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Abstract

This study demonstrates a development of convenient formulae for obtaining the value of the free ener-
gy in the thermodynamic limit on a set of exact disorder solutions depending on four parameters for a
2D generalized Ising model in an external magnetic field with the interaction of nearest neighbors, next
nearest neighbors, all kinds of triple interactions and the four interactions for the planar model, and for
the 3D generalized Ising model in an external magnetic field with all kinds of interactions in the tetra-
hedron formed by four spins: at the origin of the coordinates and the closest to it along three coordinate
axes in the first coordinate octant. Lattice models are considered with boundary conditions with a shift
(similar to helical ones), and a cyclic closure of the set of all points (in natural ordering). For both the
planar model and the 3D model, elementary transfer matrices with non-negative matrix elements are
constructed, while the free energy in the thermodynamic limit is equal to the Napierian logarithm of the
maximum eigenvalue of the transfer matrix. This maximum eigenvalue can be found for a special kind
of eigenvector with positive components. The region of existence of these solutions is described. The
examples show the existence of nontrivial solutions of the resulting systems of equations for plane and
three-dimensional generalized Ising models. The system of equations and the value of free energy in
the thermodynamic limit will remain the same for plane and three-dimensional models with Hamilto-
nians, in which the value of the maximum in the natural ordering of the spin is replaced by the value of
the spin at almost any other point in the lattice, this significantly expands the set of models having dis-
ordered exact solutions. The high degree of symmetry and repeatability of the components of the found
eigenvectors, disappearing when we go beyond the framework of the obtained set of exact solutions,
are the reason for the search for phase transitions in the vicinity of this set of disordered solutions.
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AHHOTanusa

B pa6oTe nosyuyeHbl popMysibl /151 HAXOXK/JEHUS CBOGOHOM 3HEPrUU B TEPMOIMHAMUYECKOM Ipe/ie-
Jle Ha MHOXKeCTBe TOUHBIX HeynopsiJoueHHbIX peuieHUH (disorder solutions), 3aBUcALIUX OT YeTbIpex
napameTpoB g 2D 06061eHHON Mozenu U3KHra Bo BHEIIHEM MarHUTHOM I0JIe CO B3aUMOJeH-
CTBHEM BJIMKANILIKX cocefiel, ClelyIoLuX OJmKarnIIuxX cocefied (next nearest), BCEBO3MOXKHBIX TPOH-
HbIX B3aUMOJIEHCTBUM W B3aUMOJI€HCTBUS YETbIpEX CIUHOB JIJIsl IJIOCKOM Mozesu, U s 3D 0606-
LleHHOW MoJiesid U3MHra Bo BHEIIHEM MarHUTHOM I10JIe CO BCEBO3MOXXHBIMU B3aUMOJEHUCTBUAMU B
TeTpaszipe, 06PAa30BaHHOM YETbIPbMs CIIMHAMU: B HauaJsle KOOPAMHAT U OJIKaKIIie K HEMY 110 TpeM
KOOpPJJMHATHBIM OCAM B IIEPBOM KOOPJMHATHOM OKTaHTe. PellleTouHble MOJIeJIM PacCMaTPUBAIOTCA C
IPAHUYHBIMU YCIOBUSIMH CO C/IBUTOM (II0X0XHe Ha BUHTOBbIE), U LIUKJINYEeCKUM 3aMbIKaHUEM MHOXe-
CTBa BCEX TOYEK (B eCTeCTBEHHOM yNopsiioueHu ). B 06oux caydasx s miockoi u 3D mojesnelt no-
CTPOEHBI 3/IeMeHTapHbIe TPaHCPEeP-MaTPHULbI C HEOTPULATENbHBIMU MATPUUHBIMH 3/IEMEHTAMU, IPU
3TOM CBO6O/{Hast SHEPTHS B TEPMOJJMHAMUYECKOM Mpe/ieie paBHA HATypaJbHOMY JIOTapupMy MaKCH-
MaJIbHOT'O COGCTBEHHOI'0 3HaY€HHUsl TpaHChep-MaTPUIlbl. ITO MAaKCHMaJIbHOE COGCTBEHHOE 3HAYEHH e
yAAeTcsl HAUTH AJ151 CTellUaIbHOT0 BU/Ja COOCTBEHHOTO BEKTOPA C M0JIOXKUTENbHBIMU KOMITOHEHTAMHU.
OnucaHa 06J1aCThb CyLeCTBOBAHUA 3TUX pellleHUH. Ha nmpumepax mokasaHo cylleCTBOBaHHe HETpU-
BHAJIbHBIX PelleHUH MMOJyYalolINXCsl CHCTEM YPaBHEHUH /ISl JIOCKUX U TPeXMEPHBIX 060611 eHHbIX
Mozeneld WsuHra. CucreMa ypaBHEHUH M 3HayeHHe CBOGOJHOM SHePrMM B TEPMOAMHAMUYECKOM
npejiesie OCTAHYTCS NPEXHUMU /IS JIOCKUX U TPeXMEPHBIX MoJiesiel ¢ raMUJIbTOHMAHaMHU, B KOTO-
PBIX 3HaYeHHEe MaKCHMaJIbHOTO B €CTeCTBEHHOM YNOPAJ0YeHUH CIMHA 3aMeHeHO 3HaueHHeM CIIMHA
MpaKTUYeCKH B JII0O0U Jpyrodl TOYKe pelleTKH, 3TO 3HAYUTENbHO PaclIMpsieT MHOXKECTBO MOJesieH,
MMeIIINX HeyTops0ueHHbIe TOYHbIe pellleHUs. BbicoKast CHMMeTpHs U TOBTOPSEeMOCTb KOMIIOHEHT
HalJleHHbIX COOCTBEHHBIX BEKTOPOB, HCYe3aklas P BbIXOJe 3a PaMKH MOJIy4eHHOr0 MHOXeCTBa
TOYHBIX PellleHUH, ABJISIETCSA TOBOJOM /JI TOKCKa Ga30BbIX IEPEX0/I0B B OKPECTHOCTH 3TOI0 MHOKe-
CTBa HEYNOPs/J0YeHHbIX pelleHUH.

