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Abstract

The paper is devoted to the problem of multi-purpose control law synthesis for marine vessels, which
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AHHoOTanusa

Pa6oTa IMOCBdAlleHAa CUHTEe3y MHOroLe/JieBoro yrnpaBJjeHus B 3a/ia4e JUHAMUYEeCKOro nNo3MiuoHupo-
BaHUA MOPCKHUX CyAOB C y4€TOM MOPCKOI'O BOJIHEHHA. COBpeMeHHbIe CHUCTEMbl MOPCKOTI0O JUHAMU-
YEeCKOro MnOo3vMiiMOHUPOBAHUSA, KaK MPaBUJIO, CTPOATCA HA OCHOBE HeJIMHEWHBIX aCUMIITOTHYECKUX
Haﬁﬂ}OAaTeHeﬁ, BOCCTAaHABJIMBAOIIUX CKOPOCTU CyJHA. B cTraTbhe [OMOJHUTENBHO K HaGn}oaaTemo
npejsiaraeTcs UCroJib30BaThb LLI/IHaMI/I'{ECKPIﬁ KOppEeKTOop, peann3yi01.um71 3KOHOMUWYHBIN pexuM iBU-
JKeHHdA CyiHa C LieJIbIO CHUXXEHUSA 06].].161‘0 pacxoga TOIJIMBA U NIpeAOTBpalleHHuA U3HOCA HUCIIOJIHU-
TeJIbHbIX MEXaHHU3MOB. ,Z[J]H ,E[I/IHaMPl‘-IECKOI‘;I HaCTpOﬁKH KOpPpPEeKTOpa MCII0JIb3yeTCA OLl€HKa OCHOBHOH
FapMOHUKHU BO3MYyLlalOLIEero BOSAeﬁCTBHH. ﬂJIH 9TOro IoJiydeHa perpecCMoHHad MoJeJib IepBOro
nopdanka, HEeW3BeCTHBIN napameTp KOTOpOﬁ 3aBUCHUT OT OCHOBHOMW YaCTOThI MOPCKOI'O BOJTHEHHUS. Ha
OCHOB€ MeTOoJa rpaJUEeHTHOTrO CITyCKa CTPOUTCA OL€HKA YaCTOThI, OGECHE‘{HBH}OLH&H 3KCIIOHEeHIUaJb-
HYI CXOOAUMOCTb OIIUOKHU OLI€HHWBAHHWA K HYJIIO. HpI/lMeHP[MOCTb u S(IJCIJGKTPIBHOCTB npeaJsoKeHHOro
noAaxoza nNporuJiJIlOCTPUPOBaHbI HAa IPAKTUYECKOM IIpHMepe CHHTe3a CUCTeMbl JIUHAMUYECKOI'0 103U~
LIUOHWUPOBAHHUA.

KiloueBble C/I0Ba: guHaMUYeCKOe MO3WIMOHMPOBAHWE, 3aKOH YIPABJEHHMS, YCTOHYMBOCTD,
BHEILIHWE BO3MYIIIEHHWE, OIleHKa YaCTOThI.

J1 NUTUPOBAHMA: Begsikoa A. 0. MHOTO1e/IeBO# 3aKOH YIpaBJIeHUsI MOPCKUMHU CHCTEMaMK
JMHAMHAY€eCKOro MO3WLMOHUPOBAHUSA MO/ BJAUsHHEM Mopckoro BosiHeHus / A. O. BepsikoBa. - DOI
10.25559/SITIT0.16.202001.72-80 // CoBpeMeHHble MHPOpManMOHHbIE TexHOJOoTUH U UT-06pa3o-
Banwue. - 2020.-T. 16, Ne 1. - C. 72-80.
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Introduction

The problem of dynamic positioning (DP) is one of the most significant
problems in marine control. Modern DP systems are widely used in
different areas such as hydrography, inspection of marine construction,
wreck investigation, underwater cable laying, and so on [1-4].

There are a wide spectrum of publications connected with
different questions of DP-control systems design [1-3, 5]. The
approaches in [3, 5] propose the structure of DP control law, using
nonlinear asymptotic observers, and provide sufficient conditions
for global asymptotic stability and validate the possibility of
independent tuning for observers and state control laws. In the
paper [1], this approach is modified to increase flexibility using
the theory of multi-purpose control law synthesis [6-7].

