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Abstract

In recent decades, the amount of information that humankind has accumulated has increased tremen-
dously. People cannot analyze it effectively using simple algorithms, and data structures due to these
approaches do not understand the semantics of the data. Thus, there is a need for such a data structure
that would store a massive number of entities that would be accessible and easy to understand for ma-
chines, and moreover, saves the semantics. One efficient kind of structure is a knowledge graph, which
quite recently appeared and became the subject of research for the last few years due to its interesting
and sophisticated architecture. The peak of knowledge graph interest came at the time when Google in-
troduced their Knowledge Graph technology in 2012, and since then, it has become apparent what this
concept of a knowledge graph is. However, it is still unclear how to use this technology in practice due
to the small number of existing information on this theme. In this paper, we introduce and review all
steps of knowledge graph implementation. In addition to that, this article includes information about
problems that need to be solved for having its instance of the knowledge graph; also, we consider ma-
chine learning embedding methods to analyze knowledge graph structure, practical steps for KG usage,
and so on.
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AHHOTanus

B nociefHue fecaTueTUs: 06’beM HaKOILJIEHHOH YesloBe4eCTBOM UHGOpPMAIUH YBEJIHUYUJICS HEBepo-
AaTHo. JItonu He MoryT 3¢ GeKTHUBHO aHA/IU3UPOBATb TAKOH 06'beM C IOMOILbIO TPAJULIMOHHBIX aJIr0-
PUTMOB U CTPYKTYP JAHHBIX U3-3a TOT'0, YTO OHHU He N103BOJIAIOT UCI0JIb30BaTh CEMaHTHYECKHE CBA3MU.
TakuM 06pa3oM, Ha3pesia HEOOXOJUMOCTb B TAKOM INpeJCTaBJeHUH MHPOPMALUH, KOTOpoe Obl 10-
3BOJISLJIO Obl C OAHOM CTOPOHBI XPAaHUTb OIPOMHOE KOJIMYECTBO O6'bEKTOB U CBA3eH MeXAy HUMHY, a C
JIpyroi npefoCcTaBIIsANI0 BBICOKOCKOPOCTHOM JOCTYI K XpaHALIUMCSA JAaHHBIM, U, KpOMe TOro, COXpa-
HSLJIO CeMaHTHUKY. OJHO! U3 caMbIX 3G PeKTUBHBIX CTPYKTYP JaHHbIX, I03BOJIAIOIIEH pellaTh 3aAa4H
OA0GHOTO KJIacca, AABJseTcs rpad 3HaHUH, KOTOPBIA OTHOCUTEIbHO HeIaBHO MOSBUJICA U CTaJl Ipej-
MEeTOM MCCJIe[lOBAaHUN B NociefHUe rofbl [IMk uHTepeca k rpady 3HAHUH DpULIeNCS HA TO BpeMd,
korza Google mpejcTaBu/I cBOW peanusanuio B 2012 rofy U cTajl UCNO/Ib30BaTh B CBOEH MOUCKOBOM
MallliHe, YTO 3HAUYUTEeJIbHO YJIYYLINI0 Ka4ecTBO Morcka. OHAKO 10 CUX NTOP HesICHO, KaK BOCII0JIb30-
BaTbCs JAaHHOW TeXHOJIOTHeH Ha TPaKTHKe U3-3a He6O0JIbLIOro KOJIM4ecTBa uMeolleiica nHGopManuu
110 3TOH TeMe.

B aToli cTaThe MBI paccMaTpHUBaeM BCe 3Tallbl peasn3anuy rpada 3HaHUH, a TaKxkKe IPO6JIeMBI, C KOTO-
PBIMU BO3MOXHO IIPUJETCS CTOJIKHYThCS IPU CO3AaHUH COOCTBEHHOTO0 3K3eMIIAPA JJaHHOH aGCTpak-
nuu. [IoMUMO 3TOro, Mbl pacCCMOTPUM METO/ bl CO3/IaHUS BEKTOPHOTO NpeACTaBIeHUs HHYOpMALUU
Juist ee 3pPpeKTUBHOTO XpaHeHHsI B Tpade, a TaKkKe NPAKTHUYECKHe Iary 1o ero UCMoJb30BaHHUIO.

KiroueBsble c/10Ba: rpad sHaHui, ceMaHTHYeCKUH rpad, OHTONOTHH.
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nHdopManoHHble TexHoJorud U UT-o6paszoBanue. 2019. T. 15, Ne 4. C. 932-944. DOI: 10.25559/
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Introduction with high similarity.

A knowledge graph is often defined as a semantic graph consist-
ing of nodes (vertices) and edges, where nodes represent concepts
referring to the general categories of objects and edges represent
the semantic relationships between entities. Some of the observed
nodes can be connected to each other and form structured knowl-
edge that can help to use, manage, and understand the information
it contains. Knowledge graphs are primarly constructed from
knowledge bases (KB), which refers to an intelligent database
for managing, storing, and retrieving complex structured and un-
structured information. Knowledge bases gather it from a free text
on web pages, databases, audio, and video content. If Knowledge
Graph is more about graphical structure, Knowledge Base focuses
on data storage in the database. However, in most cases, they have
the same meaning and similar approaches, though, in this article,
we will use these two ideas as one general concept.

Due to the properties of the graph and its smart construction, it
can be used to solve various problems, such as inferring conceptu-
al meanings of user’s web queries, building recommendations for
users or other applications. Also, KGs can be served as a storage of
structured knowledge which supports a large number of applica-
tions related to big data analytic

Nowadays there are lots of services, and sources are represented as
knowledge graph structure or knowledge base: DBpedia [18], Free-
base [14], YAGO [13], Wikidata , and WikiNet, Google KG [1], Face-
book KG [14], Linkedin, but it is still unclear how to create and build
this kind of structure and also what kind of technologies are inside.
Knowledge graph creation could be separated into four main steps.
Firstly, extracting useful information from different kind of sources
to build a well- organized knowledge structure. Secondly, defining
entities and relationships between them that represent knowledge
graph using Nature Language Processing. The third step includes
data integration. The final step includes graph structure analysis,
link prediction cases, and using embedding methods based on ma-
chine learning and deep learning techniques.

In this paper, we will provide a review of all these steps, which
includes semantic extraction methods, building knowledge base
technique, machine learning embedding methods, and also some
technical implementations. We hope our experience in building
Knowledge Graph will be helpful for researches and enthusiasts in
KG understanding and implementation.

Semantic Extraction

Entity Extraction

In this section, entity extraction methods from different sources
will be observed. As we know, one of the most informative sourc-
es is Web pages that contain an enormously huge amount of struc-
tured and unstructured information for knowledge graph construc-
tion. The most well-known such kind of source is Wikipedia, which
is used for a significant number of high-quality information ex-
traction systems. There are lots of methods for extracting contents
from Wikipedia pages that were proposed [13], [16], and which has
become useful instruments in KG use cases.

In addition to that, lots of other high-quality web-resources include
well- organized knowledge for entity collection. As for semistruc-
tured data resources, like template-based form, Wrapper Methods
is one of the most often used solutions [20], [30]. This proposed
methods automatically produce wrappers from a set of Web pages
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There is also another effective method, where data is considered as
hierarchical tree [44]. It is called Hierarchical Conditional Random
Field, and it allows to optimize not only nodes detection but also
attribute labeling. The main idea of this method is to calculate the
maximum posterior probability value of y with given features X,
then y* will be computed by Eq.(1)
¥ =argmax p(y| X) 1)
According to unstructured data, entity extraction can be imple-
mented with named entity recognition (NER). It tries to detect and
classify information elements from text and shows effectiveness in
KG creation from unstructured data like texts. Some of Named Enti-
ty Recognition techniques are using machine learning methods and
trained as predictive models for classification words into different
entity types or the tags, which means the absence of belonging to
any category.

Some papers [49] propose methods that use a chunk tagger which
was based on Hidden Markov Model.

Other researchers provide their experience in using conditional
random field (CRF) to train a sequential NE labeler [9].

In addition to that, [45] combines a K-nearest neighbors (KNN)
classifier with a linear CRF model to perform NER for tweets.

Also, there is a paper that proposed Transfer Joint Embedding (TJE)
method [32], based on transfer learning, for cross-domain classifi-
cation of multiple classes.

[35], Prokofyev employs external sources (e.g., DBLP, Wikipedia,
etc.) to improve the effectiveness of NER.

