
Vol. 16, No. 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern
Information
Technologies
and IT-Education

УДК 004:021
DOI: 10.25559/SITITO.16.202001.41-49

Контент доступен под лицензией Creative Commons Attribution 4.0 License.
The content is available under Creative Commons Attribution 4.0 License.

Constrained Approximate Search Algorithms in Knowledge
Discovery
S. Petrovića*, J. Sidorovab

a Norwegian University of Science and Technology, Gjøvik, Norway
22 Teknologiveien, Gjøvik 2815, Norway
* slobodan.petrovic@ntnu.no
b Blekinge Institute of Technology, Karlskrona, Sweden
SE-37179 Karlskrona, Sweden

Abstract

Knowledge discovery in big data is one of the most important applications of computing machinery
today. Search is essential part of all such procedures. Search algorithms must be extremely efficient, but
at the same time knowledge discovery procedures must not produce too many false positives or false
negatives. False positives require post-processing, which reduces the overall efficiency of the knowl-
edge discovery procedures, while false negatives reduce the sensitivity of such procedures. To reduce
the false positive and false negative rate, in this paper, constrained approximate search algorithms are
proposed to be applied. An overview of search theory, exact and approximate, is given first, exposing
fundamentals of dynamic programming-based and bit-parallel-based approximate search algorithms
without constraints. Then, introduction of constraints specific for various knowledge discovery pro-
cedures is explained, together with the subtleties of various applications, such as SPAM filtering and
digital and network forensics (file carving, intrusion detection in hosts and networks). Advantages and
disadvantages of applications of such constrained search algorithms in knowledge discovery proce-
dures are also discussed. A potential application in bioinformatics is outlined.

Keywords: Knowledge discovery, Big data, Search, Constraints, Intrusion detection, Digital forensics,
SPAM filtering, bioinformatics, activity alerts, chemical activity.

For citation: Petrović S., Sidorova J. Constrained Approximate Search Algorithms in Knowledge Dis-
covery. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies
and IT-Education. 2020; 16(1):41-49. DOI: https://doi.org/10.25559/SITITO.16.202001.41-49

© Petrović S., Sidorova J., 2020

THEORETICAL QUESTIONS OF COMPUTER SCIENCE, COMPUTATIONAL
MATHEMATICS, COMPUTER SCIENCE AND COGNITIVE INFORMATION TECHNOLOGIES

Том 16, № 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Современные
информационные
технологии
и ИТ-образование

Ограниченные алгоритмы приближенного поиска при
обнаружении знаний
С. Петрович1*, Ю. Сидорова2

1 Норвежский университет естественных и технических наук, г. Йёвик, Норвегия
2815, Норвегия, г. Йёвик, Технологический пр., д. 22
* slobodan.petrovic@ntnu.no
2 Технологический институт Блекинге, г. Карлскруна, Швеция
SE-37179, Швеция, Округ Блекинге, г. Карлскруна

Аннотация

Обнаружение знаний в области больших данных является одним из наиболее важных приложе-
ний вычислительной техники сегодня. Поиск является неотъемлемой частью всех таких проце-
дур. Алгоритмы поиска должны быть чрезвычайно эффективными, но в то же время процедуры
обнаружения знаний не должны давать слишком много ложных срабатываний или ложных от-
рицаний. Ложные срабатывания требуют последующей обработки, что снижает общую эффек-
тивность процедур обнаружения знаний, в то время как ложные отрицания снижают чувстви-
тельность таких процедур. Чтобы уменьшить количество ложноположительных и
ложноотрицательных результатов, в этой статье предлагается применять ограниченные при-
ближенные алгоритмы поиска. Краткий обзор теории поиска, точной и приблизительной, дает-
ся вначале, раскрывая основы алгоритмов приближенного поиска на основе динамического
программирования и на основе бит-параллелизма без ограничений. Затем объясняется введе-
ние ограничений, специфичных для различных процедур обнаружения знаний, а также тонко-
стей различных приложений, таких как фильтрация спама, цифровая и сетевая экспертиза (раз-
деление файлов, обнаружение вторжений в хосты и сети). Также обсуждаются преимущества и
недостатки применения таких ограниченных алгоритмов поиска в процедурах обнаружения
знаний. Намечено потенциальное применение в биоинформатике.

Ключевые слова: обнаружение знаний, большие данные, поиск, ограничения, обнаружение
вторжений, цифровая криминалистика, фильтрация спама, биоинформатика, оповещения об
активности, химическая активность.

Для цитирования: Петрович, С. Ограниченные алгоритмы приближенного поиска при об-
наружении знаний / С. Петрович, Ю. Сидорова. – DOI 10.25559/SITITO.16.202001.41-49 // Совре-
менные информационные технологии и ИТ-образование. – 2020. – Т. 16, № 1. – С. 41-49.

ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ИНФОРМАТИКИ, ПРИКЛАДНОЙ МАТЕМАТИКИ,
КОМПЬЮТЕРНЫХ НАУК И КОГНИТИВНО-ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

Introduction
Search in large data sets has always been one of the most
important tasks for computing machinery. These data sets,
together with the algorithms that are used for their processing, are
nowadays often referred to as big data. As data quantities that the
mankind produces every day grow at so high rates, new more
efficient search algorithms are needed to discover knowledge in
such enormous amounts of data. In addition, since data to analyze
often arrive from heterogeneous sources and may contain errors,
it is necessary to introduce tolerance in search in order to avoid
false negatives in knowledge discovery procedures. To this end,
many exact search algorithms have been modified in order to be
able to detect data patterns with certain error tolerance.
The time complexity of the most efficient exact search algorithms
is sub-linear [1], but even that is not enough when it comes to
analyzing big data, where the size of the search strings can easily
reach exabytes. In addition, these search algorithms are difficult to
implement on classical computer architectures with limited
computer word sizes if there is a need to detect longer patterns. In
these cases, concatenation of computer words is necessary to
process the search string, which significantly reduces the
efficiency of such implementations (see, for example, [2]).
Different computer architectures perform better in these cases.
Typical examples are reconfigurable hardware platforms, such as
Field Programmable Gate Arrays (FPGA), where it is possible to
define a computer word, whose size is only limited by the memory
capacity of the concrete FPGA card. On such architectures, the
advantage of bit-parallelism can be fully exploited even for very
long search patterns.
By incorporating error tolerance in search algorithms, we can
reduce the probability of false negatives in search. However, very
often we need to reduce the probability of false positives in such
procedures as well. False positives are annoying for the user of a
search algorithm since they require post-processing, which can
eliminate them or reduce their number and these procedures
often influence the overall efficiency of a search algorithm in a
negative way. To reduce the number of false positives, it is useful
to introduce certain constraints in search algorithms, which take
into account a priori knowledge about the process that is analyzed
[3]. Then it is possible to ignore the patterns that would otherwise
be accepted by the (approximate) search algorithm, but for such
patterns the a priori knowledge about the analyzed process
indicates that they are impossible to happen.
In this paper, we present several constrained approximate search
algorithms, where the constraints reflect the specific features of
certain application fields, such as intrusion detection,
cryptanalysis of stream ciphers, SPAM detection and so on. A
common characteristic of these applications is possibility of
searching for long patterns, which may cause difficulties in
implementation on various computer architectures. In some cases,
these pattern lengths are extremely long, such as the case when
we want to break a stream cipher by means of a generalized
correlation attack as well as in all the cases where we have to
decide between several hypotheses and set a threshold of
acceptance of one of them. Then the length of the search pattern
directly and significantly influences the number of false positives
in approximate search.

We discuss two categories of constrained approximate search
algorithms: dynamic programming-based and bit-parallel
algorithms. The advantages and disadvantages of these groups of
algorithms are discussed for several (potential) fields of
application.

The search problem
The basic definition of the search problem is the following: given
the search pattern 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑤𝑤1𝑤𝑤𝑤𝑤2⋯𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚 and the search string 𝑆𝑆𝑆𝑆 =
𝑠𝑠𝑠𝑠1𝑠𝑠𝑠𝑠2 ⋯𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛, find the locations of all occurrences of 𝑤𝑤𝑤𝑤 in 𝑆𝑆𝑆𝑆. The naïve
algorithm to solve this problem making use of a sliding
comparator (see an example in Fig. 1) has quadratic time
complexity. Strictly mathematically speaking, the search problem
does not belong to the category of the most difficult problems (it is
in the class P), but our challenge is the length of the search string
𝑆𝑆𝑆𝑆, which may be extreme. In the case of an extremely long 𝑆𝑆𝑆𝑆, even
the best search algorithms, whose time complexity is sub-linear
are not efficient enough to process big data in a reasonable
amount of time. Then combinations of theoretically efficient
search algorithms and sophisticated implementations on parallel
and distributed computer architectures give the best results.

F i g. 1. The naïve exact search algorithm, 𝑤𝑤𝑤𝑤 =”para”, 𝑆𝑆𝑆𝑆 =”paparazzo”

Efficiency improvements from quadratic to linear time
complexities are achieved by varying the way of sliding the
window along the search string and the way how the pattern is
searched for in the window. On the other hand, efficiency
improvements from linear to sub-linear time complexities are
achieved on average, by avoiding (skipping) the search in the
regions of the search string, in which the search pattern is
impossible to occur.