This work is devoted to design an optimal control for providing
desired dynamic behaviour of the closed-loop system. The main
goal of the dynamical corrector is to suppress the high-frequency
signals in the actuators input signals. The slight reaction of the
actuators to relatively high frequencies occurring in the sea wave
process is achieved. In contrast to [1], where the disturbance main
frequency value should be known, in this paper, it is estimated
online. The advanced results of frequency estimation provide global
exponential convergence of the estimation error to zero. This
property is guaranteed for all initial conditions, valid parameters of
an algorithm and a measured signal. Such results are described in
[8-10]. In this paper a parametrisation proposed in [11] is used to
obtain the first-order regression model, where an unknown
parameter depends on the external disturbance frequency. The
standard gradient approach is used to estimate the regression
model parameter value. The frequency estimation error converges
to zero exponentially fast. The described algorithm does not require
measuring or calculating derivatives of the input signal.

This paper is organised as follows. The problem is formulated in
Section 1. In Section 2, the equations of DP vessel motion are
presented, the special structure of control law is introduced, and the
problem of separate filtering correction is posed. Section 3 presents
the computational procedure to implement a filter tuning onboard.
In Section 4 we describe the frequency estimation algorithm and
prove an exponential convergence of the estimation error to zero.
The efficacy of the proposed approach is demonstrated through a
set of numerical simulations, which are described in Section 5.

Mathematical model and problem
formulation

Consider the 3-DOF horizontal plane nonlinear model [12] of
DP-control plant:

Mv(t) = =Dv(t) + t(t) + d(t),

n(@® = Rmv(),

y(®) =n(t) +14, (),

u(®) x(6) (1)
v() = (v, n®)=|y® |
() P(E)

where v(t) € R?® is the generalised velocity vector defined in a
vessel-fixed frame Ox,y,z, that includes linear velocities u(t),
v(t) and angular velocity r(t); n(t) € R® is the joint vector
relative to an earth-fixed frame Oxyz that includes position
parameters (x(t),y(t)) and the heading angle ¥(t); (t) € R®
is a control action generated by the propulsion system; y(t) € R?
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is a measurable output signal; d(t) € R® is a disturbance, which
describes slowly varying wave, current and wind loads; 7,(t) €
R3 is a measurement error; M € R3*3, D € R®*® are positive
definite matrices with constant elements, and M = MT; R(n) is
a orthogonal rotation matrix:

cosyp —siny 0
R =RW) = [sinl,b cosy 0]. (2)
0 0 1

The objective is to design a nonlinear dynamic control law of the form
2(0) = f(z,1,y), )
(6 = g(z.y),

where z(t) € R' is a state space vector of the controller, [ € Z,.
The following design requirements must be satisfied for the
closed-loop system (1), (3):

1. The system must have the only one equilibrium point, such
that v(t) =0, n(t) =77, 4)

2. where n*=[x* y* yY']T€R® is the desired constant
position vector.

3. The equilibrium point must be globally asymptotically stable.
4. The controller (3) must provide an integral action with
respect to the LF components of the bias vector d(t).

5. The controller (3) must provide a filtering action to the
control signal 7(t) for the system (1), (3) with respect to the
high frequency components.

Setting the DP-controller with dynamical
corrector

Let us construct the nonlinear asymptotic observer to get
estimates 7(t) and 7j(t) ofthe state vectors v(t) and n(t) of
the model (1) correspondingly. The observer should provide a
global asymptotic convergence of estimation errors 7V(t):=
v(t) —V(t) and 7(t):=n(t) —1(t) to zero in the absence of
external disturbances and interferences.

A nonlinear asymptotic observer was proposed in the paper [3]:
Mi(6) = =D(6) + 7(8) + R" MK (r(®) = A(D)), )
() = ROV() + K, (y(t) = A(1)),
where K; € R¥3, K, € R®3 are constant matrices, which are
chosen to provide global exponential stability (GES) of the zero
equilibrium position of the following system in the absence of
external disturbances d(t) =0, 1,(t) = 0:
My(t) = =D¥(t) = R" (K i(0), )
(t) = R()V(E) — K7 (D).