However, on top of all these approaches are systems that can read
the Web effectively and provide relevant results in a short time. One
of the latest methods is Never-Ending Language Learning. NELL
[28] is a never-ending system that learns to read the Web. To extract
triples in NELL, bootstrap constraints are used to learn new con-
straints. NELL has been running non-stop since January 2010, each
day extracting more beliefs from the Web, then retraining itself to
improve its competence. The result so far is a Knowledge Base (KB)
with approximately 120mn interconnected beliefs, along with mil-
lions of learned phrasings, morphological features, and Web page
structures NELL now uses to extract beliefs from the Web. NELL is
also now learning to reason over its extracted knowledge to infer
new beliefs that it has not yet read, and it is now able to propose
extensions to its initial manually-provided ontology.

ReVerb [5] and OLLIE [38] are open information systems that ex-
tract a triple from a sentence by using syntactic and lexical pat-
terns. Although these approaches successfully extract triples from
unstructured text, they still do not consider entity mapping. As a
result, the ambiguity of an extracted entity might occur.

Entity relations building

One of the graph features is that one entity can have different mean-
ings in different sources, that is, relate to different parts of the text.
KG goal is to try to correlate such textual mentions of entities with
their nodes in the graph. For Example, the word "tesla” can associ-
ate with the scientist Nicola Tesla, and at the same time, it can mean
the name of the company of llon Mask, called "Tesla.” This task of
linking entities is one of the most crucial tasks in building KG. The
solution to this problem would help us to connect text information
with a structure of a graph, which in turn contributes to the devel-
opment of knowledge in the graph and its scaling.

To be more precise with the linking entities, if we found set X of
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entities in textual source and set Y of entities in Knowledge Graph,
what we want is to build a function.
fix, >y, forx, e X,and y, Y (2)

Then immediately, the question arises, what if we do not have this
entity in the graph? According to the [40] it should be returned as
NIL for the unlikable mention.

Several methods can cope with this nontrivial task. Some of these
proposed approaches [40] use the context of mentions and features
that are extracted from descriptive text associated with the entities,
such as bag-of-words, entity popularity, etc. Unfortunately, these
handcrafted features are useless, over-specified, and cannot accu-
rately represent not only the mention but also semantic meanings
of an entity. In this regard, methods using neural networks and ap-
plying word embedding have become popular in solving the prob-
lem of entity linking. The reason for this was their ability to capture
distributed representation, which is necessary for this kind of task.
As a solution, Hoffart’'s model could be considered, which is a
graph-based approach that finds a dense subgraph of entries in a
document to address entity linking. This model is based on using a
neural network for deriving entities representations and mention
context to apply them entity linking.

Another approach for entity relations building is Yamada’s model
that jointly maps words and entities into the same continuous vec-
tor space and applies the embeddings to learn features for EL.

In addition to that, an effective method to cope with entity linking
has been recently proposed. It is called a Deep Semantic Match Mod-
el (DSMM) [24] which helps to align a textual mention to the refer-
ent entity in a knowledge graph applying bidirectional Long Short
Term Memory Network (BiLSTM) with multigranularities. This ap-
proach measures the match scores from two aspects: surface from
the match, where a char-LSTM was applied to capture local repre-
sentation, and semantic match, where a similar word-LSTM and
TransE, a knowledge representation method, were used to learn the
global representation of mention and entity respectively.

Given a mention x, the sentence s it occurs and Knowledge Graph
denoted by a set of triples ¢,r,e,, where ¢ ¢, € E are entities and
reR is a relation, DSMM aims to find the most relevant entity in
candidate entities set £ e E. The peculiarity of this model is that it
uses bidirectional LSTM that consists of two LSTMs with opposite
directions to capture the context information on both sides better.
Hence, at time step 7, the hidden 4, can be referred to as the ele-
ment-wise sum of the forward and backward pass.

The results of experiments on CoNLL benchmark dataset show that
proposed DSMM outperforms previous state-of-the-art models.

Relation Extraction

KG is composed of many triples like < subject, predicate, object >,
where the predicate is a semantic relationship between subject and
object. TransE is first proposed by [3] to encode triples into a con-
tinuous low-dimensional space, which based on the translation
s+ p ~o.Many follow-up works like TransH [43], [2], and TransR
[29], proposed advanced methods of translation by introducing dif-
ferent embedding spaces.

Some recent works attempt to learn text and KG triples, including
[15] and [7]. These models tend to strengthen the representation
of entities and relationships for KG tasks, but not for text represen-
tation.

In order to properly construct a knowledge graph, between entities,
the relationships must be defined in the correct way that can also be
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taken from text sources. This is what the techniques of extracting
relations is capable of. One of the shared tasks in this field is to ex-
tract binary relations between entities. The following sentence can
be used as an example: "Mark Cuban owns Dallas Mavericks”, from
which we can get the triple < MarkCuban,own, DallasMavericks > .
We can formulate relation extraction as follows: consider the sen-
tence
§18y...0)...8,...0,...5, S
Where o, and o, are two named objects and s, relates to other
words and predefined relation r, the learning algorithm tries to
learn a function f:

. {H, if o, and o, are related by relation R, 3)

f(8)= .
0, otherwise.

In this equation f is a binary classifier, that can be not only Naive
Bayes but also Perceptron and others. Extracted sentence features
defined as S, but it also could be a structured sentence representa-
tion.
There are two approaches to relation extraction: feature-based and
kernelbased method. According to the feature-based approach, it is
mainly based on NLP techniques including part-of-speech tagging,
syntax parsing, named entity recognition.
Based on the knowledge of previous works, there are several sets
of features used for Relation Extraction: word features (headwords
of entities, words or bigrams on the left, number of words separat-
ing the two entities, etc.), entity features (types of named entities
(e.g., person, location) and their concatenation, mention levels (e.g.,
name, nominal, or pronoun), etc.), parse features (syntactic chunk
sequence, path between the two entities in a parse tree, etc.)[17]
As for kernel-based methods, one of the examples is the string ker-
nel [23]. The main idea of this kind of kernel includes comparison
of textual information by the substring that they contain. In one of
the other previous works [21], the sum of the similarity of left, mid-
dle, and right contexts is considered as a kernel. However, the main
disadvantage of these approaches that they require a significant
amount of data, that is labeled by a human, which takes a massive
amount of time and manual resources for large-scale Web relation
extraction.
Instead of feature-based and kernel-based approaches, few ex-
traction relation methods, that is based on using textual patterns,
were proposed [12].
Recent articles focus on deep learning networks due to error prop-
agation during feature generating. More complicated models were
proposed to learn deeper semantic features, like PCNN [42] and at-
tention pooling CNN [33], graph LSTMs [2].
In addition to that approaches, a state-of-art model, called LFDS,
was proposed.
First, we pre-train representations for entities and relations based
on the translation law s+ p ~ o defined by typical KG embedding
models such as TransE. Second, for each sentence in the train sets,
we replace the entity mentions with the types of the entities in the
KG. An attention mechanism is then applied to calculate the impor-
tance of words concerning the sentence pattern. Third, we train the
sentence encoder by the margin loss between o,s, and sentence
embeddings. Note we do not use the noisy relation labels to train
the model. Finally, for prediction, we calculate the test sentences
embedding, then compare the sentence embedding with all relation
embeddings learned by TransE, and choose the closest relation as
our predicted result.
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However, other effective methods can cope with relation extraction
task. They are based on word-embedding idea. Word-embedding
can be defined by NLP methods where words or phrases represent-
ed as vectors in a low-dimensional space. Usually, for generating
such maps deep learning, topic modeling, matrix factorization, and
other techniques are used [3]

Neural-based representation learning methods encode KGs with
low-dimensional vector representations of both entities and rela-
tions, which can be further used to extract unknown related facts.
In addition to that, a weakly-supervised approach for extracting
relations from textual sources was proposed. It is trained to use
information from the text and from existing knowledge jointly [4].

Relation mentions, entities, and relations in this method are all em-
bedded into a common low-dimensional vector space. A rank-
ing-based embedding framework is used to train the model. For a
triple (s, p,0), the model learns the plausibility of the triple by gen-
eralizing from the KG.

Another work that helps in solving the relation extraction task is
based on features representation only as low-dimensional embed-
dings, which dramatically reduced the number of parameters [31].
Besides binary relations, there are also higher-order relations,
which can be defined as {o,,0,...0,), where o, are entities with re-
spect to the certain relation. This complex relationship can be con-
structed by binary relations unification according to Pereira F. work
[48] Binary relations are first extracted using a classifier. Entities
that have relations are linked in an entity graph, higher-order rela-
tions can be extracted by finding the maximum cliques in the graph.