Exact search
Let 𝑋𝑋𝑋𝑋 = 𝑥𝑥𝑥𝑥1𝑥𝑥𝑥𝑥2 ⋯ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 be a string of symbols from an alphabet 𝒜𝒜𝒜𝒜. Then
the substring 𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖1 ⋯ 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗 of 𝑆𝑆𝑆𝑆 is a prefix of 𝑆𝑆𝑆𝑆 if 𝑖𝑖𝑖𝑖 = 1, a suffix of
𝑆𝑆𝑆𝑆 if 𝑗𝑗𝑗𝑗 = 𝑛𝑛𝑛𝑛, and a factor of 𝑆𝑆𝑆𝑆 if 1 < 𝑖𝑖𝑖𝑖 ≤ 𝑗𝑗𝑗𝑗 < 𝑛𝑛𝑛𝑛.
The exact search algorithms are usually divided into three groups,
according to whether their approach is prefix, suffix, or factor
based. The most prominent prefix-based algorithms are Knuth-
Morris-Pratt [4] and the bit-parallel algorithms Shift-AND [2], and
Shift-OR (see, for example, [1]). The suffix-based algorithms that
are most often used in practice are the Boyer-Moore algorithm [5]
and its variants, Horspool [6] and Sunday [7]. The algorithms from
the third, factor-based, group achieve the best performance on
average, provided independent and uniformly distributed
characters from the alphabet 𝒜𝒜𝒜𝒜 make t he search s tring 𝑆𝑆𝑆𝑆. The
often-used algorithms from this group are Backward DAWG1
Matching (BDM) (see, for example, [8]) and the bit-parallel
Backward Non-deterministic DAWG matching (BNDM) [9].

1 DAWG = Directed Acyclic Word Graph, see [8]

43THEORETICAL QUESTIONS OF COMPUTER SCIENCE, COMPUTATIONAL MATHEMATICS,
COMPUTER SCIENCE AND COGNITIVE INFORMATION TECHNOLOGIES

S. Petrović,
J. Sidorova

Vol. 16, No. 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern
Information
Technologies
and IT-Education

Introduction
Search in large data sets has always been one of the most
important tasks for computing machinery. These data sets,
together with the algorithms that are used for their processing, are
nowadays often referred to as big data. As data quantities that the
mankind produces every day grow at so high rates, new more
efficient search algorithms are needed to discover knowledge in
such enormous amounts of data. In addition, since data to analyze
often arrive from heterogeneous sources and may contain errors,
it is necessary to introduce tolerance in search in order to avoid
false negatives in knowledge discovery procedures. To this end,
many exact search algorithms have been modified in order to be
able to detect data patterns with certain error tolerance.
The time complexity of the most efficient exact search algorithms
is sub-linear [1], but even that is not enough when it comes to
analyzing big data, where the size of the search strings can easily
reach exabytes. In addition, these search algorithms are difficult to
implement on classical computer architectures with limited
computer word sizes if there is a need to detect longer patterns. In
these cases, concatenation of computer words is necessary to
process the search string, which significantly reduces the
efficiency of such implementations (see, for example, [2]).
Different computer architectures perform better in these cases.
Typical examples are reconfigurable hardware platforms, such as
Field Programmable Gate Arrays (FPGA), where it is possible to
define a computer word, whose size is only limited by the memory
capacity of the concrete FPGA card. On such architectures, the
advantage of bit-parallelism can be fully exploited even for very
long search patterns.
By incorporating error tolerance in search algorithms, we can
reduce the probability of false negatives in search. However, very
often we need to reduce the probability of false positives in such
procedures as well. False positives are annoying for the user of a
search algorithm since they require post-processing, which can
eliminate them or reduce their number and these procedures
often influence the overall efficiency of a search algorithm in a
negative way. To reduce the number of false positives, it is useful
to introduce certain constraints in search algorithms, which take
into account a priori knowledge about the process that is analyzed
[3]. Then it is possible to ignore the patterns that would otherwise
be accepted by the (approximate) search algorithm, but for such
patterns the a priori knowledge about the analyzed process
indicates that they are impossible to happen.
In this paper, we present several constrained approximate search
algorithms, where the constraints reflect the specific features of
certain application fields, such as intrusion detection,
cryptanalysis of stream ciphers, SPAM detection and so on. A
common characteristic of these applications is possibility of
searching for long patterns, which may cause difficulties in
implementation on various computer architectures. In some cases,
these pattern lengths are extremely long, such as the case when
we want to break a stream cipher by means of a generalized
correlation attack as well as in all the cases where we have to
decide between several hypotheses and set a threshold of
acceptance of one of them. Then the length of the search pattern
directly and significantly influences the number of false positives
in approximate search.

We discuss two categories of constrained approximate search
algorithms: dynamic programming-based and bit-parallel
algorithms. The advantages and disadvantages of these groups of
algorithms are discussed for several (potential) fields of
application.

The search problem
The basic definition of the search problem is the following: given
the search pattern 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑤𝑤1𝑤𝑤𝑤𝑤2⋯𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚 and the search string 𝑆𝑆𝑆𝑆 =
𝑠𝑠𝑠𝑠1𝑠𝑠𝑠𝑠2 ⋯𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛, find the locations of all occurrences of 𝑤𝑤𝑤𝑤 in 𝑆𝑆𝑆𝑆. The naïve
algorithm to solve this problem making use of a sliding
comparator (see an example in Fig. 1) has quadratic time
complexity. Strictly mathematically speaking, the search problem
does not belong to the category of the most difficult problems (it is
in the class P), but our challenge is the length of the search string
𝑆𝑆𝑆𝑆, which may be extreme. In the case of an extremely long 𝑆𝑆𝑆𝑆, even
the best search algorithms, whose time complexity is sub-linear
are not efficient enough to process big data in a reasonable
amount of time. Then combinations of theoretically efficient
search algorithms and sophisticated implementations on parallel
and distributed computer architectures give the best results.

F i g. 1. The naïve exact search algorithm, 𝑤𝑤𝑤𝑤 =”para”, 𝑆𝑆𝑆𝑆 =”paparazzo”

Efficiency improvements from quadratic to linear time
complexities are achieved by varying the way of sliding the
window along the search string and the way how the pattern is
searched for in the window. On the other hand, efficiency
improvements from linear to sub-linear time complexities are
achieved on average, by avoiding (skipping) the search in the
regions of the search string, in which the search pattern is
impossible to occur.

Exact search
Let 𝑋𝑋𝑋𝑋 = 𝑥𝑥𝑥𝑥1𝑥𝑥𝑥𝑥2 ⋯ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 be a string of symbols from an alphabet 𝒜𝒜𝒜𝒜. Then
the substring 𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖1 ⋯ 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗 of 𝑆𝑆𝑆𝑆 is a prefix of 𝑆𝑆𝑆𝑆 if 𝑖𝑖𝑖𝑖 = 1, a suffix of
𝑆𝑆𝑆𝑆 if 𝑗𝑗𝑗𝑗 = 𝑛𝑛𝑛𝑛, and a factor of 𝑆𝑆𝑆𝑆 if 1 < 𝑖𝑖𝑖𝑖 ≤ 𝑗𝑗𝑗𝑗 < 𝑛𝑛𝑛𝑛.
The exact search algorithms are usually divided into three groups,
according to whether their approach is prefix, suffix, or factor
based. The most prominent prefix-based algorithms are Knuth-
Morris-Pratt [4] and the bit-parallel algorithms Shift-AND [2], and
Shift-OR (see, for example, [1]). The suffix-based algorithms that
are most often used in practice are the Boyer-Moore algorithm [5]
and its variants, Horspool [6] and Sunday [7]. The algorithms from
the third, factor-based, group achieve the best performance on
average, provided independent and uniformly distributed
characters from the alphabet 𝒜𝒜𝒜𝒜 make t he search s tring 𝑆𝑆𝑆𝑆. The
often-used algorithms from this group are Backward DAWG1
Matching (BDM) (see, for example, [8]) and the bit-parallel
Backward Non-deterministic DAWG matching (BNDM) [9].

1 DAWG = Directed Acyclic Word Graph, see [8]

Introduction
Search in large data sets has always been one of the most
important tasks for computing machinery. These data sets,
together with the algorithms that are used for their processing, are
nowadays often referred to as big data. As data quantities that the
mankind produces every day grow at so high rates, new more
efficient search algorithms are needed to discover knowledge in
such enormous amounts of data. In addition, since data to analyze
often arrive from heterogeneous sources and may contain errors,
it is necessary to introduce tolerance in search in order to avoid
false negatives in knowledge discovery procedures. To this end,
many exact search algorithms have been modified in order to be
able to detect data patterns with certain error tolerance.
The time complexity of the most efficient exact search algorithms
is sub-linear [1], but even that is not enough when it comes to
analyzing big data, where the size of the search strings can easily
reach exabytes. In addition, these search algorithms are difficult to
implement on classical computer architectures with limited
computer word sizes if there is a need to detect longer patterns. In
these cases, concatenation of computer words is necessary to
process the search string, which significantly reduces the
efficiency of such implementations (see, for example, [2]).
Different computer architectures perform better in these cases.
Typical examples are reconfigurable hardware platforms, such as
Field Programmable Gate Arrays (FPGA), where it is possible to
define a computer word, whose size is only limited by the memory
capacity of the concrete FPGA card. On such architectures, the
advantage of bit-parallelism can be fully exploited even for very
long search patterns.
By incorporating error tolerance in search algorithms, we can
reduce the probability of false negatives in search. However, very
often we need to reduce the probability of false positives in such
procedures as well. False positives are annoying for the user of a
search algorithm since they require post-processing, which can
eliminate them or reduce their number and these procedures
often influence the overall efficiency of a search algorithm in a
negative way. To reduce the number of false positives, it is useful
to introduce certain constraints in search algorithms, which take
into account a priori knowledge about the process that is analyzed
[3]. Then it is possible to ignore the patterns that would otherwise
be accepted by the (approximate) search algorithm, but for such
patterns the a priori knowledge about the analyzed process
indicates that they are impossible to happen.
In this paper, we present several constrained approximate search
algorithms, where the constraints reflect the specific features of
certain application fields, such as intrusion detection,
cryptanalysis of stream ciphers, SPAM detection and so on. A
common characteristic of these applications is possibility of
searching for long patterns, which may cause difficulties in
implementation on various computer architectures. In some cases,
these pattern lengths are extremely long, such as the case when
we want to break a stream cipher by means of a generalized
correlation attack as well as in all the cases where we have to
decide between several hypotheses and set a threshold of
acceptance of one of them. Then the length of the search pattern
directly and significantly influences the number of false positives
in approximate search.

We discuss two categories of constrained approximate search
algorithms: dynamic programming-based and bit-parallel
algorithms. The advantages and disadvantages of these groups of
algorithms are discussed for several (potential) fields of
application.