A sufficient condition for globally exponentially convergence of the
errors ¥(t) and 7j(t) to zero is a diagonal structure and positive
definiteness of the matrices K; and K, inaccordance with [3].
By analogy with the general ideas are proposed in [3, 5, 13], we
construct the feedback control law t(t) in the following form:
Tap(t) = —Ka9(t) — R (0K, ((t) — "),
X () = axp(t) + BA(0),

T (8) = yxp(8) + pf) (1),

T(t) = Tap(®) + 7, (D),

where po(t) is a part of control, which stabilised the desired
equilibrium v(t) =0, n(t) =n* for the closed-loop system (1),
(7); t7(t) is a dynamical corrector output signal; K, € R3*3,
K,€ER¥™, aeR¥, BeR™, yeR™, neR>™ are
constant matrices; the matrix a is Hurwitz; xf(t) € R! is the

7

state space vector of the corrector.
Note that the dynamical corrector (7) can be rewritten in terms of
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the transfer function by applying the Laplace operator L{-} to

(7):

L{zy (O} = F()L{H(O}, ®)
F(s)=y(Ips —a) "B+ 4,

where I, is the identity matrix with [ x ! dimension, s € C!
is a complex variable.

In accordance with the paper [5], the positive definiteness of the
symmetric matrices K, and K, guarantees that the equilibrium
position v(t) =0, n(t) =n" of the closed loop system (1), (7)
with 7(t) = 74,(t) is global asymptotically stable (GAS) in the
noise-free environment d(t) =0 and 7,(t) =0.

At this point we have designed a GES observer and a GAS state
feedback controller. In [1] it was proved that a separation principle
holds for the overall system: the estimation, tracking error, and the
correction dynamics can be decoupled yielding a cascaded system.
The estimation, position error and the correction dynamics can be
analysed separately. Therefore, if the corrector is asymptotically
stable, then parts of the controller can be tuned independently.

Let us obtain a requirement for the transfer matrix F(s) of the
dynamical corrector (7) that provides astatism property for the
closed-loop system with respect to the position error vector
7"(t):=n(t) —n* for any external disturbance with constant or
slowly varying components, additionally supposing that 7, (t) = 0.
Suppose that the error equations for a constant external
disturbance d(t) =d, € R®

My(t) = =DU(t) — R"(Kifi(t) + do, ©)
(1) = R(y)V(t) — K7 (L),

have an equilibrium point with the corresponding heading angle
P (&) = o

Proposition 1 If the transfer matrix F(s) satisfies the equality

F(0) = Ky = =(D + K)R" (YK, — RT (") (K, + Ky, (10)
and if the following condition holds

_ _pT
det [R ? i —22 (II’O)Kl] %0, (11)

where 1, is a value of the heading angle in the equilibrium point,
then the system (5), (7) is astatic with respect to the position error
vector *(t) =n(t) —n* forany d, € R3.

Proof. Let us consider the equilibrium point equations from (9):

0 =—D¥(t) — R" (o) Kifi(t) + do, (12)

0 =R(Wo)V(t) — K211 (1)
If the condition (11) holds, then the linear nonuniform system
(12) has a unique solution (¥} 77)T relative to an unknown
vector (¥#7(t) AT(£))T . Substituting the equilibrium point
@& AT to the controller equations (5), (7) yields
0= —D(t) + 7(t) + R" (Yo)Kilo,

0 =R(Wo)V(t) + Kajo,

T(t) = —Ka¥(t) — R" (o) K, (1(£) = ") + F (0)7o,
where in the transfer function of the dynamical corrector F(p)

(13)

for the equilibrium position we assume p = % =0

The matrix F(0) canbe expressed explicitly from (13):
F(0) = =(D + Ka)R" (¥0)Kz — RT (%) (K, + K1). (14)
Substituting 1, = y* gives (10), which completes the proof.

Remark 2 The simplest way to satisfy the requirement (10) is using
a corrector with no dynamics, i.e. F(s) = K.