Co-reference resolution

Before integrating triples into a knowledge graph, we need to re-
ceive components from coreference resolution, which aim is to
detect co-referring chains of entities in unstructured text and then
to group them. Since some texts include different kinds of entities
expressions, pronouns, and abbreviations that refer to one entity,
components of coreference resolution can be considered as essen-
tial parts in knowledge extraction. An entity and its various expres-
sions can be grouped in such a way that the actions of identical
entities in different expressions can be taken into account. One of
the frameworks that can cope with this task are coreference solver
from Stanford Core NLP [26] and AllenNLP™.

CoreNLP uses a pipeline of tokenizer, part-of-speech tagger, named
entity recognizer, syntactic parser, and coreference solver to anno-
tate the unstructured text. In addition to coreference annotation,
we store the named entity classification created by the pipeline. The
named entity classes are used to filter named entity links having a
conflicting ontology classification.

Triples Integration

The Triple Integration component aims to generate text triples by
using outputs from the Entity Mapping component, the Coreference
Resolution component, and the Triple Extraction component.

In the Triple Extraction component, we can extract relation triples
from an unstructured text; however, entity mapping and corefer-
ence resolution among the entities of such triples are not per-
formed. As a result, ambiguity in the triple occurs, and interlinking
to entities in the KG is not established. Consequently, the transfor-
mation of a relation triple that conforms to the standard of KB is
required. Therefore, to deal with such problems, the results from

the three components are integrated and transformed by the fol-
lowing processes.

First, identical entities are grouped by using co-referring chains
from the Coreference Resolution component. Second, a represen-
tative for the group of coreferring entities is selected by the voting
algorithm. Because entities in the same group might have various
representations, the majority of excluding pronouns in the group is
chosen as the group representative. Third, all entities belonging to
the group in the relation triples are replaced by the representative
of its group. Fourth, the relation of this triple is straightforwardly
transformed into a predicate by assigning a new URL Finally, if an
object of a relation triple is not an entity, it is left as literal. After
performing these processes, text triples are extracted from unstruc-
tured text.

The Triple Integration component generates the text triple, e.g.,
< DBpedia : MarkCuban, ex : own, DBpedia : DallasMavericks > . Howev-
er, the predicate of the triple, ex: own, is still not mapped to any
predicate in the KG. However, the method proposed by [19] can
handle this task. As shown in this papers, our ex: own could be
mapped to DBpedia relation (for example Property), and the triple
< DBpedia : MarkCuban, DBpedia : Property, DBpedia : DallasMavericks >
is created as a triple for the generated KG.

Embedding methods for link prediction

Knowledge graphs are being used in the field of machine learning
for various applications, including question and answering, link
prediction, fact-checking, entity disambiguation, etc. For many of
these applications, a problem to find the missing relationships in
the graph is essential to ensure, completeness, correctness, and
quality. This involves the task of entity prediction and relationship
prediction. A knowledge graph is a collection of entities and rela-
tionships between them in the form of RDF style triples (s, p,o0)
where s represents a head entity, o being the tail entity and p the
relationship between the head and the tail entity. In this part, we
will provide an overview of some methods that help to complete
and populate Knowledge Graph.

Adversarial Network Embedding

In this paper [6], the strengths of generative adversarial networks
in capturing latent features were provided, and its contribution to
learning stable and robust graph representations was investigated.
Specifically, an Adversarial Network Embedding (ANE) framework
was proposed, which leverages the adversarial learning principle
to regularize the representation learning. It consists of two com-
ponents, i.e., a structure-preserving component and an adversarial
learning component. The former component aims to capture net-
work structural properties, while the latter contributes to learning
robust representations by matching the posterior distribution of
the latent representations to given priors.

Network embedding is a challenging research problem because of
the high dimensionality, sparsity, and non-linearity of the graph
data.

Though existing methods are effective in structure-preserving with
different carefully designed objectives, they suffer from a lack of
additional constraints for enhancing the robustness of the learned
representations.

 AllenNLP - Demo [Electronic resource]. Available at: https://demo.allennlp.org/coreference-resolution (accessed 12.08.2019). (In Eng.)
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struc2vec L= Zmax[o, y+d(s+p,o)] d(s'+p,0’)] (4)

Structural identity is a concept of symmetry in which network
nodes are identified according to the network structure and their
relationship to other nodes. This work presents struc2vec [36], a
novel and flexible framework for learning latent representations for
the structural identity of nodes. struc2vec uses a hierarchy to mea-
sure node similarity at different scales and constructs a multilayer
graph to encode structural similarities and generate a structural
context for nodes.

The labels of the nodes are not necessary, but their relations to
other nodes (edges) are essential. The most common practical ap-
proaches to determine the structural identity of nodes are based
on distances or recursions. While such approaches have advantages
and disadvantages, an alternative methodology was provided, one
based on unsupervised learning of representations for the struc-
tural identity of nodes. It is worth noting why recent approaches
for learning node representations such as DeepWalk and node2vec
succeed in classification tasks but tend to fail in structural equiva-
lence tasks. The critical point is that many node features in most
real networks exhibit strong homophily. Neighbors of nodes with a
given feature are more likely to have the same feature.

Results indicate that while DeepWalk and nodeZvec fail to capture
the notion of structural identity, struc2vec excels on this task - even
when the first network is subject to intense random noise (random
edge removal). It was also shown that struc2vec is superior in a clas-
sification task where node labels depend more on structural identi-
ty (i.e., air track networks with labels representing airport activity).

TransE [46]

Entity prediction is, given a s, p of a triple predict o and relation-
ship prediction is, given s, p predict o the type of relationship be-
tween them. TransE [1] is an energy-based model that learns con-
tinuous, the low-dimensional embedding of entities and
relationships by minimizing a margin-based pair-wise ranking loss.
The idea behind TransE is, the relationship p is modeled as a trans-
lation between the head and the tail entity in the same low-dimen-
sional plane. Therefore if a relationship (s, p,0) exists in the knowl-
edge graph, the learnt embedding of (s+ p) should be closer to the
embedding of o meaning (s+ p)~o.If there is a negative or false
triple such as (s’, p,o") then the distance between the embedding of
(s'+p) and o' should be larger. The energy function E(s,p,0) is
defined to be the L, or L, distance between the s+ p (translated
head entity) and o (tail entity). Now let us see how such embed-
dings can be learned from a training set S containing a set of posi-
tive (s, p,0) triples. Lets say the entity embedding and relationship
embedding to be learnt is e and /, full list of entities £ and rela-
tionships L, the training set S e (s, p,0) containing all positive tri-
ples, the first step is to initialise ¢ and / with uniform embedding
vectors for each entity in £ and each relationship in £ . Before we
can go into the training phase, we also need negative samples in
order to optimize a pair-wise ranking loss function. This is done by
corrupting positive triples by either removing the head or tail and
replacing it with a random entity from E . We call this the corrupted
triples set $'e(s', p,0’). Optimization happens in mini-batches.
Therefore a mini-batch S, is sampled from § of batch size » and
for each positive triple in §,, a negative triple is sampled from the
corrupted triples set S’ . Optimization happens now using stochas-
tic gradient descent for each positive and negative triple pair in the
mini-batch set, minimizing a margin-based ranking loss function
given by,
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over the possible (s,p,0) embeddings. At each gradient step to-
wards the minimum, the embeddings are updated with constant
learning rate.

LINE [39]

This paper studies the problem of embedding extensive informa-
tion networks into low-dimensional vector spaces, which is useful
in many tasks such as visualization, node classification, and link
prediction. In this paper, a novel network embedding method called
the "LINE” was proposed, which is suitable for arbitrary types of
information networks: undirected, directed, and/or weighted.

The method optimizes a carefully designed objective function
that preserves both the local and global network structures. An
edge-sampling algorithm is proposed that addresses the limitation
of the classical stochastic gradient descent and improves both the
effectiveness and the efficiency of the inference. Empirical experi-
ments prove the effectiveness of the LINE on a variety of real-world
information networks, including language networks, social net-
works, and citation networks. The algorithm is very efficient, which
can learn the embedding of a network with millions of vertices and
billions of edges in a few hours on a typical single machine.

This model makes use of latent variables and is capable of learning
interpretable latent representations for undirected graphs. In addi-
tion to that, it uses a convolutional graph network (GCN) encoder
and a simple inner product decoder.