The search problem
The basic definition of the search problem is the following: given
the search pattern 𝑤𝑤𝑤𝑤 = 𝑤𝑤𝑤𝑤1𝑤𝑤𝑤𝑤2⋯𝑤𝑤𝑤𝑤𝑚𝑚𝑚𝑚 and the search string 𝑆𝑆𝑆𝑆 =
𝑠𝑠𝑠𝑠1𝑠𝑠𝑠𝑠2 ⋯𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛, find the locations of all occurrences of 𝑤𝑤𝑤𝑤 in 𝑆𝑆𝑆𝑆. The naïve
algorithm to solve this problem making use of a sliding
comparator (see an example in Fig. 1) has quadratic time
complexity. Strictly mathematically speaking, the search problem
does not belong to the category of the most difficult problems (it is
in the class P), but our challenge is the length of the search string
𝑆𝑆𝑆𝑆, which may be extreme. In the case of an extremely long 𝑆𝑆𝑆𝑆, even
the best search algorithms, whose time complexity is sub-linear
are not efficient enough to process big data in a reasonable
amount of time. Then combinations of theoretically efficient
search algorithms and sophisticated implementations on parallel
and distributed computer architectures give the best results.

F i g. 1. The naïve exact search algorithm, 𝑤𝑤𝑤𝑤 =”para”, 𝑆𝑆𝑆𝑆 =”paparazzo”

Efficiency improvements from quadratic to linear time
complexities are achieved by varying the way of sliding the
window along the search string and the way how the pattern is
searched for in the window. On the other hand, efficiency
improvements from linear to sub-linear time complexities are
achieved on average, by avoiding (skipping) the search in the
regions of the search string, in which the search pattern is
impossible to occur.

Exact search
Let 𝑋𝑋𝑋𝑋 = 𝑥𝑥𝑥𝑥1𝑥𝑥𝑥𝑥2 ⋯ 𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 be a string of symbols from an alphabet 𝒜𝒜𝒜𝒜. Then
the substring 𝑉𝑉𝑉𝑉 = 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑖1 ⋯ 𝑣𝑣𝑣𝑣𝑗𝑗𝑗𝑗 of 𝑆𝑆𝑆𝑆 is a prefix of 𝑆𝑆𝑆𝑆 if 𝑖𝑖𝑖𝑖 = 1, a suffix of
𝑆𝑆𝑆𝑆 if 𝑗𝑗𝑗𝑗 = 𝑛𝑛𝑛𝑛, and a factor of 𝑆𝑆𝑆𝑆 if 1 < 𝑖𝑖𝑖𝑖 ≤ 𝑗𝑗𝑗𝑗 < 𝑛𝑛𝑛𝑛.
The exact search algorithms are usually divided into three groups,
according to whether their approach is prefix, suffix, or factor
based. The most prominent prefix-based algorithms are Knuth-
Morris-Pratt [4] and the bit-parallel algorithms Shift-AND [2], and
Shift-OR (see, for example, [1]). The suffix-based algorithms that
are most often used in practice are the Boyer-Moore algorithm [5]
and its variants, Horspool [6] and Sunday [7]. The algorithms from
the third, factor-based, group achieve the best performance on
average, provided independent and uniformly distributed
characters from the alphabet 𝒜𝒜𝒜𝒜 make t he search s tring 𝑆𝑆𝑆𝑆. The
often-used algorithms from this group are Backward DAWG1
Matching (BDM) (see, for example, [8]) and the bit-parallel
Backward Non-deterministic DAWG matching (BNDM) [9].

1 DAWG = Directed Acyclic Word Graph, see [8]

44 ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ИНФОРМАТИКИ, ПРИКЛАДНОЙ МАТЕМАТИКИ,
КОМПЬЮТЕРНЫХ НАУК И КОГНИТИВНО-ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

С. Петрович,
Ю. Сидорова

Том 16, № 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Современные
информационные
технологии
и ИТ-образование

Even though there exist exact search algorithms (so-called skip
algorithms) that are fastest on average, in some applications these
algorithms must not be used. An example is intrusion detection,
where an attacker could deliberately produce traffic that makes
the search algorithm used in the Intrusion Detection System (IDS)
perform poorly (much slower than on average) and exploit that to
cause IDS packet drop, which opens the way to false negatives.
Such attacks are called algorithmic attacks [10]. In these cases, the
fastest algorithms that can be used are the ones from the non-skip
category, such as the forward-based bit parallel algorithms, Shift-
AND, and especially Shift-OR.

Bit-parallelism and exact search
Bit-parallel search algorithms simulate the Non-deterministic
Finite Automaton (NFA) assigned to the given search pattern 𝑤𝑤𝑤𝑤.
The automaton consists of states and has a simple linear register-
like structure. For each input character from the search string 𝑆𝑆𝑆𝑆,
such an automaton makes a transition from its current state into
the next state, if it is possible, and makes a copy of itself continuing
to receive the characters from 𝑆𝑆𝑆𝑆. Each such copy starts receiving
the characters from the initial state (0). If for some input character
from 𝑆𝑆𝑆𝑆, a transition from the current state into the next state for
some copy of the NFA is not possible, that copy of the NFA
becomes inactive, i.e. it stops receiving future characters. If the
rightmost (double circled) state is reached by any of these copies
for some input character, an occurrence of 𝑤𝑤𝑤𝑤 is found in 𝑆𝑆𝑆𝑆 (see, for
example [11]). Instead of analyzing such an NFA as a set of copies
of the basic linear structure, the concept of an active state is often
used. Then, instead of modeling the functioning of the NFA by
making copies and maintaining some of these copies active, an
active state replaces the corresponding active copies of the basic
structure. Each active copy is replaced by a single state. For
example, consider the search pattern 𝑤𝑤𝑤𝑤 =”attack” consisting of
symbols from the English alphabet. The corresponding NFA
without 𝜖𝜖𝜖𝜖-transitions (the transitions without consuming any
input character, see [11]) allowed is given in Fig. 2.

F i g. 2. The NFA assigned to 𝑤𝑤𝑤𝑤 =”attack”, without 𝜖𝜖𝜖𝜖 -transitions

If we allow 𝜖𝜖𝜖𝜖-transitions, t hen t he f orm o f t he N FA f or t he s ame
search pattern is given in Fig. 3.

F i g. 3. The NFA assigned to 𝑤𝑤𝑤𝑤 =”attack”, with 𝜖𝜖𝜖𝜖 -transitions

Suppose the search string is 𝑆𝑆𝑆𝑆 =”attentionattack”. After receiving
the prefix “att”, the state 3 of the machine from Fig. 2 will be active,
but after receiving the next character ‘e’ from S, no state will be
active until the next character ‘a’ arrives. The machine from Fig. 3
that allows 𝜖𝜖𝜖𝜖-transitions jumps immediately to the active state that
corresponds to the prefix of 𝑆𝑆𝑆𝑆 t hat i t h as p rocessed. T hus, b oth
representations, with and without 𝜖𝜖𝜖𝜖-transitions, are equivalent.

The operation of the theoretical NFA described above assumes
infinite parallelism. In practice, we can only simulate such an NFA,
and to this end it is necessary to limit the number of copies of the
basic linear structure present at a time to the length 𝑚𝑚𝑚𝑚 of the
pattern 𝑤𝑤𝑤𝑤. Baeza-Yates and Gonnet [2] were the first to describe
an efficient simulation of this NFA. Suppose 𝑆𝑆𝑆𝑆 =”paparazzo”, 𝑛𝑛𝑛𝑛 =
|𝑆𝑆𝑆𝑆| = 9, and 𝑤𝑤𝑤𝑤 =”para”, 𝑚𝑚𝑚𝑚 = |𝑤𝑤𝑤𝑤| = 4. As the new characters from 𝑆𝑆𝑆𝑆
arrive, the created copies of the basic linear structure assigned to
the search pattern 𝑤𝑤𝑤𝑤 get inactive or remain active. The fact of
being active or inactive is the only one that matters and since the
activity status of one copy of the basic structure is binary, it can be
encoded with a 0 (inactive) or a 1 (active). Since we can only have
up to 𝑚𝑚𝑚𝑚 basic structures at a time, we put the status bits of each
such structure present at some time instant in a computer word,
the search status word 𝐷𝐷𝐷𝐷. In our example, after 4 processed
characters from 𝑆𝑆𝑆𝑆, the status word 𝐷𝐷𝐷𝐷 = 0010 (Fig. 4).

F i g. 4. Operation of the simulated NFA (see text)

The next character from 𝑆𝑆𝑆𝑆 to p rocess is ‘ r’. S ince we cannot k eep
more than 𝑚𝑚𝑚𝑚 basic structures at a t ime, we have to eliminate the
oldest one. It is easy to see that by shifting the search status word
𝐷𝐷𝐷𝐷 by one position to the left, we achieve t his g oal. T he creation of
the new copy of the basic structure reflects on 𝐷𝐷𝐷𝐷 by OR-ing 𝐷𝐷𝐷𝐷 with
0𝑚𝑚𝑚𝑚𝑚𝑚1. The crucial step is then updating the search status word, all
the bits at the same time (therefore bit-parallelism), by AND-ing 𝐷𝐷𝐷𝐷
with a bit mask corresponding to the current processed character
from 𝑆𝑆𝑆𝑆. The bit masks are defined in advance, by putting a 1 in the
bit mask at the position where the corresponding character is
located in the reversed search pattern 𝑤𝑤𝑤𝑤. Defining the bit masks in
advance is possible since the basic structure, whose status bit is
located at certain position in the search status word 𝐷𝐷𝐷𝐷 always
waits for the same character.
For the example from Fig. 4, the bit masks assigned to each
character from the search pattern 𝑤𝑤𝑤𝑤 are
𝐵𝐵𝐵𝐵[′𝑝𝑝𝑝𝑝′] = 0001, 𝐵𝐵𝐵𝐵[′𝑎𝑎𝑎𝑎′] = 1010, and 𝐵𝐵𝐵𝐵[′𝑟𝑟𝑟𝑟′] = 0100. (1)
Then, for the new search status word 𝐷𝐷𝐷𝐷′ obtained after processing
the next character ‘r’ from 𝑆𝑆𝑆𝑆 we have
𝐷𝐷𝐷𝐷′ = �(0010 ≪ 1) ∨ 0001� ∧ 0100 =
= 0101 ∧ 0100 = 0100 (2)
By generalizing the equation (2), we get the Shift-AND search
status word update formula
𝐷𝐷𝐷𝐷′ = �(𝐷𝐷𝐷𝐷 ≪ 1) ∨ 0𝑚𝑚𝑚𝑚𝑚𝑚1� ∧ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�, 𝑗𝑗𝑗𝑗 = 1, … , 𝑛𝑛𝑛𝑛 (3)
After each update of the search status word 𝐷𝐷𝐷𝐷, i t i s necessary t o
check whether the MSB of 𝐷𝐷𝐷𝐷 is equal to 1, which would mean that
an occurrence of the search pattern 𝑤𝑤𝑤𝑤 would b e f ound i n t he
search string 𝑆𝑆𝑆𝑆. This completes the Shift-AND algorithm described
in [2]. The inherent bit-parallelism of a computer word where the
search status word is stored enables checking the status of all the
simulated basic structures at the same time, which reduces the