The main purpose of the dynamical corrector F(s) is to support
an economical regime of motion that provides a filtering effect for
some central frequency w, of the wave spectrum n,(t) =
A, sinwyt for the control signal driving a rudder actuator, where

Vol. 16, No. 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru

A, € R? is the vector of magnitudes. For this case it is possible to
define the intensity functional J(F) = ||A;(wg,Na, F)I|, (15)
where A, € R® is the vector of control actions magnitudes for
the closed-loop system (1), (3) with the disturbance 7, (t). This
vector corresponds to the time moment of the DP-process with 7(t) =
N When the heading angle has the value (t) = ,.

The filter transfer matrix F(s) should satisfy the equality
[1A-(wo, 0, )| = 0. (16)
Rewriting the system (5) with feedback control (7) for the new
variables 7(t) and 7*(t) =7(t) —n* gives

V(t) = =MD + K)9(t) — M7 RT (K, 7" (£) +

+M 71T (8) + MTTRT (K (7(6) + 1, (1)),

7°(6) = Ro(6) + K, (10 + 1, (©) + 7, (D), (17)

©(t) = —Kq0(t) — RT(K, 77" (t) + F (p)7j(t),

y(©) =n(t) +nw(t).

The system (17) can be rewritten in matrix form

oI V(t) () + 1, ()

[n Ol=am 1]+ s [0 1) -
_ P(t) () + 1, (t)

() = () [ﬁ*(t)] +0@)| o |

where
_[-M7' (D +Ky) —MTRT(DK,

o [R(TI) O3x3 LXG '
_[-MTRT(mK, M7!

B(m) = [Kz @m]m, (19)

Cm) =[~Ka —R"(mK,
D= [@3x3 H3x3]

]3><6’

’

3x6
where Q3,5 isthezero matrix with 3 X 3 dimension.

Let us fix some value of the heading angle y) =1, and the
corresponding state space vector 7,. Applying the Laplace
operator to (18), we get the transfer function model

Lz(t) = P(s,14) [ﬁzf(g; Uw(t)] =

=1nGna) P nl [y ")

P(s,1mq) = C(Ma) (LgxeS — A(na))_lB(na) +D,

(20)

where P(s,n,) € R3¢ is a block matrix consisting of blocks
P,(s,my) € R®3 and P,(s,n,) € R332,

Proposition 3 If the block P,(s,n,) of the matrix P(s,n,)
satisfies the condition

detP,(s,n,) # 0, (21)
then the transfer matrix F*(wq,n,) Such that condition (16) is
satisfied.

Proof. From (8) and (20) we obtain

L)} = (Pu(s,ma) + P2(s,n)F ()DL +nu (O} (22)
Choosing F(s) as
F*(wo,Mq) = —P; " (jwo, Ma)P1(jwo, Na), (23)

we get the filter tuned to the frequency w, and the angle ¥,
under condition (21), which is the desired conclusion.

Filter tuning procedure

In this section we construct the transfer matrix F(s) of the
corrector, which satisfies the condition (23) and provides the
stability and integral action with respect to disturbances, i.e.,

Modern
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F(0) = Ka, F(jwo) = F*(wo,Na)- (24)
The equations (24) can be rewritten for vector components
L{t,(t)} separately

Fi(0) =Ky, Fi(jwo) = F(wo,ma), i=13 (25)
where
Fi(s) Kny F (w0, Ma)
F(s) = [F2(8)|, Ka=|Knz|, F (wo,Ma) = |Fs(wo,Na)|. (26)
F3(s) Kz F3 (w0, Ma)
Let us rewrite transfer function F;(s) as
Fi(s) = ¥i(lpuos — @) ' Bi+ oy, =13, (27)

where a; € R?*? are Hurwitz matrices, f; € R¥*3, y; € R1*?,
u; € R™3 are constant matrices, i = 1,3.
Taking into account (27) and (25), we obtain
i By + 1y = Kai

Yillaxowo — @) 7' + i = F{ (wo,m0), 1=1,3.
Let us select any Hurwitz's matrices a; and matrices y; so that
the condition of full observability for (a;,y;) is satisfied at i =
1,3. The system of matrix equations (28) are solving by equating
real and imaginary parts:

—vie; B + by = Kni

YiRe{(lzxowo — @)™} + 1y = Re(F; (wo,ma)}, i=13. (29)
Yidm{(lx2wo — @) 3B = Im{F; (w,14)}-