The proposed model achieves competitive results on a link predic-
tion task in citation networks. In contrast to most existing models
for unsupervised learning on graph-structured data and link predic-
tion, it can naturally incorporate node features, which significantly
improves predictive performance on several benchmark datasets.

node2vec

This paper [10] propose node2vec, an algorithmic framework for
learning continuous feature representations for nodes in networks.
In nodeZvec, we learn a mapping of nodes to a low-dimension-
al space of features that maximizes the likelihood of preserving
network neighborhoods of nodes. We define a flexible notion of a
node’s network neighborhood and design a biased random walk
procedure, which efficiently explores diverse neighborhoods. The
proposed algorithm generalizes prior work which is based on rigid
notions of network neighborhoods, and we argue that the added
flexibility in exploring neighborhoods is the key to learning richer
representations.

Proposed node2vec is a semi-supervised algorithm for scalable fea-
ture learning in networks. Custom graph-based objective function
was optimized using SGD. Intuitively, this approach returns feature
representations that maximize the likelihood of preserving net-
work neighborhoods of nodes in a d-dimensional feature space. A
2nd order random walk approach was used to generate (sample)
network neighborhoods for nodes. A vital contribution is in defin-
ing a flexible notion of a node’s network neighborhood. By choos-
ing an appropriate notion of a neighborhood, node2vec can learn
representations that organize nodes based on their network roles
and/or communities they are belong. It was achieved by developing
a family of biased random walks, which efficiently explore diverse
neighborhoods of a given node. The resulting algorithm is flexible,
giving control over the search space through tunable parameters.
Edge features. The node2vec algorithm provides a semi-supervised
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method to learn rich feature representations for nodes in a net-
work. However, we are often interested in prediction tasks involv-
ing pairs of nodes instead of individual nodes. For instance, in link
prediction, we predict whether a link exists between two nodes in
a network. Since proposed random walks are naturally based on
the connectivity structure between nodes in the underlying net-
work, they were extended to pairs of nodes using a bootstrapping
approach over the feature representations of the individual node.

Logical queries

Learning low-dimensional embeddings of knowledge graphs is a
powerful approach used to predict unobserved or missing edges
between entities.

Here [11], graph nodes were embedded in a low-dimensional space
and represent logical operators as learned geometric operations
(e.g., translation, rotation) in this embedding space. By perform-
ing logical operations within a lowdimensional embedding space,
a time complexity that is linear in the number of query variables
was achieved, compared to the exponential complexity required by
a naive enumeration-based approach.

One particularly useful set of graph queries and the focus of this
work is conjunctive queries, which correspond to the subset of
first-order logic using only the conjunction and existential quantifi-
cation operators. Conjunctive queries allow one to reason about the
existence of subgraph relationships between sets of nodes, which
makes conjunctive queries a natural focus for knowledge graph ap-
plications.

Graph nodes are embed in a low-dimensional space and represent
logical operators as learned geometric operations (e.g., translation,
rotation) in this embedding space. After training, we can use the
model to predict which nodes are likely to satisfy any valid conjunc-
tive query, even if the query involves unobserved edges. Moreover,
we can make this prediction efficiently, in time complexity that is
linear in the number of edges in the query and constant concerning
the size of the input network.

Autoencoder [41]

Similar to SDNE (Structural Deep Network Embedding), these mod-
els rely on the autoencoder to learn non-linear node embeddings
from local graph neighborhoods.

The autoencoder model aims to learn a set of low dimensional la-
tent variables for the nodes that can produce an approximate recon-
struction output such that the error between adjacency matrix and
output is minimized, thereby preserving the global graph structure.
In many applications, only a small fraction of the nodes are labeled.
For semi-supervised learning, it is advantageous to utilize unla-
beled examples in conjunction with labeled instances to better cap-
ture the underlying data patterns for improved learning and gen-
eralization. Here it was achieved by training the autoencoder with
a masked softmax classifier to collectively learn node labels from
minimizing their combined losses.

The resulting models outperform related methods in accuracy per-
formance on a range of real-world graph-structured datasets. The
success of this models is primarily attributed to extensive param-
eter sharing between the encoder and decoder parts of the archi-
tecture, coupled with the capability to learn expressive non-linear
latent node representations from both local graph neighborhoods
and explicit node features. Further, this novel architecture is capa-
ble of simultaneous multi-task learning of both link prediction and
node classification in one efficient end-to-end training stage.

CoBpemeHHble
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DeepWalk [34]

Traditional approaches to relational classification pose the problem
as inference in an undirected Markov network and then use itera-
tive approximate inference algorithms (such as the iterative classi-
fication algorithm, Gibbs Sampling, or label relaxation) to compute
the posterior distribution of labels given the network structure. We
propose a different approach to capture the network topology in-
formation. Instead of mixing the label space as part of the feature
space, we propose an unsupervised method which learns features
that capture the graph structure independent of the labels’ distri-
bution.

DeepWalk is distance themselves from approximate inference
techniques to leverage the dependency information by learning
label-independent representations of the graph. The choice of la-
beled vertices does not influence Their representation quality so
that they can be shared among tasks.

Learning Structural Node Embeddings

via Diffusion Wavelets [8]

Learning structural representations of nodes is a challenging prob-
lem, and it has typically involved manually specifying and tailoring
topological features for each node. GraphWave uses spectral graph
wavelets to generate a structural embedding for each node, which
we accomplish by treating the wavelets as a distribution and eval-
uating the resulting characteristic functions. Considering the wave-
lets as distributions instead of vectors is a crucial insight needed to
capture structural similarity in graphs.

The proposed method provides mathematical guarantees on the
optimality of learned structural embeddings. Using spectral graph
theory, structurally equivalent (or similar) nodes have near-identi-
cal (or similar) embeddings in GraphWave. Various experiments on
real and synthetic networks provide empirical evidence for analyti-
cal results and yield substantial gains in performance over state-of-
the-art baselines.

Existing Knowledge Graph systems
overview

There are lots of large graph systems that can provide excellent
results and contain billions of entities. In this section we consider
some of them and describe their characteristics

WordNet

NELL

Probase

Freebase

DBpedia

YAGO

Google knowledge graph

Facebook graph search

O N WN

WordNet [27] was initially conceived as a lexical database for ma-
chine translation. Currently, WordNet is used as a semantic network
and as an ontology. It contains 117 000 synsets, which are groups of
synonyms corresponding to a concept. These synsets connect with
each other through several semantic relations. WordNet has also
been extended to a multilingual version, Multi- WordNet [45].

Never-ending language learner (NELL) [28] is a knowledge base
implemented by the ReadTheWeb Project. It keeps populating a
growing knowledge base of structured facts. Given an initial ontol-
ogy containing 123 categories and 55 relations, it can extract 242
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453 beliefs with an estimated precision of 74 percent in 67 days.
So far, NELL has accumulated over 50 million candidate beliefs by
reading the Web.

Probase [45] is a probabilistic knowledge base consisting of about
2.7 million concepts. The concepts are extracted from a corpus of
1.68 billion Web pages. To model inconsistent and uncertain data,
it uses probabilistic models to build a probabilistic taxonomy. The
goal of Probase is to understand human communication in the text
using common-sense knowledge or general knowledge.

Freebase [14] is a graph-shaped database of structured, general
human knowledge. It is a stable, practical platform for collecting
knowledge by crowdsourcing. The current data in stored Freebase
consists of 3.2 billions of triplets.

DBpedia [18] is a multilingual knowledge base in which the struc-
tured contents are extracted from Wikipedia. The structural knowl-
edge in DBpedia is accumulated using crowdsourced techniques.
DBpedia contains 24.9 million things in 119 languages, including
4.0 million in English.

YAGO/YAGOZ2 [13] is a huge semantic knowledge base in which the
knowledge is extracted from Wikipedia and other sources. In 2014,
it contained more than 10 million entities (e.g., persons, cites, orga-
nizations, etc.) and more than 120 million facts about these entities.
Google knowledge graph (GKG) [1] is a knowledge base used by
Google to add semantic search functionality to its search engine.
Google’s search engine provides structural information about the
topic inferred from the user’s query using GKG. The KG has com-
piled more than 3.5 billion facts over 500 million objects or entities.
Facebook graph search [14] provides semantic search service by
Facebook. It combines data acquired from over one billion users
and external data to provide user-specific search results. Users can
search for pages, people, places, check-ins, etc. using natural lan-
guages.