KiiroueBblie cj10Ba: 06061eHHas Mofie/ib M3uHra, raMUIbTOHHAH, MYJIbTUCIIHHOBOE B3auMo/ieii-
CTBUE, TpaHCdep-MaTPHIa, HEYyNOpsiI0UYeHHbIe PEllIeHHs], CTATUCTHYECKas CyMMa, CBO6OAHAsI IHep-
rusi, COGCTBEHHbIN BEKTOP, COGCTBEHHOE 3HAYEHHE.

JU11 UMTUPOBAHUSA: Xpanoe I1. B. HeynopsijoueHHble pelieHus 06061eHHoi Mogean Usunra ¢
MYJITUCIIMHOBBIM B3auMogeicTBueM // CoBpeMeHHble HHPOpPMaALMOHHbIe TexHosioruu u UT-o6pa-
3oBaHue. 2019. T. 15, Ne 2. C. 312-319. DOI: 10.25559/SITIT0.15.201902.312-319
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Introduction

The Ising model with the interaction of pairs of nearest neighbors is
one of the most studied statistical mechanics systems. Some exact
solutions (with an analytical formula for the partition function or
free energy of the system) were obtained mainly for planar models,
among these, the exact Onsager solution [1] of the two-dimensional
Ising model without an external magnetic field clearly stands out.
Publications [2-19] are devoted to the subject of disordered solu-
tions obtained on a subset in the space of parameters of a physical
system. Wu EY. [2], Baxter [3] provide good reviews on this subject.
The transfer matrix apparatus is widely used in statistical physics
[1], [10], [20-23]. This article is a logical continuation of the au-
thor’s work [23], which outlines a general methodology for finding
such disordered solutions for generalized Ising and Potts models,
here, the author explicitly obtains some such solutions for flat and
three-dimensional models of generalized Ising (in particular, for-
mulas are derived for calculating the free energy in the thermody-
namic limit for models with Hamiltonians symmetric with respect
to the change of signs of all spins), and it is also shown how us-
ing the Levenberg -Marquardt method (the Levenberg-Marquardt
algorithm) [24] it is possible to obtain a numerical solution of the
resulting systems of nonlinear equations.