time complexity of the search algorithm from essentially quadratic
(𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚)) to linear (𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛)).
The Shift-OR algorithm is often considered just a more efficient
implementation of the Shift-AND algorithm (see, for example, [1]).
Namely, if the bit masks and search status word 𝐷𝐷𝐷𝐷 are
complemented and a 0 is considered the encoding of an active
basic structure in 𝐷𝐷𝐷𝐷 then there is no need for OR-ing with 0𝑚𝑚𝑚𝑚𝑚𝑚1 in
the update formula (3) for 𝐷𝐷𝐷𝐷, which makes the algorithm 33%
faster than the Shift-AND algorithm. The update with the bit masks
is performed by OR-ing of the bit masks instead of AND-ing. Thus,
the Shift-OR search status word update formula becomes very
simple (4).
𝐷𝐷𝐷𝐷′ = (𝐷𝐷𝐷𝐷 𝐷 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛 (4)
The MSB in the expression (4) is checked for being a 0, which
would indicate an occurrence of 𝑤𝑤𝑤𝑤 in 𝑆𝑆𝑆𝑆.
In the rest of this paper, we only use the variants of the Shift-OR
algorithm because of its efficiency.

Approximate search
In a big data environment, errors in data occasionally happen and
if exact search is applied on such data sets then false negatives will
occur. To avoid that, certain error tolerance can be included in the
search algorithms. The two most often used methods of
performing error tolerant search are dynamic programming-based
search and approximate bit-parallel search.

Dynamic programming in approximate
search
It is well known (see for example [12], [13], [14]) that it is possible
to determine the minimum number of elementary edit operations
(insertions, deletions, and substitutions) that transform the given
string 𝑋𝑋𝑋𝑋 = 𝑥𝑥𝑥𝑥𝑚𝑥𝑥𝑥𝑥2 ⋯𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 into the given string 𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦𝑚𝑦𝑦𝑦𝑦2 ⋯𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 of
symbols from an alphabet 𝒜𝒜𝒜𝒜 in an iterative way, without
enumerating all the possible transforms, by filling a special matrix
𝑊𝑊𝑊𝑊, which means that the time complexity of such an algorithm is
essentially quadratic, i.e. 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚). This minimum number of
elementary edit operations needed to transform 𝑋𝑋𝑋𝑋 into 𝑌𝑌𝑌𝑌 is called
Levenshtein or edit distance and the matrix 𝑊𝑊𝑊𝑊 is called the matrix
of partial edit distances. In this matrix, a cell 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] contains the
(partial) edit distance between the prefix 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 of the string 𝑋𝑋𝑋𝑋 and the
prefix 𝑌𝑌𝑌𝑌𝑗𝑗𝑗𝑗 of the string 𝑌𝑌𝑌𝑌. To compute the element 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] it is
necessary to use the elements 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗] (insertions), 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 𝑖 1]
(deletions), and 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗 𝑖 1] (substitutions), and check which of
these elementary edit operations gives the minimum increase in
partial edit distance. This operation determines the value of
𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗]. To each elementary edit operation, a cost is assigned. In
most cases, this cost is equal for all deletions and insertions (the
value is usually 1). The substitutions by the same symbol usually
contribute 0 to the edit distance, while the substitutions by a
different symbol can be set differently for every pair of symbols
(this is usual in computational biology) or equal for all such
substitutions. Let 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 be the elementary edit distance assigned to a
deletion of a symbol and let 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 be the elementary edit distance
assigned to an insertion of a symbol. To represent deletions and
substitutions, an “empty symbol” 𝜙𝜙𝜙𝜙 is often used. Thus, the cost
assigned to the deletion of a symbol 𝑥𝑥𝑥𝑥 is 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝜙𝜙𝜙𝜙), and the cost
assigned to the insertion of the symbol 𝑦𝑦𝑦𝑦 is 𝑑𝑑𝑑𝑑(𝜙𝜙𝜙𝜙,𝑦𝑦𝑦𝑦). Let 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) be

the elementary edit distance assigned to a substitution of the
symbol 𝑥𝑥𝑥𝑥 by the symbol 𝑦𝑦𝑦𝑦. The dynamic programming algorithm
for computing the edit distance 𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) between the strings 𝑋𝑋𝑋𝑋 =
𝑥𝑥𝑥𝑥𝑚𝑥𝑥𝑥𝑥2⋯𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 and 𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦𝑚𝑦𝑦𝑦𝑦2⋯𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 is given below (Algorithm 1, [13])
Algorithm 1
𝑊𝑊𝑊𝑊[0,0] = 0
for 𝑖𝑖𝑖𝑖 = 1, … ,𝑛𝑛𝑛𝑛, 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 0] = 𝑖𝑖𝑖𝑖
for 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚, 𝑊𝑊𝑊𝑊[0, 𝑗𝑗𝑗𝑗] = 𝑗𝑗𝑗𝑗
for 𝑖𝑖𝑖𝑖 = 1, … ,𝑛𝑛𝑛𝑛
for 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚
𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] = 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛{𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 𝑖 1] + 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 ,𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗] + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗 𝑖 1]

+ 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠}
𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = 𝑊𝑊𝑊𝑊[𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚] □
To illustrate the operation of Algorithm 1, let us produce the edit
distance matrix given the strings 𝑋𝑋𝑋𝑋 =”bigram” and
𝑌𝑌𝑌𝑌 =”monogram”, assuming the following:
∀𝑥𝑥𝑥𝑥,𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝜙𝜙𝜙𝜙) = 1,
∀𝑦𝑦𝑦𝑦,𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑(𝜙𝜙𝜙𝜙,𝑦𝑦𝑦𝑦) = 1,

∀(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦),𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �0, 𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑦𝑦
1, 𝑥𝑥𝑥𝑥 𝑥 𝑦𝑦𝑦𝑦 , 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 𝑦 𝒜𝒜𝒜𝒜.

The matrix of partial edit distances produced by Algorithm 1 for
this case is given below:

The representation of deletions and insertions by means of the
“empty symbol” 𝜙𝜙𝜙𝜙 enables presentation of so-called edit
sequences, which show the order of elementary edit operations in
the transform of the (prefix of) string 𝑋𝑋𝑋𝑋 into the (prefix of) string
𝑌𝑌𝑌𝑌. The optimal transform, i.e. the transform, whose cost is minimal,
is not unique. For example, the following two optimal transforms
have the same overall cost (𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = 4) under the assumptions
on 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 , 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖, and 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 defined above.

𝐶𝐶𝐶𝐶𝑚(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝜙𝜙𝜙𝜙
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚�

𝐶𝐶𝐶𝐶2(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝑏𝑏𝑏𝑏 𝜙𝜙𝜙𝜙 𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚�

Edit sequence reconstruction is necessary in many applications,
such as computational biology, cryptanalysis etc. The algorithm to
reconstruct an optimal edit sequence is based on backtracking
through the whole partial edit distance matrix, starting from
𝑊𝑊𝑊𝑊[𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚]. The need for such a backtracking requires maintaining
the whole partial edit distance matrix that yields space complexity
of the dynamic programming edit distance computation algorithm
𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚). If there is no need for edit sequence reconstruction, the
space complexity is reduced to 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛) since, obviously, to compute
the edit distance only two columns of the partial edit distance
matrix are necessary to maintain at every moment.
The allowed number of errors in approximate search can now be
defined as the minimum edit distance 𝑘𝑘𝑘𝑘 that is tolerated between
the search pattern 𝑤𝑤𝑤𝑤 and the distorted version of the portion of the
search string 𝑆𝑆𝑆𝑆 where the search pattern is located. The

m o n o g r a m
0 1 2 3 4 5 6 7 8

b 1 1 2 3 4 5 6 7 8
i 2 2 2 3 4 5 6 7 8
g 3 3 3 3 4 4 5 6 7
r 4 4 4 4 4 5 4 5 6
a 5 5 5 5 5 5 5 4 5
m 6 5 6 6 6 6 6 5 4

45THEORETICAL QUESTIONS OF COMPUTER SCIENCE, COMPUTATIONAL MATHEMATICS,
COMPUTER SCIENCE AND COGNITIVE INFORMATION TECHNOLOGIES

S. Petrović,
J. Sidorova

Vol. 16, No. 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern
Information
Technologies
and IT-Education

Even though there exist exact search algorithms (so-called skip
algorithms) that are fastest on average, in some applications these
algorithms must not be used. An example is intrusion detection,
where an attacker could deliberately produce traffic that makes
the search algorithm used in the Intrusion Detection System (IDS)
perform poorly (much slower than on average) and exploit that to
cause IDS packet drop, which opens the way to false negatives.
Such attacks are called algorithmic attacks [10]. In these cases, the
fastest algorithms that can be used are the ones from the non-skip
category, such as the forward-based bit parallel algorithms, Shift-
AND, and especially Shift-OR.