Knowledge Graph storages

1. Neo4j [37] is an open-source, embedded, disk-based graph
database implemented in Java, that uses LPG (Labeled Prop-
erty Graph) model. It is highly scalable and fully supports the
properties of atomicity, consistency, isolation, and durability
(ACID). As a network-oriented database, it can extend to sev-
eral clusters to process billions of nodes in parallel. Neo4j has
been applied in mission-critical applications.

2. DEX|[22]is also a high-performance, scalable graph DBMS im-
plemented in Java and C++. In DEX, A DEX graph is a labeled
directed attributed multigraph (LDAM), making it suitable for
storage of complex graph structures. The transactions in DEX
support aCiD, meaning full consistency and durability support
with partial isolation and atomicity.

3. Cayley [47] is an open-source graph inspired by the graph
database behind Freebase and Google’s Knowledge Graph. Its
goal is to be a part of the developer’s toolbox, where Linked
Data and graph-shaped data (semantic webs, social networks,
etc.) in general are concerned.

4. Dgraph? is a high-scalable, low-latency, and high-throughput
distributed graph database. It emphasizes concurrency in dis-
tributed environment by minimizing network calls.

5. InJuly 2015, Manish Rai Jain created Dgraph based on his pre-
vious experience at Google. There he led a project to unite all
data structures for serving web search with a backend graph
system. The first version v0.1 was released on December 2015,
with the goal offering an open-source, native, and distributed
graph database never changes since then.

6. Dgraph’s primary focus is low latency and high throughput.
It references the design of Google’s Bigtable and Facebook’s
Tao and achieves high scalability at the cost of lack of full AC-
ID-compliant transactional support. Also, value data version-
ing is under consideration, and not yet implemented

7. One Map/Reduce platform that is worth mentioning is Ha-
doop®. Hadoop allows for distributed processing of massive
data sets across computer clusters. It offers reliable and scal-
able computation for offline data processing but is not readily
suitable for graphs. Inspired by the Map/Reduce framework,
Malewicz et al. [25] propose Pregel.

8. In this system, programs are treated as a sequence of itera-
tions called super steps. In each super step, each vertex can
receive messages sent in the previous iteration, compute a
specific function in parallel and send to other vertices. There
are other graph database implementations on top of Pregel,
including Phoebus* and Giraph®, in order to take advantage of
the Map/Reduce framework.

9. Besides the Hadoop’s Map/Reduce framework, other graph
databases are using distributed storage as well. Infinite-
Graph [45] is a distributed-oriented system that combines the
strengths of persisting and traversing complex relationships
requiring multiple hops.

In conclusion, there are various graph databases nowadays avail-

able or under development, most of which are application-driven.

Since there is no standard graph data model, database system, or

query language, the choice of graph databases is based on its ap-

plications.

Importing Knowledge Graph

A Knowledge Graph is an exciting concept as it is, but to become
useful, it should be loaded into some database. The largest Knowl-
edge Graph available for the download is Freebase, so it was chosen
as a target dataset for testing import.

Importing into Cayley

Cayley provides an ability to choose between several backends for
storing the graph, so the set of experiments was done to test the
fastest way to import the data. In the following table list of used
backends and options along with corresponding time in minutes
are presented. For example, it took 10 minutes to import 25 million
of quads to Bolt backend from .pq file, with 1.25M-sized batches.

2 Dgraph [Electronic resource]. Available at: https://dgraph.io/ (accessed 12.08.2019). (In Eng.)

3 Hadoop [Electronic resource]. Available at: www.hadoop.org (accessed 12.08.2019). (In Eng.)

* Malewicz G., Austern M.H., Bik A.J., Dehnert ].C.,, Horn I, Leiser N., Czajkowski G. Pregel: a system for large-scale graph processing - “ABSTRACT”
In: Proceedings of the 28th ACM symposium on Principles of distributed computing (PODC '09). Association for Computing Machinery, New York, NY, USA, 2009, 6 pp.

(In Eng) DOI: 10.1145/1582716.1582723

5 Gigraph - Network Visualization for Excel [Electronic resource]. Available at: https://gigraph.io/ (accessed 12.08.2019). (In Eng.)
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Table 1. Results of testing importing into Cayley different backends and different

options
5M [10M |15M [20M |25M
Bolt + nq + 10k ) 7 16 1o 29
Bolt + nq + 50k 2 5 13 |15 |23
s o c Ty
Olt Y 500k 2 5 1012 13
Eolt s 500k 2 5 8 ‘%O
olt+nq+ 2 3 12

Bolt + nq + 1.25M 2 P 7 9 12
Bolt + nq + 2.5M 2 P 7 9 12
Bolt + nq + 5M 3 5 3 9 12
Bolt + nq + 1M + nosync 2 P 7 9 12
Bolt + nq + 2.5M + nosync 2 P 7 9 11
Bolt + pq + 1.25M 2 4 7 3 10
Leveldb + nq + buffer 20 + 10k 4 12 e i
Leveldb + pPq.gz + buffer 20M + 1.25M 1 8 16 18 27
Leveldb + nq + buffer 20M + 5M 2 18 [ i i
Leveldb + pPq.gz + buffer 200M + 1.25M 1 8 16 18 27
Leveldb + pPq.gz + buffer 1G + 1.25M 1 8 16 18 27
Leveldb + pq.gz + buffer 1G + 500k 1 P 11 |13 19
Leveldb + pq.gz + buffer 4G + 500k 1 5 11 13 19
Leveldb + pq.gz + buffer 4G + 1.25M 1 18 16 l1g 127
Leveldb + pq.gz + buffer 4G + cache

200M + 1.25M 1 B 1618 s
Table legend:

Bolt, Leveldb - key-value backends

nq - raw RDF file, pq - Cayley-specific binary format, *.gz - gzipped
version of a file nosync

disable syncing to disk per transaction (for Bolt)

buffer - Level DB write cache size

cache -x LevelDB block cache size

10k..5M - load batch size

Loading to Bolt from pq file and 1.25M batch size appeared to be
the fastest way. After the load process was started, the cyclic per-
formance degradation was observed. It means that loading each
additional batch takes longer than loading the previous one (Fig. 1).

Quads Imported, M

Fig. 1. Performance degradation visualization for batches of 1.25M quads

After that, the batch size was decreased to 500k and "nosync” mode
was added. It made things a bit better, yet we still were not able to
import Freebase completely (Fig. 2).

Quads Imported, M

Fig. 2. Performance degradation visualization for batches of 500k quads

By this moment it became evident that the current version of Cayley
is not capable of importing the Freebase completely.

Importing to Dgraph

Dgraph uses backend named "Badger” (Cayley had it as backend as

well, though it was in the test stage). There were no performance

issues with Dgraph, yet it had problems of another kind:

1. Dgraph requires schema for subjects of certain types. In the
case of Freebase, we need to add schema for triples, where the
subject is a literal with language tag e.g., “Association”@en.

2. Another issue is schema-related as well. Dgraph requires sub-
jects to be either literal or UID. In Freebase, there are triples,
with

<http://.../userxandr.webscrapper.domain.ad_entry.ads_topic>

predicate, where some subjects are UID while others are literals.

Such triples were deleted from the dataset to match Dgraph rules.

3. The main issue with Dgraph is that it uses RFC 3339¢ for dates
parsing while Freebase has lots of different date/time formats.
Here are some of them:

T0O

T01:00

T10:00Z

T10:30:30 2001-10-13

1810

-0410

-0099-12 -0216-06-22

2014-05 1988-06-29T02 2010-06-24T16:00

2007-06-19T12:247 2007-10-09T20:22:05

2006-05-29T03:00:00Z 1986-03-05T09:03+01:00

2007-09-24T00:39:42.45Z 1975-05-15T22:00:00.000Z
2011-03-26T06:34:55.0000Z 2007-01-24T06:18:03.046839
2007-03-20T07:05:01.913933Z

Some of these formats (like -0410, 2014-05, T10:00Z) aren’t com-

patible with standard mentioned above, so the date/datetime

strings were converted to Unix time. Conversion algorithm looks
like this:

¢ Newman C., Klyne G. Date and Time on the Internet: Timestamps. RFC 3339, July 2002. (In Eng.) DOI: 10.17487 /RFC3339
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a) The default date is set to 0001-01-01-T00:00:00.000000Z

b) If date string is missing some parts - missing parts are taken
from the default date. Example - "2014-05” is considered to be
2014-05-01T00:00:00.000000Z

c) If the date is earlier than 4799BC, "jyear” format is used. The rea-
son for this is

that algorithm, that used for Gregorian to Julian calendar does not
work with dates before 47997 January (according to Standards of
Fundamental Astronomy?®).

d)Conversion to Unix time. Timestamps like T01:30 are converted
to seconds since

00:00 (e.g., T01:30 becomes 5400).