In this article, we consider generalized Ising models with a general
form of multispin interaction with boundary conditions with a shift
(similar to helical ones) and cyclic closure of the set of all points (in
natural ordering) [23]. For these models, elementary transfer ma-
trices were constructed [23] with non-negative elements, systems
of equations were generated and solved, their maximum eigenval-
ues were obtained (as well as eigenvectors with positive compo-
nents corresponding to these maximum eigenvalues by the Perron
- Frobenius theorem [24]). The Napierian logarithm of the largest
eigenvalue is the free energy of the limit system with parameters
consistent with the resulting system of equations. An explicit form
of the exact solutions of these systems of equations, depending on
four parameters, was obtained for sufficiently wide classes, and
the region of existence of solutions is also described. The system of
equations and the value of free energy in the thermodynamic limit
remain the same for plane and for three-dimensional models with
Hamiltonians in which the value of the maximum in the natural
ordering of the spin is replaced by the value of the spin at almost
any other point in the lattice, this significantly expands the set of
models with disordered exact solutions (see Note to the section “3D
generalized Ising model”). The periodicity of the eigenvectors’ com-
ponents, which disappears when we go beyond the framework of
the obtained set of disordered solutions, is a cause for searching
phase transitions in the neighborhood of this set.

Now, let us consider v - dimensional lattice (we accept that v =2,3,
(a more detailed description of this lattice can be found in [23],
symbols used in article [23] are Very similar to our symbols.)

‘/v :{t:(tlatz’ s 1’ 1+15 )5t1 L i:1525---’v}’m0re_
over(tl’tZ Lz’tz+l’ v) (t1712’ 0’tz+l ""tv)‘
i=12,.,v-1,

Ly Ly =Yy L =1 L, =1) = (0, Ly ..., L, =1, L, 1) =...=(0,0,..., L,) = (0,0,...,0)-

&)
Due to this procedure for identifying points, the lattice v, has a
size of L, x L, x...x L , total number of lattice nodes L =L L,...L,.
Thus, special boundary cyclic helical (with a shift) conditions are
set on the lattice &, . We renumber all points ¢, :
7°=(0,0,...,0),7' =(1,0,...,0),7> = (2,0,...,0) ,...,
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=(L,0...,0)=(0,1,0,..,0) " =(110,..,0)
L=(0,...,0)=1". )

This numbering determines the natural cyclic traversal of all points
(in the positive direction) and the local (cyclic) ordering.
We assume that the is a particle in each node ¢ =(1,,,,...,¢,) . Par-
ticle state is determmed by spin o, which at every point of the lat-
tice £ = (tl »tzs \8,) can take two values: 0, € X ={+1,~1}.Letbe
Q= l } - some fixed f1n1te subset of points (of a
certain form) s, let us call it the carrler (or the carrier of the Ham-
1lt0nlan) the lowest pomt ofwhlch A (0 0) the highest
one '™ = (f B 2 max l max ) (this does not mean that all

points ¢ ,i=0, l 2 ’imax, belong to . For example,
Q={t= (tl, sl )€ 11, =0,1,i=1,2,...,v} -unit v -
dimensional cube).
The Hamiltonian of the model can be written as
(3)
7 (6) = z Z ']t1 2t th(jtz "'Gf
{20 e,

where ‘L'ZZ(T{, ,T )6/ , Q =Q+1',

1 .2 - arbitrary nonempt subset
{ .0, }cQ, y Py Q.

- corresponding translation-invariant coefficients of
[
multispin interaction (correspondence with the standard represen-
tation of the Hamiltonian can be found in [23]).
We introduce the coefficients Ktl,tz,...,t“ = Jtl,tz,...,ts /(kBT),

where 1’ - temperature, kB - Boltzmann constant. Then the parti-
tion function of the model can be written as following

Z, = Z exp(=7 (o) / (k;T)) =
o}

(4)

Kt' 2t th Gtz o 'Gﬁ

Tx

where the summation is performed over all spin states.
Two-Dimensional Generalized Ising Model

Let us concretize the general considerations for a two-dimensional
lattice of size L = L, x L,, total number of lattice nodes L=L/L,,
with special boundary cyclic helical (with shift) conditions (1) and
renumbering of points (2). We assume that in each node there is a
particle. The particle state is determined by the value (spin) o,
which can take 2 values: +1 or -1. Each spin interacts with the eight
nearest spins in four directions or lines,
Q={t= (ll 9t2) € Yyl = 0,1, =1,2} . The Hamiltoni-

an of the generalized two-dimensional Ising model has the form

L, L
H (0)= _z z (0,0, + Jzo';;no-;’qnﬂ +
m=l  n=1

m+1
n+l

m+l1
n+l

m m+l1 m m__m+l
+J0,.,0, +J,0,0. +J.0/0 O +

m+l __m m+l1

Gn+16n+l

m+l
n+l

m__m m+l1
+Jo0.0,.0, +Jo, +

n

m m
+J.0/00
+J,6"0" oo™ 4 o™

(5)
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where ,]i, i=1,2,...,9 - corresponding spin-spin interaction co-

efficients. Let us introduce K = J. /(kBT), i= 1,2,_”,9,

where T - temperature, kB - Boltl:zmanln constant, j — }; / (k .

interaction parameter with an external field with a coefficient /1.