Bit-parallelism and exact search
Bit-parallel search algorithms simulate the Non-deterministic
Finite Automaton (NFA) assigned to the given search pattern 𝑤𝑤𝑤𝑤.
The automaton consists of states and has a simple linear register-
like structure. For each input character from the search string 𝑆𝑆𝑆𝑆,
such an automaton makes a transition from its current state into
the next state, if it is possible, and makes a copy of itself continuing
to receive the characters from 𝑆𝑆𝑆𝑆. Each such copy starts receiving
the characters from the initial state (0). If for some input character
from 𝑆𝑆𝑆𝑆, a transition from the current state into the next state for
some copy of the NFA is not possible, that copy of the NFA
becomes inactive, i.e. it stops receiving future characters. If the
rightmost (double circled) state is reached by any of these copies
for some input character, an occurrence of 𝑤𝑤𝑤𝑤 is found in 𝑆𝑆𝑆𝑆 (see, for
example [11]). Instead of analyzing such an NFA as a set of copies
of the basic linear structure, the concept of an active state is often
used. Then, instead of modeling the functioning of the NFA by
making copies and maintaining some of these copies active, an
active state replaces the corresponding active copies of the basic
structure. Each active copy is replaced by a single state. For
example, consider the search pattern 𝑤𝑤𝑤𝑤 =”attack” consisting of
symbols from the English alphabet. The corresponding NFA
without 𝜖𝜖𝜖𝜖-transitions (the transitions without consuming any
input character, see [11]) allowed is given in Fig. 2.

F i g. 2. The NFA assigned to 𝑤𝑤𝑤𝑤 =”attack”, without 𝜖𝜖𝜖𝜖 -transitions

If we allow 𝜖𝜖𝜖𝜖-transitions, t hen t he f orm o f t he N FA f or t he s ame
search pattern is given in Fig. 3.

F i g. 3. The NFA assigned to 𝑤𝑤𝑤𝑤 =”attack”, with 𝜖𝜖𝜖𝜖 -transitions

Suppose the search string is 𝑆𝑆𝑆𝑆 =”attentionattack”. After receiving
the prefix “att”, the state 3 of the machine from Fig. 2 will be active,
but after receiving the next character ‘e’ from S, no state will be
active until the next character ‘a’ arrives. The machine from Fig. 3
that allows 𝜖𝜖𝜖𝜖-transitions jumps immediately to the active state that
corresponds to the prefix of 𝑆𝑆𝑆𝑆 t hat i t h as p rocessed. T hus, b oth
representations, with and without 𝜖𝜖𝜖𝜖-transitions, are equivalent.

The operation of the theoretical NFA described above assumes
infinite parallelism. In practice, we can only simulate such an NFA,
and to this end it is necessary to limit the number of copies of the
basic linear structure present at a time to the length 𝑚𝑚𝑚𝑚 of the
pattern 𝑤𝑤𝑤𝑤. Baeza-Yates and Gonnet [2] were the first to describe
an efficient simulation of this NFA. Suppose 𝑆𝑆𝑆𝑆 =”paparazzo”, 𝑛𝑛𝑛𝑛 =
|𝑆𝑆𝑆𝑆| = 9, and 𝑤𝑤𝑤𝑤 =”para”, 𝑚𝑚𝑚𝑚 = |𝑤𝑤𝑤𝑤| = 4. As the new characters from 𝑆𝑆𝑆𝑆
arrive, the created copies of the basic linear structure assigned to
the search pattern 𝑤𝑤𝑤𝑤 get inactive or remain active. The fact of
being active or inactive is the only one that matters and since the
activity status of one copy of the basic structure is binary, it can be
encoded with a 0 (inactive) or a 1 (active). Since we can only have
up to 𝑚𝑚𝑚𝑚 basic structures at a time, we put the status bits of each
such structure present at some time instant in a computer word,
the search status word 𝐷𝐷𝐷𝐷. In our example, after 4 processed
characters from 𝑆𝑆𝑆𝑆, the status word 𝐷𝐷𝐷𝐷 = 0010 (Fig. 4).

F i g. 4. Operation of the simulated NFA (see text)

The next character from 𝑆𝑆𝑆𝑆 to p rocess is ‘ r’. S ince we cannot k eep
more than 𝑚𝑚𝑚𝑚 basic structures at a t ime, we have to eliminate the
oldest one. It is easy to see that by shifting the search status word
𝐷𝐷𝐷𝐷 by one position to the left, we achieve t his g oal. T he creation of
the new copy of the basic structure reflects on 𝐷𝐷𝐷𝐷 by OR-ing 𝐷𝐷𝐷𝐷 with
0𝑚𝑚𝑚𝑚𝑚𝑚1. The crucial step is then updating the search status word, all
the bits at the same time (therefore bit-parallelism), by AND-ing 𝐷𝐷𝐷𝐷
with a bit mask corresponding to the current processed character
from 𝑆𝑆𝑆𝑆. The bit masks are defined in advance, by putting a 1 in the
bit mask at the position where the corresponding character is
located in the reversed search pattern 𝑤𝑤𝑤𝑤. Defining the bit masks in
advance is possible since the basic structure, whose status bit is
located at certain position in the search status word 𝐷𝐷𝐷𝐷 always
waits for the same character.
For the example from Fig. 4, the bit masks assigned to each
character from the search pattern 𝑤𝑤𝑤𝑤 are
𝐵𝐵𝐵𝐵[′𝑝𝑝𝑝𝑝′] = 0001, 𝐵𝐵𝐵𝐵[′𝑎𝑎𝑎𝑎′] = 1010, and 𝐵𝐵𝐵𝐵[′𝑟𝑟𝑟𝑟′] = 0100. (1)
Then, for the new search status word 𝐷𝐷𝐷𝐷′ obtained after processing
the next character ‘r’ from 𝑆𝑆𝑆𝑆 we have
𝐷𝐷𝐷𝐷′ = �(0010 ≪ 1) ∨ 0001� ∧ 0100 =
= 0101 ∧ 0100 = 0100 (2)
By generalizing the equation (2), we get the Shift-AND search
status word update formula
𝐷𝐷𝐷𝐷′ = �(𝐷𝐷𝐷𝐷 ≪ 1) ∨ 0𝑚𝑚𝑚𝑚𝑚𝑚1� ∧ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�, 𝑗𝑗𝑗𝑗 = 1, … , 𝑛𝑛𝑛𝑛 (3)
After each update of the search status word 𝐷𝐷𝐷𝐷, i t i s necessary t o
check whether the MSB of 𝐷𝐷𝐷𝐷 is equal to 1, which would mean that
an occurrence of the search pattern 𝑤𝑤𝑤𝑤 would b e f ound i n t he
search string 𝑆𝑆𝑆𝑆. This completes the Shift-AND algorithm described
in [2]. The inherent bit-parallelism of a computer word where the
search status word is stored enables checking the status of all the
simulated basic structures at the same time, which reduces the

time complexity of the search algorithm from essentially quadratic
(𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚)) to linear (𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛)).
The Shift-OR algorithm is often considered just a more efficient
implementation of the Shift-AND algorithm (see, for example, [1]).
Namely, if the bit masks and search status word 𝐷𝐷𝐷𝐷 are
complemented and a 0 is considered the encoding of an active
basic structure in 𝐷𝐷𝐷𝐷 then there is no need for OR-ing with 0𝑚𝑚𝑚𝑚𝑚𝑚1 in
the update formula (3) for 𝐷𝐷𝐷𝐷, which makes the algorithm 33%
faster than the Shift-AND algorithm. The update with the bit masks
is performed by OR-ing of the bit masks instead of AND-ing. Thus,
the Shift-OR search status word update formula becomes very
simple (4).
𝐷𝐷𝐷𝐷′ = (𝐷𝐷𝐷𝐷 𝐷 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�, 𝑗𝑗𝑗𝑗 = 1, … ,𝑛𝑛𝑛𝑛 (4)
The MSB in the expression (4) is checked for being a 0, which
would indicate an occurrence of 𝑤𝑤𝑤𝑤 in 𝑆𝑆𝑆𝑆.
In the rest of this paper, we only use the variants of the Shift-OR
algorithm because of its efficiency.

Approximate search
In a big data environment, errors in data occasionally happen and
if exact search is applied on such data sets then false negatives will
occur. To avoid that, certain error tolerance can be included in the
search algorithms. The two most often used methods of
performing error tolerant search are dynamic programming-based
search and approximate bit-parallel search.

Dynamic programming in approximate
search
It is well known (see for example [12], [13], [14]) that it is possible
to determine the minimum number of elementary edit operations
(insertions, deletions, and substitutions) that transform the given
string 𝑋𝑋𝑋𝑋 = 𝑥𝑥𝑥𝑥𝑚𝑥𝑥𝑥𝑥2 ⋯𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 into the given string 𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦𝑚𝑦𝑦𝑦𝑦2 ⋯𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 of
symbols from an alphabet 𝒜𝒜𝒜𝒜 in an iterative way, without
enumerating all the possible transforms, by filling a special matrix
𝑊𝑊𝑊𝑊, which means that the time complexity of such an algorithm is
essentially quadratic, i.e. 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚). This minimum number of
elementary edit operations needed to transform 𝑋𝑋𝑋𝑋 into 𝑌𝑌𝑌𝑌 is called
Levenshtein or edit distance and the matrix 𝑊𝑊𝑊𝑊 is called the matrix
of partial edit distances. In this matrix, a cell 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] contains the
(partial) edit distance between the prefix 𝑋𝑋𝑋𝑋𝑖𝑖𝑖𝑖 of the string 𝑋𝑋𝑋𝑋 and the
prefix 𝑌𝑌𝑌𝑌𝑗𝑗𝑗𝑗 of the string 𝑌𝑌𝑌𝑌. To compute the element 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] it is
necessary to use the elements 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗] (insertions), 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 𝑖 1]
(deletions), and 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗 𝑖 1] (substitutions), and check which of
these elementary edit operations gives the minimum increase in
partial edit distance. This operation determines the value of
𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗]. To each elementary edit operation, a cost is assigned. In
most cases, this cost is equal for all deletions and insertions (the
value is usually 1). The substitutions by the same symbol usually
contribute 0 to the edit distance, while the substitutions by a
different symbol can be set differently for every pair of symbols
(this is usual in computational biology) or equal for all such
substitutions. Let 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 be the elementary edit distance assigned to a
deletion of a symbol and let 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 be the elementary edit distance
assigned to an insertion of a symbol. To represent deletions and
substitutions, an “empty symbol” 𝜙𝜙𝜙𝜙 is often used. Thus, the cost
assigned to the deletion of a symbol 𝑥𝑥𝑥𝑥 is 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝜙𝜙𝜙𝜙), and the cost
assigned to the insertion of the symbol 𝑦𝑦𝑦𝑦 is 𝑑𝑑𝑑𝑑(𝜙𝜙𝜙𝜙,𝑦𝑦𝑦𝑦). Let 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) be