After performing all steps, we will receive a prepared RDF file along
with schema sufficient to import the Freebase into Dgraph. Corre-
sponding code can be found in a separate repo®.

Conclusion

As we can see, Knowledge Graph has already become an efficient
instrument in different tasks as recommendations or intelectual
searching due to its complex structure and huge amount of stored
semantic information. But it is still hard to understand where to
start to build such architecture, and what technologies are inside
it. Nevertheless, Knowledge Graph has proven itself as a promising
technology that will help in solving different Natural Language Pro-
cessing problems. In this paper, we provided all the steps for creat-
ing a Knowledge Graph from Entity Extraction to Triple Integration
and also presented a brief introduction to some useful embedding
methods in link prediction task. In addition to that, different data
storages with existing knowledge bases that can help in KG imple-
menting were described. Not all details were described in this ar-
ticle, but this review can be a starting point in the creation of this
kind of structure.

References

[1] The Google Knowledge Graph: Information gatekeeper
or a force to be reckoned with? Strategic Direction. 2014;
30(4):15-17. (In Eng.) DOI: 10.1108/SD-04-2014-0049

[2] Bian J.,, Gao B, Liu TY. Knowledge-Powered Deep Learning
for Word Embedding. In: Calders T, Esposito F, Hiillermeier
E., Meo R. (Eds.) Machine Learning and Knowledge Discovery
in Databases. ECML PKDD 2014. Lecture Notes in Computer
Science, vol. 8724. Springer, Berlin, Heidelberg, 2014, pp.
132-148. (In Eng.) DOI: 10.1007/978-3-662-44848-9_9

[3] Bordes A., Glorot X., Weston ]., Bengio Y. A semantic match-
ing energy function for learning with multi-relational data:
Application to word-sense disambiguation. Machine Learn-
ing. 2014; 94(2):233-259. (In Eng.) DOI: 10.1007/s10994-
013-5363-6

[4] Chen T, Dredze M. Weiner ].P, Hernandez L. Kimura
J, Kharrazi H. Extraction of Geriatric Syndromes From
Electronic Health Record Clinical Notes: Assessment of
Statistical Natural Language Processing Methods. /MIR

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Medical Informatics. 2019; 7(1):e13039. (In Eng.) DOL:
10.2196/13039

Culotta A, Sorensen J. Dependency Tree Kernels for Rela-
tion Extraction. In: Proceedings of the 42" Annual Meeting
on Association for Computational Linguistics - ACL ‘04. Asso-
ciation for Computational Linguistics, 2004, pp. 423-es. (In
Eng.) DOI: 10.3115/1218955.1219009

Dai Q., Li Q, Tang J.,, Wang D. Adversarial Network Em-
bedding. arXiv. 2017. Available at: http://arxiv.org/
abs/1711.07838 (accessed 12.08.2019). (In Eng.)

DingJ., Ma S., Jia W,, Guo M. Jointly Modeling Structural and
Textual Representation for Knowledge Graph Completion in
Zero-Shot Scenario. In: Cai Y, Ishikawa Y., Xu J. (Eds) Web
and Big Data. APWeb-WAIM 2018. Lecture Notes in Comput-
er Science, vol. 10987. Springer, Cham, 2018, pp. 369-384.
(In Eng.) DOI: 10.1007/978-3-319-96890-2_31

Donnat C., Zitnik M., Hallac D., LeskovecJ. Learning Structur-
al Node Embeddings via Diffusion Wavelets. In: Proceedings
of the 24th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining (KDD ‘18). ACM Press, Asso-
ciation for Computing Machinery, New York, NY, USA, 2018,
pp. 1320-1329. (In Eng.) DOI: 10.1145/3219819.3220025
Finkel ].R., Grenager T., Manning C. Incorporating Non-Local
Information into Information Extraction Systems by Gibbs
Sampling. In: Proceedings of the 43rd Annual Meeting on As-
sociation for Computational Linguistics (ACL '05). Associa-
tion for Computational Linguistics, USA, 2005, pp. 363-370.
(In Eng.) DOI: 10.3115/1219840.1219885

Andrieu C., de Freitas N., Doucet A., Jordan M.I. An Intro-
duction to MCMC for Machine Learning. Machine Learning.
2003; 50:5-43. (In Eng.) DOI: 10.1023/A:1020281327116
Grover A., Leskovec ]. Node2vec: Scalable Feature Learn-
ing for Networks. In: Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD ’16). Association for Computing Machin-
ery, New York, NY, USA, 2016, pp. 855-864. (In Eng.) DOI:
10.1145/2939672.2939754

Hamilton W.L., Bajaj P, Zitnik M., Jurafsky D., Leskovec
J. Embedding logical queries on knowledge graphs. arX-
iv:1806.01445 [cs.SI]. 2018. Available at: http://arxiv.org/
abs/1806.01445 (accessed 12.08.2019). (In Eng.)

Hearst M.A. Automatic Acquisition of Hyponyms from Large
Text Corpora. In: Proceedings of the 14th conference on Com-
putational linguistics - Volume 2 (COLING ’92). Association
for Computational Linguistics, USA, 1992, pp. 539-545. (In
Eng.) DOI: 10.3115/992133.992154

Hoffart J., Suchanek FEM., Berberich K., Weikum G. YAGO?2:
A spatially and temporally enhanced knowledge base from
Wikipedia. Artificial Intelligence. 2013; 194; 28-61. (In Eng.)
DOI: 10.1016/j.artint.2012.06.

Hogan M. Facebook Data Storage Centers as the Archive’s
Underbelly. Television & New Media. 2013; 16(1):3-18. (In
Eng.) DOI: 10.1177/1527476413509415

Huang X., Zhang J., Li D., Li P. Knowledge Graph Embedding

7 Smart W.M. Spherical Astronomy, Cambridge University Press, 6th edition. Green, 1977, p.49. (In Eng.)

8 Standards of Fundamental Astronomy [Electronic resource]. Available at: http://www.iausofa.org (accessed 12.08.2019). (In Eng.)

? Bollacker K., Evans C., Paritosh P, Sturge T., Taylor J. Freebase: A Collaboratively Created Graph Database for Structuring Human Knowledge. In:Proceedings of the 2008
ACM SIGMOD international conference on Management of data (SIGMOD ’08). Association for Computing Machinery, New York, NY, USA, 2008, pp. 1247-1250. DOI:

10.1145/1376616.1376746

Vol. 15, No. 4. 2019 ISSN 2411-1473 sitito.cs.msu.ru

Modern
Information
Technologies
and IT-Education




942

NCCNEOOBAHUA U PASPABOTKW B OB/TACT HOBbIX

NHOOPMALINOHHbIX TEXHONOT NI 1 UX MPUNOXEHWIA

B. C. TypuH, E. B. KocTpos,
tO0. 10. TaBpunetxko, A. ®. Caaaa,
E. A. UnbrownH, N. B. Ynxos

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Based Question Answering. In: Proceedings of the Twelfth
ACM International Conference on Web Search and Data
Mining (WSDM ’19). Association for Computing Machin-
ery, New York, NY, USA, 2019, pp. 105-113. (In Eng.) DOI:
10.1145/3289600.3290956
Lehmann J., Isele R., Jakob M., Jentzsch A., Kontokostas D.,
Mendes P.N. Hellmann S. Morsey M., van Kleef P, Auer
S., Bizer C. DBpedia - A large-scale, multilingual knowl-
edge base extracted from Wikipedia. Semantic Web. 2015;
6(2):167-195. (In Eng.) DOI: 10.3233/SW-140134
Kambhatla N. Combining Lexical, Syntactic, and Semantic
Features with Maximum Entropy Models for Extracting Re-
lations. In: Proceedings of the ACL 2004 on Interactive Poster
and Demonstration Sessions. Association for Computational
Linguistics, Barcelona, Spain, 2004, pp. 22-es. (In Eng.) DOI:
10.3115/1219044.1219066

Karsai L., Fekete A., Kay J., Missier P. Clustering Provenance
Facilitating Provenance Exploration through Data Abstrac-
tion. In: Proceedings of the Workshop on Human-In-the-Loop
Data Analytics (HILDA'16). Association for Computing Ma-
chinery, New York, NY, USA, 2016, Article 6, pp. 1-5. (In
Eng.) DOI: 10.1145/2939502.2939508