Then the partition function (4) of the model i5 wriften as following

Z, = Zexp(—H (o) k,T)= Z exp(z Z (Kool +
o c m=1  n=1

m+l1 m+1 m+l

where the summation is performed over all spin states.
For the model under consideration, we construct an elementary
transfer matrix .7~ = ’/;” in the same way (Fig.1), as in [23], for-
mulas (7-10).

Let us assume that

G(0,,0,,0 4,0 1,.1,.K,K,,....Ky, h) =exp(K0 .0, +

m m m+l1 m m__m+l
+K26n Gn + K3Gn+lo-n + K4Gn o-l7+| + KSO-n O-n O-n+l + +KZGTOGTLI + K3G‘L'IO-TL1 + K4O-TOGTL1+1 + KSGTOO-TLI O-TL1+1 +
m__m m+l m__m m+1 m+l __m m+l
+K¢0,0,,0, +K,0/0 0, +Ko," 0,0, + +K60—r00-110r“ + K76r00-116r““ + Kso-le o-r'O-rLl*' +
+K Gmdm Gm+16m+1 + ho_m
9070910y Opn 2)) +K,0 0,6 ,0 ,.,+ho,)
9 0 I i ek T
(6) (7
ot = O-ILHI
=+ = + i GrLl
+ = + = + = + = | + | - | + - + - o,
T
B + aOO i * al() ° i
- | 9 a;,
= i aOZ ¢ ¢ a12 ¢ ¢
. = Aos a3
+ : L] * L] L] L] L] L] L] L] L] L] L]
T+t Ayo dyg
- * 001 L] L] all L]
= + 002 12
"~ L] a03 L] L] a13 °
+ W N ay
” L] aos L] L] als L
- il Aos A6
. _ . 00- . . al— °
i : . . . . . . . . . .
e + i °| g * °| ay
. Ays a5
- + i ° aOG ° . alé
- ay, a;
Gz'L1 B Grl Gz’0
Fig. 1. Elementary Transfer Matrix . 7~ —. /;) . for lattice models with Hamiltonian (5) In empty cells there are zero matrix elements
Nonzero matrix elements aij' ] = O, 1, ceey 7 ) l = 0,1 of elementary transfer matrix . 7= /;7 - we write down as follows
The transfer matrix eigenvector ./~ =.7 , corresponding to
, (8) the highest eigenvalue F, wejyvill seek in the form
a4y = G141 +11-20,K K, ..., K, h) X=(1,b,,1,b,,...,1,b,)", ©)
a,=G(-1,+1,+1,1-2i,K,.K,,...K,,h)
i T VT where b, > (). Thereafter, by the Perron-Frobenius theorem [25]
=G(+1,-1,+1,1-2i,K,,K,,....K,,h) s eigen : : : :
a;, = s T LARy s By, this eigenvector will correspond to a single maximum eigenvalue
. —n . .
a,=G(-1,-1,+1,1-2i,K,,K,,....K,,h) F (all matrix elemenfs . /_ for §0me N will be strictly greater
. than zero, the full .7 = filled with non-zero elements becomes
iy = G(+19+1’_151_213K1’K27"-’K9’h) clear already for .7~ ~. In fact, the Perron-Frobenius theorem is
. . . —n
as = G(-1,+1,-1,1-20,K, K, ... K, h) ﬁIESt applied (t;{th)e me;trlxl./z ). \ge c}g}lote 0
. . =€Xp ), 1=1,4,...,7, = CXp
a,, = G(+1,-1,-1,1-2i,K,,K,,... K, h) i i
a, = G(—I,—l,—Ll -2, KI’KZ""’K9’h) From the form of the elementary transfer matrix (Fig. 1) and the
eigenvector (9), we obtain the following system of equations with
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R,i=12,... 9HF.b : 3. Derive ' from the (11.8
i 9 ineeey 2
(10) R2R2R2+R2 2
F = Ay, +a10 H2 _ 5 f\7 Mg 4 RQ (14)