the elementary edit distance assigned to a substitution of the
symbol 𝑥𝑥𝑥𝑥 by the symbol 𝑦𝑦𝑦𝑦. The dynamic programming algorithm
for computing the edit distance 𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) between the strings 𝑋𝑋𝑋𝑋 =
𝑥𝑥𝑥𝑥𝑚𝑥𝑥𝑥𝑥2⋯𝑥𝑥𝑥𝑥𝑛𝑛𝑛𝑛 and 𝑌𝑌𝑌𝑌 = 𝑦𝑦𝑦𝑦𝑚𝑦𝑦𝑦𝑦2⋯𝑦𝑦𝑦𝑦𝑚𝑚𝑚𝑚 is given below (Algorithm 1, [13])
Algorithm 1
𝑊𝑊𝑊𝑊[0,0] = 0
for 𝑖𝑖𝑖𝑖 = 1, … ,𝑛𝑛𝑛𝑛, 𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 0] = 𝑖𝑖𝑖𝑖
for 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚, 𝑊𝑊𝑊𝑊[0, 𝑗𝑗𝑗𝑗] = 𝑗𝑗𝑗𝑗
for 𝑖𝑖𝑖𝑖 = 1, … ,𝑛𝑛𝑛𝑛
for 𝑗𝑗𝑗𝑗 = 1, … ,𝑚𝑚𝑚𝑚
𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗] = 𝑚𝑚𝑚𝑚𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛{𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 𝑖 1] + 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 ,𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗] + 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑊𝑊[𝑖𝑖𝑖𝑖 𝑖 1, 𝑗𝑗𝑗𝑗 𝑖 1]

+ 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠}
𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = 𝑊𝑊𝑊𝑊[𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚] □
To illustrate the operation of Algorithm 1, let us produce the edit
distance matrix given the strings 𝑋𝑋𝑋𝑋 =”bigram” and
𝑌𝑌𝑌𝑌 =”monogram”, assuming the following:
∀𝑥𝑥𝑥𝑥,𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 = 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝜙𝜙𝜙𝜙) = 1,
∀𝑦𝑦𝑦𝑦,𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑑𝑑(𝜙𝜙𝜙𝜙,𝑦𝑦𝑦𝑦) = 1,

∀(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦),𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑑𝑑(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦) = �0, 𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑦𝑦
1, 𝑥𝑥𝑥𝑥 𝑥 𝑦𝑦𝑦𝑦 , 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦 𝑦 𝒜𝒜𝒜𝒜.

The matrix of partial edit distances produced by Algorithm 1 for
this case is given below:

The representation of deletions and insertions by means of the
“empty symbol” 𝜙𝜙𝜙𝜙 enables presentation of so-called edit
sequences, which show the order of elementary edit operations in
the transform of the (prefix of) string 𝑋𝑋𝑋𝑋 into the (prefix of) string
𝑌𝑌𝑌𝑌. The optimal transform, i.e. the transform, whose cost is minimal,
is not unique. For example, the following two optimal transforms
have the same overall cost (𝑑𝑑𝑑𝑑(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = 4) under the assumptions
on 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒 , 𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖, and 𝑑𝑑𝑑𝑑𝑠𝑠𝑠𝑠 defined above.

𝐶𝐶𝐶𝐶𝑚(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝑏𝑏𝑏𝑏 𝑖𝑖𝑖𝑖 𝜙𝜙𝜙𝜙
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚�

𝐶𝐶𝐶𝐶2(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝑏𝑏𝑏𝑏 𝜙𝜙𝜙𝜙 𝑖𝑖𝑖𝑖
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑛𝑛𝑛𝑛 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚
𝑎𝑎𝑎𝑎 𝑚𝑚𝑚𝑚�

Edit sequence reconstruction is necessary in many applications,
such as computational biology, cryptanalysis etc. The algorithm to
reconstruct an optimal edit sequence is based on backtracking
through the whole partial edit distance matrix, starting from
𝑊𝑊𝑊𝑊[𝑛𝑛𝑛𝑛,𝑚𝑚𝑚𝑚]. The need for such a backtracking requires maintaining
the whole partial edit distance matrix that yields space complexity
of the dynamic programming edit distance computation algorithm
𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛𝑚𝑚𝑚𝑚). If there is no need for edit sequence reconstruction, the
space complexity is reduced to 𝑂𝑂𝑂𝑂(𝑛𝑛𝑛𝑛) since, obviously, to compute
the edit distance only two columns of the partial edit distance
matrix are necessary to maintain at every moment.
The allowed number of errors in approximate search can now be
defined as the minimum edit distance 𝑘𝑘𝑘𝑘 that is tolerated between
the search pattern 𝑤𝑤𝑤𝑤 and the distorted version of the portion of the
search string 𝑆𝑆𝑆𝑆 where the search pattern is located. The

m o n o g r a m
0 1 2 3 4 5 6 7 8

b 1 1 2 3 4 5 6 7 8
i 2 2 2 3 4 5 6 7 8
g 3 3 3 3 4 4 5 6 7
r 4 4 4 4 4 5 4 5 6
a 5 5 5 5 5 5 5 4 5
m 6 5 6 6 6 6 6 5 4

46 ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ИНФОРМАТИКИ, ПРИКЛАДНОЙ МАТЕМАТИКИ,
КОМПЬЮТЕРНЫХ НАУК И КОГНИТИВНО-ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

С. Петрович,
Ю. Сидорова

Том 16, № 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Современные
информационные
технологии
и ИТ-образование

approximate search of the search pattern 𝑤𝑤𝑤𝑤 in the search string 𝑆𝑆𝑆𝑆
with the error tolerance 𝑘𝑘𝑘𝑘 can be performed by means of the same
dynamic programming procedure that is used for the edit distance
computation (Algorithm 1), but with a different initialization (see
[1]). Namely, by setting all the elements of the 0-th row of the
partial edit distance matrix 𝑊𝑊𝑊𝑊 to 0, we allow the search pattern to
commence at any position of the search string 𝑆𝑆𝑆𝑆. The insertions
before that position and the insertions that (may) occur after the
last symbol of the search pattern (except a single insertion that
may appear immediately after this symbol) do not contribute to
the overall cost. The dynamic programming approximate search
algorithm with the same input as in the example above and with
𝑘𝑘𝑘𝑘 = 3 gives the following partial edit distance matrix:

Every edit sequence that corresponds to an entry in the lowest
row of the matrix 𝑊𝑊𝑊𝑊, whose total cost is ≤ 𝑘𝑘𝑘𝑘 is acceptable. In our
example (the figures in boldface in the last row of the matrix 𝑊𝑊𝑊𝑊),
the acceptable values are 3 and 2, which means that the search
pattern 𝑤𝑤𝑤𝑤 is detected either at the position 7 or at the position 8 of
the search string 𝑆𝑆𝑆𝑆. The corresponding edit sequences are given
below:
 𝐶𝐶𝐶𝐶1(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊
𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊

𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂
𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂 𝜙𝜙𝜙𝜙𝑚𝑚𝑚𝑚�, 𝑑𝑑𝑑𝑑 = 3

𝐶𝐶𝐶𝐶2(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊

𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂
𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂�, 𝑑𝑑𝑑𝑑 = 2

Only the symbols of the edit sequence given in boldface letters
contribute to the overall cost of the edit sequence.

Bit-parallelism in approximate search
Attempts have been made to parallelize the dynamic
programming-based approximate search algorithm (see, for
example [15]), since if no edit sequence reconstruction is needed
then it is possible to encode in binary the transition from one
column of the partial edit distance matrix 𝑊𝑊𝑊𝑊 into the other column
that is maintained. If the reconstruction of the edit sequence is
needed, then the whole matrix 𝑊𝑊𝑊𝑊 is necessary to maintain, and the
parallelization of these transitions becomes difficult.
Another approach to the parallelization of approximate search is
through the extension of the bit-parallel exact search [16].
Suppose the search tolerance is 𝑘𝑘𝑘𝑘. Then we can simulate an NFA
having 𝑘𝑘𝑘𝑘 + 1 rows, each corresponding to the search status word
𝐷𝐷𝐷𝐷 assigned to the pattern 𝑤𝑤𝑤𝑤. The transitions in this NFA can be
horizontal (a match, which is a substitution by the same character
treated separately), vertical (an insertion), and diagonal (deletions
and substitutions by a different character). An example of such an
NFA is presented in Fig. 5, where 𝑤𝑤𝑤𝑤 =”bigram” and 𝑘𝑘𝑘𝑘 = 2.
The NFA from Fig. 5 has 3 rows. The diagonal transitions that
correspond to deletions are presented in the form of dashed lines
– they are 𝜖𝜖𝜖𝜖-transitions, since such transitions do not consume any

input character. The zero state in the 1-st row of the NFA has a
loop and is always active since the detection of the first character
of the search pattern can occur at any position in the (distorted)
search string.