Kertkeidkachorn N., Ichise R. T2KG: An End-to-End System
for Creating Knowledge Graph from Unstructured Text.
In: AAAI-17 Workshop on Knowledge-Based Techniques for
Problem Solving and Reasoning WS-17-12, vol. WS-17. Asso-
ciation for the Advancement of Artificial Intelligence, 2017.
(In Eng.) Available at: https://aaai.org/ocs/index.php/WS/
AAAIW17 /paper/view/15129 (accessed 12.08.2019). (In
Eng)
Kushmerick N. Wrapper induction: Efficiency and
expressiveness. Artificial Intelligence. 2000; 118(1):15-68.
(In Eng.) DOI: 10.1016/S0004-3702(99)00100-9
Lin C.Y, Xue N., Zhao D., Huang X., Feng Y. (Eds.): Natural
Language Understanding and Intelligent Applications: 5th
CCF Conference on Natural Language Processing and Chinese
Computing, NLPCC 2016, and 24th International Conference
on Computer Processing of Oriental Languages, ICCPOL 2016,
Kunming, China, December 2-6, 2016, Proceedings, Lecture
Notes in Computer Science, vol. 10102. Springer Interna-
tional Publishing, Cham, 2016. (In Eng.) DOI: 10.1007/978-
3-319-50496-4

Lissandrini M., Brugnara M., Velegrakis Y. Beyond Mac-
robenchmarks: Microbenchmark-Based Graph Database
Evaluation. Proceedings of the VLDB Endowment. 2018;
12(4):390-403. (InEng.) DOI: 10.14778/3297753.3297759
Luo A, Gao S., Xu Y. Deep Semantic Match Model for Entity
Linking Using Knowledge Graph and Text. Procedia Com-
puter Science. 2018; 129:110-114. (In Eng.) DOI: 10.1016/j.
procs.2018.03.057
Malewicz G., Austern M.H., Bik A.J., Dehnert J.C., Horn I,
Leiser N., Czajkowski G. Pregel: A System for Large-Scale
Graph Processing. In: Proceedings of the 2010 ACM SIGMOD
International Conference on Management of Data. Associa-
tion for Computing Machinery, New York, NY, USA, 2010, pp.
135-146. (In Eng.) DOI: 10.1145/1807167.1807184
Manning C., Surdeanu M., Bauer ]., Finkel ], Bethard S., Mc-
Closky D. The Stanford CoreNLP Natural Language Process-
ing Toolkit. In: Proceedings of 52nd Annual Meeting of the
Association for Computational Linguistics: System Demon-

CoBpemeHHble
MHGopMaLUMOHHbIE
TexHonornu

n UT-o6pa3soBaHue

[27]

[28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

Tom 15, N2 4. 2019
A T

strations. Association for Computational Linguistics, Balti-
more, Maryland, 2014, pp. 55-60. (In Eng.) DOI: 10.3115/
v1/P14-5010

Miller G.A. WordNet: A Lexical Database for English. Com-
munications of the ACM. 1995; 38(11):39-41. (In Eng.) DOI:
10.1145/219717.219748

Mitchell T, Cohen W., Hruschka E., Talukdar P, Yang B., Bet-
teridge J., Carlson A., Dalvi B., Gardner M., Kisiel B., Krish-
namurthy J., Lao N., Mazaitis K., Mohamed T, Nakashole N.,
Platanios E., Ritter A., Samadi M., Settles B., Wang R., Wi-
jaya D., Gupta A., Chen X,, Saparov A., Greaves M., Welling .
Never-Ending Learning. Communications of the ACM. 2018;
61(5):103-115. (In Eng.) DOI: 10.1145/3191513

Moon C,, Jones P, Samatova N.F. Learning Entity Type Em-
beddings for Knowledge Graph Completion. In: Proceedings
of the 2017 ACM on Conference on Information and Knowl-
edge Management (CIKM ’17). Association for Computing
Machinery, New York, NY, USA, 2017, pp. 2215-2218. (In
Eng.) DOI: 10.1145/3132847.3133095

Muslea I., Minton S., Knoblock C.A. Hierarchical Wrapper
Induction for Semistructured Information Sources. Auton-
omous Agents and Multi-Agent Systems. 2001; 4(1):93-114.
(In Eng.) DOI: 10.1023/A:1010022931168

Nguyen N.T, Miwa M., Tsuruoka Y., Chikayama T, Tojo S.
Wide-coverage relation extraction from MEDLINE using
deep syntax. BMC Bioinformatics. 2015; 16(1):107. (In
Eng.) DOI: 10.1186/s12859-015-0538-8

Pan S.J.,, Toh Z., Su J. Transfer Joint Embedding for Cross-Do-
main Named Entity Recognition. ACM Transactions on
Information Systems. 2013; 31(2):1-27. (In Eng.) DOIL
10.1145/2457465.2457467

Peng N., Poon H., Quirk C., Toutanova K., Yih W-t. Cross-Sen-
tence N-ary Relation Extraction with Graph LSTMs. Trans-
actions of the Association for Computational Linguistics.
2017;5:101-115. (In Eng.) DOI: 10.1162/tacl\_a\_00049
Perozzi B., Al-Rfou R, Skiena S. DeepWalk: Online Learning
of Social Representations. In: Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery
and data mining (KDD ’14). Association for Computing Ma-
chinery, New York, NY, USA, 2014, pp. 701-710. (In Eng.)
DOI: 10.1145/2623330.2623732

Prokofyev R., Demartini G., Cudr’e-Mauroux P. Effective
Named Entity Recognition for Idiosyncratic Web Collec-
tions. In: Proceedings of the 23rd international conference on
World wide web (WWW ’14). Association for Computing Ma-
chinery, New York, NY, USA, 2014; 397-408. (In Eng.) DOI:
10.1145/2566486.2568013

Ribeiro L.ER., Saverese P.H.P, Figueiredo D.R. Struc2vec:
Learning Node Representations from Structural Identity. In:
Proceedings of the 23rd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining (KDD ’17). As-
sociation for Computing Machinery, New York, NY,USA, 2017,
pp. 385-394. (In Eng.) DOI: 10.1145/3097983.3098061
Rodriguez M.A., Neubauer P. Constructions from dots and
lines. Bulletin of the American Society for Information Sci-
ence and Technology. 2010; 36(6):35-41. (In Eng.) DOLI:
10.1002/bult.2010.1720360610

Rodriguez ].M., Merlino H.D., Pesado P, Garcia-Martinez R.
Performance Evaluation of Knowledge Extraction Meth-
ods. In: Fujita H., Ali M., Selamat A., Sasaki J., Kurematsu M.

ISSN 2411-1473 sitito.cs.msu.ru



V. S. Gurin, E. V. Kostroy,
Yu. Yu. Gavrilenko, D. F. Saada,
E. A. Ilyushin, I. V. Chizhov

RESEARCH AND DEVELOPMENT IN THE FIELD OF

NEW IT AND THEIR APPLICATIONS 943

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

Vol. 15, No. 4. 2019
-/

(Eds.) Trends in Applied Knowledge-Based Systems and Data
Science. IEA/AIE 2016. Lecture Notes in Computer Science,
vol. 9799. Springer, Cham, 2016, pp. 16-22. (In Eng.) DOI:
10.1007/978-3-319-42007-3_2

TangJ., Qu M., Wang M., Zhang M., Yan J., Mei Q. LINE: Large-
scale Information Network Embedding. In: Proceedings of
the 24th International Conference on World Wide Web (WWW
’15). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, CHE, 2015, pp.
1067-1077. (In Eng.) DOI: 10.1145/2736277.2741093
Tianlei Z., Xinyu Z., Mu G. KeEL: knowledge enhanced en-
tity linking in automatic biography construction. The Jour-
nal of China Universities of Posts and Telecommunications.
2015; 22(1):57-64, 71. (In Eng.) DOI: 10.1016/S1005-
8885(15)60625-2

Tran PV. Learning to Make Predictions on Graphs with
Autoencoders. In: 2018 IEEE 5th International Confer-
ence on Data Science and Advanced Analytics (DSAA),
Turin, Italy, 2018, pp. 237-245. (In Eng.) DOI: 10.1109/
DSAA.2018.00034

Wang L., Cao Z., de Melo G., Liu Z. Relation Classification via
Multi-Level Attention CNNs. In: Proceedings of the 54th An-
nual Meeting of the Association for Computational Linguis-
tics (Volume 1: Long Papers). Association for Computation-
al Linguistics, Berlin, Germany, 2016, pp. 1298-1307. (In
Eng.) DOI: 10.18653/v1/P16-1123