b,F=a, +a,
F=b,ay, +ba,
b,F =b,a, +b,a,;
F=ay,+a,

b,F =ay +ay
F=b,ay +byay
b,F' = b,a,, +b,a,,

ot HRR,RR
F =255 | R R,R,R,RRR,RR, (1.1

R4R5R7R8R9
— R3R8 + R3R4R5R7R9 (11.2)
* " HRR,RRRRR, HRRRR,
b,HR,R,R,  b,HR,RR.R, (113)

_RRRRRR9 RR.R,R.R,

(11.4)
b — b2R1R4R5R6R8 + b2R1R6R7R9
? HR,R.R,R, HR,R,R,R.R
p__ HRRR,  HRRRR, )
R,R,RR.RR, RRRRR
p o RRRRR ~ RRRR, 116
* " HRR.R.R, HR1R3R4R7R8
_ b,HR,R,R R, n b,HR,R,RRR, (11.7)
Rl RZ R4 RS R9 Rl R2 RS R7
p o DRRRRRR  bRRRRR, — (115)
? HR,R.R, HR.R.R,R,

Let us solve simultaneous equations (11). The solution scheme is
as follows:

1. Derive ' from the (11.1),
HRR,R.R
= 72 | HR1R,R,R,R.R.R,R,R, (1)
R4R5R7R8R9
and substitute it in the remaining equations (11.2)-(11.8).
2. Derive b from the (11.2),
R +R’RIR;
) = R (13)

H?R2R*R*(1+R>RR*R’R?)

and substitute it in the remaining equations (11.3)-(11.8).

O
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" R’ +R’R’R’R’R]R)

and substitute it in the remaining equations (11.3)-(11.7).
4. Derive {3¢  from the (11.5)

2 — R42R72 + R52R82R92
6 R22.R32 + R22R32R42R52R72R82R92

(15)

and substitute it in the remaining equations (11.3), (11.4), (11.6),
(11.7). 4
5. Derive R1

R4 _ (R82 + R42R52R72R92 )(R42R52 + R72R82R92)
1 (125212721682 + R42R92 )(13421272 + R52R82R92)
(16)

and substitute it in the remaining equations (11.4), (11.6), (11.7).
6. Derive R3 from the (11.6)

R4 _ (R42R72R82 + RSZRQZ)(R42R72 + R52R82R92)
’ (R82 + R42R52R72R92 )(1 + R42R52R72R82R92)
(17)

. From the (11.3)

and substitute it in the remaining equations (11.4), (11.7).
7. Derive R2 from the (11.4)

R4 _ (R42R52R82 + R72R92 )(RSZ + R42R52R72R92)
? (165212721682 + R42R92 )(]2421e721382 + R52R92)

) (18)
8. Derive R2 from the (11.7)

R = (RSR + RRIR)(R]R, + R’RR))
> (R’R +R’R’RM(1+ R R’R’R, 2R )

9. Equate R2 derived from (18) and (19). We get the
quadratic equation ay + by +c=0 20
for y = R , where

a= R2R2R2R2+R6R6R2R2—R6R2R"’R2
~R’RR°R’ —R°R’R’R’ —R’R°R’R’ +
+R’R’R°R’ +R'R°R°R

(21)
b=R'R*'-R'R'R’+R'R'—R’R'R) -
—R58R74R94 + R48R58R74R94 _ R44R54R98 +

(22)
c= R42R52R72R92 + R46R56R72R92 _ R46R52R76R92 _
_R42R56R76R92 _ R46R52R72R96 _ R42R56R72R96 +
+R’R’R R, +R°R R R

23)
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Notice, that @ = C, therefore, by the Vieta theorem, solutions of
the equations (20) }, and ), complywiththeformula y, ), = 1
, and both roots are of the same sign.