0
′

F i g. 5. An NFA used in bit-parallel approximate search

Instead of the search status word 𝐷𝐷𝐷𝐷 used i n e xact b it-parallel
search, a search status array 𝑅𝑅𝑅𝑅 is used, consisting of 𝑘𝑘𝑘𝑘 + 1 rows. As
the characters of the (distorted) search string 𝑆𝑆𝑆𝑆 arrive, t he
simulated NFA makes the transitions (if possible) from all the
current active states from each row at the same time. The
influence of the previous rows on the active states of the current
row is taken into account in the search status array update
formula by the superposition law. Equation (5) (converted to the
Shift-OR form from [16]) is the search status array 𝑅𝑅𝑅𝑅 update
formula that determines which states are active after processing a
symbol from 𝑆𝑆𝑆𝑆. The formula is the extension of the Shift-OR search
status word update formula (4). If the final state of the 0th row of
the NFA becomes active after processing of a symbol from 𝑆𝑆𝑆𝑆, then
an occurrence of the search pattern without errors (exact match)
is detected. If this happens in the 1st row, then an occurrence is
found with 1 error and so on.
𝑅𝑅𝑅𝑅 ← (𝑅𝑅𝑅𝑅0 ≪ 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖′ ← �(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ≪ 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�� ∧ (match)
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 ∧ (insertion)
(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 ≪ 1) ∧ (substitution)
(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1′ ≪ 1) (deletion)
𝑖𝑖𝑖𝑖 = 1, … ,𝑘𝑘𝑘𝑘

(5)

Constrained approximate search
The unconstrained approximate search algorithms (dynamic
programming-based and bit-parallel) explained in the previous
sections can be generally applied, regardless of the a priori
knowledge about the search pattern/search string properties. In
many applications, not all the possible transforms of the search
pattern into a distorted version of the search string take place. If
we possess some knowledge about the distortion process, then we
can modify the search algorithm to take into account its subtleties.
In such a way we exclude the transforms of the original search
string into its distorted version that are impossible to happen.
Consequently, the false positive rate of the search procedure is
reduced.
A typical and very simple constraint that is possible to apply
concerns the elimination of certain elementary edit operations.
For example, if insertions never happen, we can simplify the
search status array 𝑅𝑅𝑅𝑅 update formula (5) used in the bit-parallel
version of the unconstrained approximate search by eliminating
the part related to insertions, which simplifies the formula and

m o n o g r a m
0 0 0 0 0 0 0 0 0

b 1 1 1 1 1 1 1 1 1
i 2 2 2 2 2 2 2 2 2
g 3 3 3 3 3 2 3 3 3
r 4 4 4 4 4 3 2 3 4
a 5 5 5 5 5 4 3 2 3
m 6 5 6 6 6 5 4 3 2

saves the processing time. We can do the same with the dynamic
programming-based search formula, by allowing only the diagonal
and horizontal transitions in the matrix of partial edit distances. In
the dynamic programming-based search case, this has another
positive consequence. Namely, if we transform the coordinates in
such a way that instead of the counters of symbols in the strings 𝑋𝑋𝑋𝑋
and 𝑌𝑌𝑌𝑌 we use the numbers of elementary edit operations (𝑖𝑖𝑖𝑖 for
insertions, 𝑒𝑒𝑒𝑒 for deletions, and 𝑠𝑠𝑠𝑠 for substitutions), the Algorithm 1
obtains a form having a very complicated initialization and the
dynamic programming array becomes 3-dimensional [14].
However, if we know a priori that no insertions (or deletions) are
used, then the dimension of the dynamic programming array
remains 2 and the initialization of the algorithm remains relatively
simple. This form of the dynamic programming-based search with
transformed coordinates is used in cryptanalysis of stream ciphers
[17].
Other, more complex, types of constraints can be introduced and
the search status array update formula in the bit-parallel
approximate search algorithm can be modified by introducing
special counters and/or bit masks. In the dynamic programming-
based algorithms, this is achieved by adding counters and
additional loops in the Algorithm 1. The constraints that are
introduced are determined by the application of the search
algorithm and the a priori knowledge that is at the disposal of the
search algorithm designer. In the sequel, we explain certain
scenarios that determine specific sets of constraints in
approximate search.

Applications in SPAM filtering and file
carving
SPAM still represents a great deal of today’s E-mail traffic. To
eliminate SPAM without producing too many false positives
and/or false negatives, various algorithms are used and many of
them include search for typical SPAM words (see, for, example,
[18]). To avoid elimination by SPAM filters, whose operation is
based on exact search, the spammers often use algorithms that
modify these words by substituting, inserting and/or deleting
symbols. At the same time, the intelligibility of these words must
be preserved in order to achieve the spammers’ goals – the victim
must be able to understand these words, even though they are
modified. Consequently, some constraints must be defined to the
numbers of inserted/deleted/substituted symbols and the
distribution of the changes. Being aware of this fact, the defensive
side can introduce the corresponding constraints in approximate
search for SPAM words. The effect on reducing the number of false
positives in search is better if the a priori information about the
modification process parameters that the spammer uses is more
accurate. In [3], such a scenario was studied, and a set of
constraints was defined that limited the total number of so-called
indels (insertions and deletions) in the edit transforms of the
original SPAM words. By using these constraints, both the dynamic
programming-based search algorithm and the bit-parallel
approximate search algorithm were modified, and their
performances were compared. It was shown experimentally that
the bit-parallel version of the approximate search algorithm is
more efficient than the dynamic programming-based one when
the number of indels is greater than the number of substitutions.

In digital forensics, file carving procedures are used to try to
reconstruct files, whose fragments are still present in permanent
memory, but at the operating system level these files have been
erased and therefore the metadata is missing. This is a natural
field of application for approximate search algorithms and in some
scenarios (for example, when the files have been erased by means
of a tool with intention to reconstruct them at a later time) the
introduction of constraints in search may help in improving the
efficiency of the carving and reducing the false positive rate. The
quality of a priori information about the deletion tool parameters
again contributes to improving the efficiency and accuracy of the
constrained approximate search algorithm used in the file carving
procedure.

Applications in network forensic and
intrusion detection
In attacks against computer networks and hosts, very often the
new attack traffic is obtained by slightly modifying the known
attack traffic. Since most Intrusion Detection Systems (IDS), which
are the tools used to detect such attacks, employ exact search for
known attack patterns, new attack patterns may pass unnoticed by
these systems. A single bit of change of the known attack traffic is
enough to make such a signature-based IDS to miss the attack. On
the other hand, since the attacks exploit known small
vulnerabilities of the computer networks and hosts, changing the
attack pattern too much may make the newly produced traffic
incapable of exploiting these vulnerabilities. Consequently, the
changes that are performed on the known attack patterns are very
often very small. In addition, since the traffic rate and the number
of potential victims steadily grow, manual changes are very rarely
used. Instead, special tools are used to modify such traffic and the
parameters that determine their behavior may be known to the
defensive side by threat intelligence (where information about this
may be obtained through various channels). In [19], a bit-parallel
constrained approximate search algorithm was described, in
which the constraints limit the total numbers of elementary edit
operations (insertions, deletions, and substitutions). The resulting
algorithm CRBP-OpCount (Constrained Row-Based Bit-Parallel-
Operations Count) produced up to 6 times fewer false positives
under some scenarios (concerning the percentage of applied
deletions, insertions, and/or substitutions) than the unconstrained
approximate bit-parallel search, maintaining at the same time
reasonable efficiency. With this constrained approximate search
algorithm in place, a signature-based IDS can detect new attacks
originating from the known ones with a reduced number of false
positives compared to a system employing unconstrained
approximate search.

Potential Applications in Bioinformatics
The methods hold a big potential in the field of bioinformatics,
such a search of genome for a motif mining or a database with
chemical compounds for the ones containing a fragment of
interest. This is useful in the light of automatic search, where via
the statistical analysis based on frequencies of occurrences in
active and inactive chemicals, it is possible to discover relevant
fragments [20], but the occurrence of their “distorted expressions“
are not frequent enough to be discovered. Yet it is known that a

47THEORETICAL QUESTIONS OF COMPUTER SCIENCE, COMPUTATIONAL MATHEMATICS,
COMPUTER SCIENCE AND COGNITIVE INFORMATION TECHNOLOGIES

S. Petrović,
J. Sidorova

Vol. 16, No. 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern
Information
Technologies
and IT-Education

approximate search of the search pattern 𝑤𝑤𝑤𝑤 in the search string 𝑆𝑆𝑆𝑆
with the error tolerance 𝑘𝑘𝑘𝑘 can be performed by means of the same
dynamic programming procedure that is used for the edit distance
computation (Algorithm 1), but with a different initialization (see
[1]). Namely, by setting all the elements of the 0-th row of the
partial edit distance matrix 𝑊𝑊𝑊𝑊 to 0, we allow the search pattern to
commence at any position of the search string 𝑆𝑆𝑆𝑆. The insertions
before that position and the insertions that (may) occur after the
last symbol of the search pattern (except a single insertion that
may appear immediately after this symbol) do not contribute to
the overall cost. The dynamic programming approximate search
algorithm with the same input as in the example above and with
𝑘𝑘𝑘𝑘 = 3 gives the following partial edit distance matrix:

Every edit sequence that corresponds to an entry in the lowest
row of the matrix 𝑊𝑊𝑊𝑊, whose total cost is ≤ 𝑘𝑘𝑘𝑘 is acceptable. In our
example (the figures in boldface in the last row of the matrix 𝑊𝑊𝑊𝑊),
the acceptable values are 3 and 2, which means that the search
pattern 𝑤𝑤𝑤𝑤 is detected either at the position 7 or at the position 8 of
the search string 𝑆𝑆𝑆𝑆. The corresponding edit sequences are given
below:
 𝐶𝐶𝐶𝐶1(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙

𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊
𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊

𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂
𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂 𝜙𝜙𝜙𝜙𝑚𝑚𝑚𝑚�, 𝑑𝑑𝑑𝑑 = 3

𝐶𝐶𝐶𝐶2(𝑋𝑋𝑋𝑋,𝑌𝑌𝑌𝑌) = �𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙 𝜙𝜙𝜙𝜙
𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝑚𝑚𝑚𝑚 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊

𝒐𝒐𝒐𝒐 𝒊𝒊𝒊𝒊 𝒊𝒊𝒊𝒊 𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂
𝒂𝒂𝒂𝒂 𝒂𝒂𝒂𝒂�, 𝑑𝑑𝑑𝑑 = 2

Only the symbols of the edit sequence given in boldface letters
contribute to the overall cost of the edit sequence.

