1L ""’GTLL widyy +L Ly Ly +. L }
142 1 142 1 142 1+5 142 1T4152 2 1

and not to introduce restrictions on the field of using the Leven-
berg-Marquardt method, we introduce

Ktl 2 g Kl-(tl EaY where i(tl,l‘2,...,ts)— decimal notation

of binary 2" - digit number, that on the #” -th position, p=1..s,
s =1,...,2" has 1, and the rest are zeros. i(t1 ,tz,__.,t‘y) = 1,___,22V.

The components of the eigenvector with the highest eigenvalue are
expressed as

A

G Oepy Oy 01,y Oy +1% 1y 1y Oy ery 4170

Oty Totaln oy 11Oty oy 40 Oy Ly g+l Ly 2t Dy

exp(K,

i(o

)

70070y Orpy 1%y 1) Cepyny 101y 01y Cepyy ey 170

o, o o eisO.
ULy ly 1 O Ly Ly 1 T Ly Ly Ly TLlev..LV,]+L]L2...LV,2+..+L1)

Where
i(c.,0_,0. ,0 o o
L TR A A A A N 7175 i T N
o o )=
b 2 bR
TnLy..L, Ty . Ly 41 Tyl 1+ Thly Ly 1+ L1y Ly g +.+

l1-o l-o (I-o,)
+( 10)20+( 71)21_'_ L

2! 27+
2

1- l-o l1-o

( T+ ) 23 + ( L, ) 24 + ( ThLy+1 ) 25 +
2
(1 o O-TL|L2+1 ) 26 T+ (1 - GTLle.. Ly +01Ly Ly o+t ) 22” -1
2 2
When v =3 we have:
Q={t=(t,t,,t,):1, =0,1,i =1,2,3}
The system (55) is without changes.
Then
(57)
F=
(O s 0 Oy Oy 10y, Oy 410 1y )
>
{(Gfo 5Oy Orp Oy 191, ey, 1% 1,41 );

o =*1

Thlp+L+l T (G Oepy Orpy 191y Oy 10y +1y Oty +1 41 )}

A

{og Oy Oy a1 91, Oy, 1101y +1y Oty +0y 41 }
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Z exp( Z Ktl e

.0,0,..0,
{ 12 jcQ

=t
O-TL1L2+L1+1 1 70

~
{0030 Oy 50 1y gy 1y U0 1y Oy erys)

where summation over all non-empty subsets
{ tl,tz,...,l‘s }QQT . The number of such subsets
for a 3-dimensional cubeowill be 22 = 28 =256 , the total
number of different components
A willbe | =127
0207 Oy Orpy 1971, Oy, 1071541 } 22 - —1

(we consider the very first component equal to 1 for normalizing
the eigenvector). Total system (58) has 256 + 127 = 383 equations.
System of equations ( 58) is perfectly solved by the Levenberg-Mar-
quardt method. In order to unify the system of equations for solving
by the Levenberg-Marquardt method, to obtain only positive coeffi-

cients 7 and not to introduce
{o

{o

709712 Oy 121, Crnny #1040 )

restrictions on the field of using the Levenberg-Marquardt method,
we introduce

_ 2ol 2 K . .

Ktl,tz,m,tj _Ki(tl,tz,.“,r‘)'Where i(t',t°,...,t") - decimal notation
of binary 2% =g digit number, that on the ¢” -th position,
p= 15...,S , S :1’._‘,23 has 1, and the rest are zeros.
i(l‘l,l‘ yeensl) 21,...,22 . The components of the eigenvector
with the highest eigenvalue are expressed as

i (59)

Oz 07 ’GTLI ’GTL1+1 ’GTL1L2 ’GTLle +1 ’GTL1L2 +1 j

exp(K,

’(Ufo O Orpy Ocp 101, Oy 191541y )

where
C(-c (60)

j(Gfu’o-fl’GfL ’0-11. »1’o-fLL ’o-fLL +l’o-fl.L +0 )= 22 * ( 2 TU) 20
-0 (I-0,) (-0, )
( r,)21+ I 22+ Ly+1 23+

2 2 2
(-o,) , (-0, ) (d-0 )

2 12723 24+ LiLy+1 25 + Ly +1y 26

At the initial approximation K, =0.1 , i=1,2,...,383 , by the
Levenberg-Marquardt method, the iterative process converges to
the exact solution. The author does not write out the solution itself,
since the set of all coefficients recorded with high accuracy takes
several sheets of text.

Let Q=1{7,,7,,7,,7;, } ={l.1,,0,,t;} -

Hamiltonian of 3D model is equal to
L L (61)
A (o) = —Z Z (J,0,0, +J,0,0, +J,0,0; +

=l n=1

']120-162 + J136163 + J23620-3 + J01236061620-3

There is a one-to-one correspondence between the system of equa-
tions generated by Hamiltonian (61) and the system of equations
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for the flat model generated by Hamiltonian (20) with conditions
(24), we search for the eigenvector in the form (25), this is clear
from the correspondence of the vertices: (72,m) <> To»
(n+lmyor , (nm+) ot (n+lm+) o1,

At the same time, after reduction to a flat model, the statistical sum
and free energy will depend only on the sum J01 + J23 u J02 + J13
(and not on each variable separately).

That is, for a three-dimensional model with Hamiltonian (61) there
will be the same system of equations for the interaction coefficients
and free energy, as for the flat model in paragraphs a) and b) with
the interaction coefficients

Ji=JytJy Jy=J,+J;,

J=Jy, J,=dy, Jo=J,=J,=J,=0,
Jo=Jyp, =0

Summary

The calculation of the statistical sum of the Ising and Potts lattice
models for various values of the parameters is still of scientific in-
terest. Therefore, finding a set of disorder exact solutions is an im-
portant task. The article obtained a system of nonlinear equations
for finding the exact value of the free energy of a wide class of mod-
els with finite spin space, and obtained solutions of this system, de-
pending on several parameters, for a wide class of models. The exis-
tence domain of these solutions is obtained as well.
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