Hence 2 = (=b b’ ~4ac )/ (2a):
Ry =Ry(R,,Rs, R, Ry). (24)

Further, in the reverse order by the formulas written above, we find
R R R R H, b F .Free energy is f=In(F). we get
the exact value of free energy f = f(R,,R;,R,,R;) in the ther-
modynamic limit on a nonempty set (see examples below) of disor-
dered solutions, depending on four parameters R4 , R5 , R7 s R
Conditions for the existence of such disordered solutions:

b* —4ac>0, (—b+\/b2—4ac)/(2a)>0-

We transform these conditions to a morezconvenient form. Let us
assume that the discriminantis D = b~ —4ac (26)

9"

(25)

It can be converted to the following type

D=(-R’R’—R’R’R*+R’R’+R'R’R’ +
+RRR +RR'R’R —R’R’R,' —R’R’R'RY)
(-R’R>+R’R’R*+R’R’—R'R’R’—R'R’R’ +
+R'RR’R} +R’RR,* —R’R’R,'R,")

(R’RS —R’R’R'+R’R’—R,'R’R’>-R/'R’R’ +
R*R'R’R’—R’R’R+R’R’R'R)
(R’R+R’R’R' +R’R +R,'R’R’ +R'R’R +
R'R'R’R’+R’R’R*+R’R’R'R})

(27)

oo D=(d’ —d:)(d; - d). (28)

where

d=R’R’+R'R’R’+R 'R’R’+R 'R'R’ R9
(29

dy=R’R’+R’R’R*+R’R’R*+R’R’R R9
(30

d,=R’R;’-R'R’R’-R'R’R’+R 'R'R’ Rg

2 2p2 2 2(2 4

d,=R’R’R'—R’R’R'R*-R’R’+R’R’R,
2

D >0 (d] —d})(d: - d)zo©(\d\ \d\)(\d\ 7\d\)zo© ( )

(|| =|d,(ds] ~|d,]) = 0 < (cosh(2K,) cosh(2K )| - |cosh(2K , ) cosh(2K, )]) x
(jsinh(2K,)sinh(2K)| —[sinh(2K, )sinh(2K,)]) = 0

(33)
Assumptions (25) match (with regard fora = C)
b

D>0, y,ap=—z>0,wm ab<0. (39
After the transformations we get
ab< 0
(cosh(2K, +2K)cosh(2K, +2K,) —cosh(2K, —2K,)cosh(2K, +2K))
(sinh(4K,)sinh(4K,) + sinh(4K, )sinh(4K)) <0

(35)
Finally, the conditions for the existence of a solution
Rs = Rg(RMRS,R”Rg) for parameters {K4,K K7,K9}:
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(|cosh(2K ) cosh(2K )| —|cosh(2K, ) cosh(2K, )|) x

(|sinh(2K,)sinh(2K;)| —[sinh(2K,)sinh(2K)|) > 0

(cosh(2K, +2K;)cosh(2K, +2K,) —

cosh(2K, —2K,)cosh(2K, +2K;)) x

(sinh(4K,)sinh(4K,) +sinh(4K, )sinh(4K,)) <0
(36)

D>0
=
ab<0

Examples

L. Let us assume that R; = (—b ++/b* —4ac ) /(2a).
R,=1.1LR,=8 R, =2, R5 =05 [Rg, R7, R4, R5 - these are ar-
bitrary parameters chosen by us, other values are calculated by the

formulas), R, =0.5008038793422166

.8030575636447406 :
.7962953635956354 :
.9146508996595731 :
.0933133071559797 :
.6022060529968286 :
.2266770332751755 :
.038301092103787 :
F =2.2014712244531953189 .

Let us assume that

( b—\/b2—4ac)/(2a)'
1.1 R, =8 R,=2 R;=05
1.9967896441086979
0.5546134633542025,
1.7962953635956356,
100933133071559797
0.

o [ TR TR TR T
= \owOF—Ob—ﬁy—a

8
2
3
1 9146508996595731

5146350790279501 ,
3.2266770332751755,
F=9. 038301092103787,
f=InF =2.2014712244531953189 .
In examples 1 and 2, the initial values of the parameters are the
same; two branches of the solution of the quadratic equation (20)
are considered. We see that R, =1.7962953635956356 the
same thing in both examples, R and R swap, b and F are the
same.

vm::m::;:uwguogo NN L

3D Generalized Ising Model

Let us consider 3D Generalized Ising Model pasmepa L = L, x L, X L,,
total number of grid nodes L = L,L,L,, with special boundary cy-
clic helical (with shift) conditions (1) and renumbering of points
(2). Let assume that
Q= {TO,T],TL Tri, }= {lo,ll,lz,l } . Hamiltonian of 3D
models is L I
H (0)= _Z Z (J01000, +J,040, +J ;0,05 +