Subtracting the second expression from the first (29), we get
YilRe{( o000 — @)™} + a7 18 = Re(F; (00,120} — Kair =13,
Yidm{(lz w0 — @) 7' }B; = Im{F; (wo, Ma)}-

(30)

The matrices f;, i = 1,3 are found from (30):
n%wamequ*ﬁwwwm—m

(28)

i(Wo, = X _ * ,
Fi(erTa) Ydm{(laxawo — @)™} Im{F; (w0, Ma)}
i=13. (B31)
The matrices y;, i = 1,3 are expressed from (29):
1i(wo,na) = Kni +viai *Bi(wo,na), @ =13 (32)

Finally, all the matrices «, f, y and u are obtained, which
allows us to construct the optimal filtering corrector F(s),
adjusted to the frequency w,, in the following form:

a; Ozx2 O3z B (w0, Ma)
a=10;, a, 032 , B(wo, M) = |B2(wo,M4a) ,
Oux2 Oy az 66 B3(wo,Ma) 6x3 (33)
Y1 Ozx2  O3x2 U1 (@o,Ma)
Y =|02¢2 72 O3x2 , (o, Ng) = |H2(wo,Ma)
Ozx2 Oz 73 3%6 Uz (wo,Mg) 3x3

External disturbance frequency estimation

In this section we find the frequency estimate @,(t) for external
harmonic  disturbance 1,(t) = 4,sinw,t that provides
exponential convergence of the error @,(t):= wy— @y(t) to
zero and tune-up the dynamical corrector (7).

Let us consider the difference between the output signal y(t) =
n(t) +n,(t) of the model (1) and the estimate 1j(t), obtained
from a non-linear observer (5) with DP controller (7):

(@) =y =) =7() + 14 (0. (34)
Due to globally exponentially convergence of the error 7j(t) to
zero, the signal #(t) has the following form:

J(t) = A,sinwgt + £(t),

where ¢(t) is the exponentially decaying function.

(35)

CoBpemeHHble
MH(OPMaLMOHHbIE
TeXHonornu

n UT-o6bpa3oBaHune

Assumption 1. The lower and upper bounds on the signal
frequency w, are known and equalto w and w, where
0<w<wy<w. (36)
The assumption is not particularly restrictive. It is required that
value of the frequency be distinct from zero and less than infinity.
Nevertheless, bounds can be chosen to contain all possible values
in each specific case.
Neglecting the exponentially damped term, let us consider a signal
Y(t) = A,sinwyt and two auxiliary transport delay blocks with
the following outputs

_(Y(t—=h), ift=h,
L= {o, ift <h,

Y(t —2h), ift=2h,

L® = {0, ift < 2h,
where h € R, is the chosen delay constant.
The signals (37) can be rewritten explicitly as
Yi(t) = A,cqsinwgt — A, s1C05W0t,
Y,(t) = A, cosinwgt — Ay, S,c05wqt,
where
¢, = coswh, ¢, = cos2wh =2c? —1,
s; = sinwh, s, =sin2wh = 2¢;s;.
Subtracting (38) from Y(t) multiplied by ¢; we obtain
c Y(t) =Y (t) = 514,050t (40)
Similarly, subtracting Y,(t) from Y(t) multiplied by ¢, =
2¢? —1 gives

37)

(38)

(39)

(2c2 — DY (t) — Yyo(t) = 2¢;5,4,,c0sw,t. (41
Subtracting (41) from (40), multiplyingby 2c,, we get

YO +Y(0) = 26Y,(0). (42)
Equation (42) describes the linear regression model

W) = c9(0), (43)
where Y(t) =Y(t)+Y,(t) is the regressand, c¢; is the

unknown parameter, and ¢(t) = 2Y;(t) isthe regressor.
Parameter c¢; can be estimated from equation (43) using
standard gradient descent method [14].

Proposition 3  The estimation algorithm

&) =Ko () — &), (44)

where K € R, is the chosen constant, provides exponential

convergence of the estimation error to zero

ley = E1(O)] < bye™ ™,

where b, and a, are positive constants.

Proof. By [14], if the function ¢(t) is bounded and persistently

exciting (PE), ie. there exist positive constants T and y such

that

T e@dr=y, ve>o, (46)

then algorithm (44) provides exponential convergence of the

estimation error to zero.