Wang Z., Zhang ]., Feng J., Chen Z. Knowledge Graph and
Text Jointly Embedding. In: Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, Doha,
Qatar, 2014, pp. 1591-1601. (In Eng.) DOI: 10.3115/v1/
D14-1167

Wu Y.C, Fan TK, Lee Y.S,, Yen S.J. Extracting Named Entities
Using Support Vector Machines. In: Bremer E.G., Hakenberg
], Han EH., Berrar D., Dubitzky W. (Eds.) Knowledge Discov-
ery in Life Science Literature. KDLL 2006. Lecture Notes in
Computer Science, vol. 3886. Springer, Berlin, Heidelberg,
2006, pp. 91-103. (In Eng.) DOI: 10.1007/11683568_8

Yan ], Wang C., Cheng W,, Gao M., Zhou A. A retrospective
of knowledge graphs. Frontiers of Computer Science. 2018;
12(1):55-74. (In Eng.) DOI: 10.1007/s11704-016-5228-9
Zhang D., Li M,, Jia Y., Wang Y., Cheng X. Efficient Parallel
Translating Embedding for Knowledge Graphs. In: Pro-
ceedings of the International Conference on Web Intelli-
gence (WI °17). Association for Computing Machinery,
New York, NY, USA, 2017, pp. 460-468. (In Eng.) DOI:
10.1145/3106426.3106447

Zhao S-L., Hao R-X,, Stewart I. The Generalized Three-Con-
nectivity of Two Kinds of Cayley Graphs. The Computer Jour-
nal. 2019; 62(1):144-149. (In Eng.) DOI: 10.1093 /comput-
er_journal /bxy054

Zhou D., Zhong D., He Y. Biomedical Relation Extraction:
From Binary to Complex. Computational and Mathematical
Methods in Medicine. 2014; 2014:298473. 18 pp. (In Eng.)
DOI: 10.1155/2014/298473

Zhou G.D., Su J. Named entity recognition using an HMM-
based chunk tagger. In: Proceedings of the 40th Annual Meet-
ing on Association for Computational Linguistics (ACL '02).
Association for Computational Linguistics, USA, 2002, pp.
473-480. (In Eng.) DOI: 10.3115/1073083.1073163

ISSN 2411-1473 sitito.cs.msu.ru

Submitted 12.08.2019; revised 15.11.2019;
published online 23.12.2019.
Ilocmynuaa 12.08.2019; npunsima k ny6aukayuu 15.11.2019;
onybaukosaHa oHaatiH 23.12.2019.

About the authors:

Vladislav Gurin, Postgraduate student of the Mathematics and
Mechanics Faculty, Researcher, Saint Petersburg State University
(7 Universitetskaya Emb., St Petersburg 199034, Russia), ORCID:
http://orcid.org/0000-0002-2996-6226, vlad.gurin@gmail.com
Eugene Kostrov, Researcher, Saint Petersburg State University
(7 Universitetskaya Emb., St Petersburg 199034, Russia), ORCID:
http://orcid.org/0000-0001-9402-5337, kostrov.e@gmail.com
Yuliya Yu. Gavrilenko, Master’s degree student of the Facul-
ty of Cosmic Research, Lomonosov Moscow State University (1,
Leninskie gory, Moscow 119991, Russia), ORCID: http://orcid.
org/0000-0002-8704-6030, gavrilenko.yulia@bk.ru

Daniel F. Saada, Master’s degree student of the Faculty of Compu-
tational Mathematics and Cybernetics, Lomonosov Moscow State
University (1, Leninskie gory, Moscow 119991, Russia), ORCID:
http://orcid.org/0000-0003-4959-8093, daniel.saada@gmail.com
Eugene A. Ilyushin, Postgraduate student, Senior Software Devel-
oper of the Laboratory of Open Information Technologies, Faculty
of Computational Mathematics and Cybernetics, Lomonosov Mos-
cow State University (1, Leninskie gory, Moscow 119991, Russia),
ORCID: http://orcid.org/0000-0002-9891-8658, eugene.ilyushin@
gmail.com

Ivan V. Chizhov, Associate Professor of the Department of Infor-
mation Security, Faculty of Computational Mathematics and Cy-
bernetics, Lomonosov Moscow State University (1, Leninskie gory,
Moscow 119991, Russia), Ph.D. (Phys.-Math.), ORCID: http://orcid.
org/0000-0001-9126-6442, ichizhov@cs.msu.ru

All authors have read and approved the final manuscript.

I'ypun Biaaucias CepreeBudY, acnUpaHT MaTeMaTHKO-Mexa-
Hudeckoro ¢axysbTeTa, UcciaefoBaTeb, CaHKT-IleTep6yprckuit
rocyapcTBeHHbl yHUBepcuteT (199034, Poccus, r. CaHkT-Ile-
TepOypr, YHuBepcuTeTckass Hab. J. 7), ORCID: http://orcid.
org/0000-0002-2996-6226, vlad.gurin@gmail.com

KoctpoB EBrenuii BukropoBuy, rcciegoBaresb, CaHkT-IleTep-
Oyprckuil rocysapctBeHHbll yHuBepcuteT (199034, Poccus, T
CaskT-IleTepGypr, YHuBepcuteTckass Hab., 4. 7), ORCID: http://
orcid.org/0000-0001-9402-5337, kostrov.e@gmail.com
lFaBpuienko l0yma IOpbeBHa, MarucTpaHT Qaky/nbTeTa KOCMU-
YeCcKHUX uccje0BaHui, MOCKOBCKHUH roCylapCTBEHHbIN yHUBEPCH-
TeT UMeHU M.B. JlomoHocoBa (119991, Poccus, r. MockBa, JIeHUH-
ckue ropsl, A. 1), ORCID: http://orcid.org/0000-0002-8704-6030,
gavrilenko.yulia@bk.ru

Caaga /lanuesib ®UpacoBHY, MarucTPaHT ¢aKy/1bTeTa BbIYHC-
JINTEJIbHOW MaTeMaTHMKW U KHOEepHeTHKH, MOCKOBCKHUH Trocy-
JlapCTBeHHbIH yHUBepcuTeT uMeHH M.B. JlomoHnocoBa (119991,
Poccus, . MockBa, JlenuHckue ropel, A. 1), ORCID: http://orcid.
org/0000-0003-4959-8093, daniel.saada@mail.ru

WiablomuH EBrennii A1IbGUHOBHY, aCIUPAHT, BeAyIUI Iporpam-
MUCT J1JaGOpaTOPUM OTKPBITBIX UHPOPMALMOHHBIX TEXHOJIOTHH,
dakysbTeT BBIYUCIUTENbHON MaTeMaTHKH U KUOepHeTUKH, Mo-
CKOBCKMHM TOCyAapCTBeHHbIN yHUBepcuTeT uMeHH M.B. JlomoHo-

Modern
Information
Technologies
and IT-Education




NCCNEOOBAHUA U PASPABOTKW B OB/TACT HOBbIX B. C. TypuH, E. B. KocTpos,

~ - t0. t0. FaBpunerko, . ®. Caaaa,
NHOOPMALMOHHBIX TEXHOMOT W 1 UX TTPUTOXEHWIA E. A Unblownh, V. B. Ynkos

%44

coBa (119991, Poccus, r. MockBa, JleHuHckue ropsl, 4. 1), ORCID:
http://orcid.org/0000-0002-9891-8658, eugene.ilyushin@gmail.
com

YmxoB WBaH BiagumMupoBuyY, JoueHT Kadeapbl MHoOpMaLU-
OHHOH 6e30MacHOCTH, GpaKy/JbTeT BbIYUCIUTENbHON MaTeMaTHUKU
U KUOepHeTHKH, MOCKOBCKHUH TOCyJapCTBEHHbIH YHUBEPCUTET
nMmeHu M.B. JlomoHocoBa (119991, Poccus, r. MockBa, JleHMHCKHE
ropel, A. 1), kauauzat ¢usuxko-mateMaruyeckux Hayk, ORCID:
http://orcid.org/0000-0001-9126-6442, ichizhov@cs.msu.ru

Bce asmopul npoyumanu u 0006puau 0KoHHamMeAbHblil apuaHm
pyKonucu.

CoBpemeHHble

MH(OpMaLMOHHbIE .
TeXHONorum Tom 15, N2 4. 2019 ISSN 2411-1473 sitito.cs.msu.ru

n UT-o6pasosanve