=l n=1
+J,,0,0, +J,0,05 +J 30,05 +J;,,0,0,0, +J,,,0,0,05 +
+J023000,05 +J1530,0,05 +J1,30,0,0,0; + Ao,

(37)

Let us introduce the following transfer matrix .7~ =7 for this
model, we will do it the same way as in [23] (Fig. 2).
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£ - O u,
. o] . o [ T= . T T . | ) e
= ° + = * o,
e S Ea E s e e e e B R
[ ] [* ]+ + [a, D . *Ta, B D .
L N Aoy ay
B ] - T an | ° . D a, | * D .
: | oo l)
" o) _ . s . . . a, . .
= + aOZ alZ
b L ] . ay, . . . ey . .
+ + ey ay
D . _ . Uy . . . a; ® )
= i Aog i
.7 . - . an | . . a, | * .
. . + + L] . 004 . . 014 .
] & Qys s
'_ ] - + . . 006 . . als .
2 ag, a,
O | " | O || 0L | O
Fig 2. Elementary Transfer Matrix. 7 —. /; . for lattice models with Hamiltonian (37).In empty cells there are zero matrix elements

Eigenvector of the transfer matrix .7~ =.7 , corresponding to
the highest eigenvalue F’, will be searched in the form of (9). There
is a one-to-one correspondence between the system of equations
generated by the Hamiltonian (37) and the system of equations
(10) - (11) for the planar model generated by the Hamiltonian (5),

this is clear from the correspondence of the vertices:
1, m+lmeor, (mm+l)or,,
I’l + ,m+1) <> That is, for a three-dimensional mod-

T
el with Hamlltoman 3 7)there will be the same system of equations
for the interaction coefficients and free energy in the thermody-
namic limit as for a flat model with interaction coefficients

']1 :J01+J23’ Jz :J02+J13

J3 =Jn. J, :Jo3'J5 A:Jozs"]s :J012'J7 :J013'
Jg=J 3 dy =J g h=h, -

Comment

In a flat generalized Ising model l3 =T, ., ina 3D generalized

Ising model l =T L however, the system of equations (10) -

(11) and the value of frée energy f will remain the same if we take

any point for the 3D generalized Ising model (and, consequently,

O't3 =0,8 (37), TL+l<t <T,, ;. and for a flat mo+del
1 < l‘ < TLL (and consequentf , 6t instead of O, | B

(5)5 Wthh 51gn1f1cantly expands the class of models with Hamilto-

nians for which exact disorder solutions of the form (12-24) are

found.

Example 3. (it is induced by example 1 for a flat model).

K, +K,, =K, =In(0.914650899659573 lg,

K02 K123 = In(1.8030575636447406

1nd 7962953635956354),

K K =In(2). K,,; =K, =In(0.5),

CoBpeMeHHble
MH(OPMaLMOHHbIE
TexHonornu

n UT-o6pasoBaHue

Ko, = K, =1n(1.0933133071559797),
=K, =In(8),

K,y = Ky = In(0.5008038793422166)

Kops = K, = In(1.1)

= 1n(0.96022060529968286),
b, =3.2266770332751755,
F =9.038301092103787,
f=InF =2.2014712244531953189 -

Conclusive statement

This study demonstrates obtaining the value of the free energy in
the thermodynamic limit on a set of exact disorder solutions de-
pending on four parameters for a 2D generalized Ising model in an
external magnetic field with the interaction of nearest neighbors,
next nearest neighbors, all kinds of triple interactions and the four
interactions for the planar model, and for the 3D generalized Ising
model in an external magnetic field with all kinds of interactions in
the tetrahedron formed by four spins: at the origin of the coordi-
nates and the closest to it along three coordinate axes in the first
coordinate octant. The domain of existence of these solutions is also
described. The system of equations (10) - (11) and the value of free

energy f remain the same if we take any point for the 3D general-
ized Ising model 7, (and accordingly O, =05in (37)) ,
‘L'L+]<l <7, andforaﬂatmodel +<l <TL

(and accordingly OZ mstead of G in (5)), which 51gn1f1cantly
extends the class of models with Hamlltomans for which exact dis-
ordered solutions of the form (12-24) are found.
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