Signal ¢(t) is the sum of sine and cosine functions multiplied by

constant coefficients, so it is bounded. Let us show that signal

@(t) isalso PE. Consider the following integral

ftHT @ (r)dr =4 ftHT Y2(r)dr = 442, ftHT sin?(w,r — woh)dr =

= 242, f:” 1 — cosQRwyr — 2woh)dr = 47
t+T A%, r2wo(t+T)—2woh

= ZAE) f dr — _‘: meoot(—Zm)h ’

t
=24%T + :’isin(Zwot — 2wgh) — %sin(Zwo(t +T) — 2wyh).
0

(45)

cos(r)dr =

If T=n/w, and w = w, then

f;” @2 (r)dr = % >0, Vt>0. (48)
Tom 16, N2 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru
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Equation (48) shows that PE condition (46) is satisfied with y =

2mAZ .
nm“’, T = wl and the proof is complete.
0

We can obtain the frequency estimate wy(t) from ¢;(t):
(t) = zarccos(, (£))- (49)
Since the domain of the function (49) is the subset of R, it is
necessary to put some restrictions on ¢, (t). Under Assumption 1,
the possible values of ¢, satisfy the inequality
coswh < ¢; < coswh. (50)
To provide this property to ¢;(t), we can use gradient algorithm
with projection [14]
¢(t), if ¢,(t) > coswh and c,(t) < coswh,
orif ¢,(t) = coswh and ¢(t) = 0,
orif ¢,(t) = coswh and ¢(t) <0,
0, otherwise,
() = Ko () — & (0)e(@D).
which retains all properties that are established in the absence of
projection.
From Proposition 3 follows that ¢;(t) converges exponentially
to c;. However, for @,(t) this is not obvious.

G () = (51)

Proposition 4 If ¢,(t) converges to c, exponentially fast, then
@, (t) converges exponentially to zero and objective
lwg — @o(O)] < bye™®t, a,, b, ER,

is fulfilled.

Proof. The arccosine function on [cosmh, cosgh] is Lipschitz [15]

(52)

larccos(x;) — arccos(x;)| < L|x; — x,], (53)
where Lipschitz constant L can be calculated as follows
1
L= .
sinw (54)
Combining (49), (45) and (53) gives
|@o(O)] < Llcy — &,(0)] < bye™®, (55)

where b, = Lb,, a, = a,, which is the desired conclusion.

For linear approximation of the system (1), (3), the global
asymptotic convergence of the desired equilibrium position n* is
preserved using the obtained frequency estimate @, (t).

Simulation results

In this section, we present the simulation results that illustrate the
efficacy of the proposed DP control low wits the dynamical
corrector. All simulations have been performed in MATLAB
Simulink.

Consider the DP-control system for the vessel 'Northern Clipper’
(the length is L =76.2 m and mass is m = 4.59 - 10° kg) with
the model (1), taken from [3]. The constant matrices in the
equation (1) are the following:

5.31-10° 0 0

M= [0 8.28-10° 0 ].
0 0 3.75-10°
5.02-10* 0 0

D=0 2.72-10° —4.39 - 106]-
0 —4.39-10° 4.19-10°

The matrices K; and K, of the observer (5), and the matrices
Kq and K, ofthe controller (7) is chosen in accordance with [3]

01 0 0 1.1 0 0

K,=[o 01 0 |, K,=|0 11 0 ]
0 0 001 0 0 1.1
0.0207 0 0

K;=|0 0.0155 0.0439]-108.
0 0.0439 4.05
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0.0213 0 0
K, =10 0.00990 0 -107.
0 0 4.49

Let us choose the Hurwitz matrices «;, for izﬁ with the
eigenvalues s;; = —0.150, s;, = —0.152, s,; = —0.120, 55, =
—0.128, s3; = —0.178, s3, = —0.180 and the matrices y;, i =
1,3 for the parts (27) of dynamical corrector (7) so that the

condition of full observability for (a;,y;), i = 1,3 is satisfied
1

“1:[0—0.0228 10.302]' “2:[20.0154 —0.0248)

a :[0 1 ]
37 1-0.0320 —0.358/)"
vi=[0 1], i=13.

Desired position and control mode
switching

The desired position vector is equal to
[10 20 3017,

et v T :{

m=k oy ¥l [30 30 15]",

ift<500s, ., —
=13.
if t >500s, '

(56)

To illustrate that the controller (7) provides the desired features
to the closed-loop system, we use a wave disturbance 7,(t) =
Mo1(® Mu2(®) Nws(@®]T  of the ship with harmonic
components

Nwi(t) = Ayisinwgt, = 1,3, (57)
where w, = 0455, A4, =3-10°, A,, =3-10°, A, =20-
10°. Filtering action to the control is shown by comparison with
the astatic corrector of the form

7,(8) = Ky li(8) + 10, ()], (58)
which works until 200th second. The controller (7), (58)
provides an integral feature, but loses the filtering one. At time
t =200 s, which is marked in figures 1-3 by the black dashed
line, we turn on the dynamical corrector (7) instead of (58) and
observe a desired effect of filtering. The signal t(t) with
components T;, [ = ﬁ are shown in the Figure 1. The control
signals is essentially different for control mode (58) and (7).

In Figure 2 the frequency estimate is depicted. The estimate
@y (t) is exponentially converges to the true value w.

Figure 3 shows the results of the vessel motion simulation for the
considered closed-loop DP system.

*

1000
t [s]

Fig. 1. Control action components
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Fig. 2. The frequency w, of external disturbance 7,(t) and estimate @,(t)
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External disturbance frequency changing

Let us consider the simulation results for the case with external
disturbance frequency changing and presence of additive noise:

_ [Agisinwgt +6;(t), ift<300s, . -—
mﬂo_&mmm¢+&a)ihz3msl_L& (59)
where w, =0.455, w; =03, A, =3-10°% A,,=5"10°,
Ayz =20- 108, the additive noise 85(t) =

[6:(8) 8,(t) 685(t)]7, which components are simulated as a
uniformly distributed process ranging within [—0.2-4,,;,0.2-
Ay, i =1,3. The components of the signal 7, (t) are shown in
Figure 4. Frequency change time t = 300s is marked on Figures
4-7 by the black dashed line.

The output signal y(t) of the model (1), the estimate 7j(t),
obtained from a non-linear observer (5) which are closed by the
DP controller (7) and its difference 7(t) (35) are depicted in
Figure5.

x107

N (t)
2 ——a(t)
o — w3 (t)
I
Il
2 i

)
o
——

0 100 300 400 500 600
t [s]
Fig. 4. External disturbance components
i —y(?)
0.8 1 ondE!
i 7(t)
= i — (1)
= 0.6 | 1
> ANN ’\ AN | ........ PY.Y.Y.
= VVVvvvvvvvvv IR
-~
= 0.4 - : 1
= I
~~ 1
1
1
1

0 100 200 300 400 500 600
t [s]
Fig. 5. The output signal y(t), the estimate 7j(t) and its discrepancy ¥(t)

In Figure 6 the frequency estimate is depicted. Figure 7 shows the
control actions 7;(t), 7,(t), and 75(t) for the mentioned
process. In this case, we obtain almost the same curves as in
Figure 3, which presents the positioning processes.
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Conclusions

The problem of dynamic ship positioning under the action of sea
wave disturbances for nonlinear vessel model was considered. The
approach proposes the specialised structure of nonlinear DP-con-
trol law, and filtering corrector synthesis method, which is oriented
to onboard implementation.

To estimate the external disturbance main frequency, we obtain the
first-order regression model. The standard gradient approach is used
to estimate the regression model parameter value. It is shown that the
frequency estimation error converges to zero exponentially fast. The
set of simulations illustrates the efficacy of the proposed approach.
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BeaskoBa AHactacusa OJ1eroBHa, acCUCTEHT Kadepbl KOMIbIO-
TEPHBIX TEXHOJIOTUH U cucTeM, GaKy/IbTeT NPUKIAJHON MaTeMa-
THUKHU — IPOLeccoB ynpasJeHusi, CankT-IleTepGyprckuit rocynap-
ctBeHHbIN yHUBepcuteT (199034, Poccus, r. CaHkT-IleTepOypr,
YuuBepcurerckass Hab. A. 7/9), ORCID: http://orcid.org/0000-
0003-0865-3578, vedyakova@gmail.com
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