Bit-parallelism in approximate search
Attempts have been made to parallelize the dynamic
programming-based approximate search algorithm (see, for
example [15]), since if no edit sequence reconstruction is needed
then it is possible to encode in binary the transition from one
column of the partial edit distance matrix 𝑊𝑊𝑊𝑊 into the other column
that is maintained. If the reconstruction of the edit sequence is
needed, then the whole matrix 𝑊𝑊𝑊𝑊 is necessary to maintain, and the
parallelization of these transitions becomes difficult.
Another approach to the parallelization of approximate search is
through the extension of the bit-parallel exact search [16].
Suppose the search tolerance is 𝑘𝑘𝑘𝑘. Then we can simulate an NFA
having 𝑘𝑘𝑘𝑘 + 1 rows, each corresponding to the search status word
𝐷𝐷𝐷𝐷 assigned to the pattern 𝑤𝑤𝑤𝑤. The transitions in this NFA can be
horizontal (a match, which is a substitution by the same character
treated separately), vertical (an insertion), and diagonal (deletions
and substitutions by a different character). An example of such an
NFA is presented in Fig. 5, where 𝑤𝑤𝑤𝑤 =”bigram” and 𝑘𝑘𝑘𝑘 = 2.
The NFA from Fig. 5 has 3 rows. The diagonal transitions that
correspond to deletions are presented in the form of dashed lines
– they are 𝜖𝜖𝜖𝜖-transitions, since such transitions do not consume any

input character. The zero state in the 1-st row of the NFA has a
loop and is always active since the detection of the first character
of the search pattern can occur at any position in the (distorted)
search string.

0
′

F i g. 5. An NFA used in bit-parallel approximate search

Instead of the search status word 𝐷𝐷𝐷𝐷 used i n e xact b it-parallel
search, a search status array 𝑅𝑅𝑅𝑅 is used, consisting of 𝑘𝑘𝑘𝑘 + 1 rows. As
the characters of the (distorted) search string 𝑆𝑆𝑆𝑆 arrive, t he
simulated NFA makes the transitions (if possible) from all the
current active states from each row at the same time. The
influence of the previous rows on the active states of the current
row is taken into account in the search status array update
formula by the superposition law. Equation (5) (converted to the
Shift-OR form from [16]) is the search status array 𝑅𝑅𝑅𝑅 update
formula that determines which states are active after processing a
symbol from 𝑆𝑆𝑆𝑆. The formula is the extension of the Shift-OR search
status word update formula (4). If the final state of the 0th row of
the NFA becomes active after processing of a symbol from 𝑆𝑆𝑆𝑆, then
an occurrence of the search pattern without errors (exact match)
is detected. If this happens in the 1st row, then an occurrence is
found with 1 error and so on.
𝑅𝑅𝑅𝑅 ← (𝑅𝑅𝑅𝑅0 ≪ 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖′ ← �(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 ≪ 1) ∨ 𝐵𝐵𝐵𝐵�𝑆𝑆𝑆𝑆𝑗𝑗𝑗𝑗�� ∧ (match)
𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 ∧ (insertion)
(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1 ≪ 1) ∧ (substitution)
(𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖−1′ ≪ 1) (deletion)
𝑖𝑖𝑖𝑖 = 1, … ,𝑘𝑘𝑘𝑘

(5)

Constrained approximate search
The unconstrained approximate search algorithms (dynamic
programming-based and bit-parallel) explained in the previous
sections can be generally applied, regardless of the a priori
knowledge about the search pattern/search string properties. In
many applications, not all the possible transforms of the search
pattern into a distorted version of the search string take place. If
we possess some knowledge about the distortion process, then we
can modify the search algorithm to take into account its subtleties.
In such a way we exclude the transforms of the original search
string into its distorted version that are impossible to happen.
Consequently, the false positive rate of the search procedure is
reduced.
A typical and very simple constraint that is possible to apply
concerns the elimination of certain elementary edit operations.
For example, if insertions never happen, we can simplify the
search status array 𝑅𝑅𝑅𝑅 update formula (5) used in the bit-parallel
version of the unconstrained approximate search by eliminating
the part related to insertions, which simplifies the formula and

m o n o g r a m
0 0 0 0 0 0 0 0 0

b 1 1 1 1 1 1 1 1 1
i 2 2 2 2 2 2 2 2 2
g 3 3 3 3 3 2 3 3 3
r 4 4 4 4 4 3 2 3 4
a 5 5 5 5 5 4 3 2 3
m 6 5 6 6 6 5 4 3 2

saves the processing time. We can do the same with the dynamic
programming-based search formula, by allowing only the diagonal
and horizontal transitions in the matrix of partial edit distances. In
the dynamic programming-based search case, this has another
positive consequence. Namely, if we transform the coordinates in
such a way that instead of the counters of symbols in the strings 𝑋𝑋𝑋𝑋
and 𝑌𝑌𝑌𝑌 we use the numbers of elementary edit operations (𝑖𝑖𝑖𝑖 for
insertions, 𝑒𝑒𝑒𝑒 for deletions, and 𝑠𝑠𝑠𝑠 for substitutions), the Algorithm 1
obtains a form having a very complicated initialization and the
dynamic programming array becomes 3-dimensional [14].
However, if we know a priori that no insertions (or deletions) are
used, then the dimension of the dynamic programming array
remains 2 and the initialization of the algorithm remains relatively
simple. This form of the dynamic programming-based search with
transformed coordinates is used in cryptanalysis of stream ciphers
[17].
Other, more complex, types of constraints can be introduced and
the search status array update formula in the bit-parallel
approximate search algorithm can be modified by introducing
special counters and/or bit masks. In the dynamic programming-
based algorithms, this is achieved by adding counters and
additional loops in the Algorithm 1. The constraints that are
introduced are determined by the application of the search
algorithm and the a priori knowledge that is at the disposal of the
search algorithm designer. In the sequel, we explain certain
scenarios that determine specific sets of constraints in
approximate search.

Applications in SPAM filtering and file
carving
SPAM still represents a great deal of today’s E-mail traffic. To
eliminate SPAM without producing too many false positives
and/or false negatives, various algorithms are used and many of
them include search for typical SPAM words (see, for, example,
[18]). To avoid elimination by SPAM filters, whose operation is
based on exact search, the spammers often use algorithms that
modify these words by substituting, inserting and/or deleting
symbols. At the same time, the intelligibility of these words must
be preserved in order to achieve the spammers’ goals – the victim
must be able to understand these words, even though they are
modified. Consequently, some constraints must be defined to the
numbers of inserted/deleted/substituted symbols and the
distribution of the changes. Being aware of this fact, the defensive
side can introduce the corresponding constraints in approximate
search for SPAM words. The effect on reducing the number of false
positives in search is better if the a priori information about the
modification process parameters that the spammer uses is more
accurate. In [3], such a scenario was studied, and a set of
constraints was defined that limited the total number of so-called
indels (insertions and deletions) in the edit transforms of the
original SPAM words. By using these constraints, both the dynamic
programming-based search algorithm and the bit-parallel
approximate search algorithm were modified, and their
performances were compared. It was shown experimentally that
the bit-parallel version of the approximate search algorithm is
more efficient than the dynamic programming-based one when
the number of indels is greater than the number of substitutions.

In digital forensics, file carving procedures are used to try to
reconstruct files, whose fragments are still present in permanent
memory, but at the operating system level these files have been
erased and therefore the metadata is missing. This is a natural
field of application for approximate search algorithms and in some
scenarios (for example, when the files have been erased by means
of a tool with intention to reconstruct them at a later time) the
introduction of constraints in search may help in improving the
efficiency of the carving and reducing the false positive rate. The
quality of a priori information about the deletion tool parameters
again contributes to improving the efficiency and accuracy of the
constrained approximate search algorithm used in the file carving
procedure.

Applications in network forensic and
intrusion detection
In attacks against computer networks and hosts, very often the
new attack traffic is obtained by slightly modifying the known
attack traffic. Since most Intrusion Detection Systems (IDS), which
are the tools used to detect such attacks, employ exact search for
known attack patterns, new attack patterns may pass unnoticed by
these systems. A single bit of change of the known attack traffic is
enough to make such a signature-based IDS to miss the attack. On
the other hand, since the attacks exploit known small
vulnerabilities of the computer networks and hosts, changing the
attack pattern too much may make the newly produced traffic
incapable of exploiting these vulnerabilities. Consequently, the
changes that are performed on the known attack patterns are very
often very small. In addition, since the traffic rate and the number
of potential victims steadily grow, manual changes are very rarely
used. Instead, special tools are used to modify such traffic and the
parameters that determine their behavior may be known to the
defensive side by threat intelligence (where information about this
may be obtained through various channels). In [19], a bit-parallel
constrained approximate search algorithm was described, in
which the constraints limit the total numbers of elementary edit
operations (insertions, deletions, and substitutions). The resulting
algorithm CRBP-OpCount (Constrained Row-Based Bit-Parallel-
Operations Count) produced up to 6 times fewer false positives
under some scenarios (concerning the percentage of applied
deletions, insertions, and/or substitutions) than the unconstrained
approximate bit-parallel search, maintaining at the same time
reasonable efficiency. With this constrained approximate search
algorithm in place, a signature-based IDS can detect new attacks
originating from the known ones with a reduced number of false
positives compared to a system employing unconstrained
approximate search.

Potential Applications in Bioinformatics
The methods hold a big potential in the field of bioinformatics,
such a search of genome for a motif mining or a database with
chemical compounds for the ones containing a fragment of
interest. This is useful in the light of automatic search, where via
the statistical analysis based on frequencies of occurrences in
active and inactive chemicals, it is possible to discover relevant
fragments [20], but the occurrence of their “distorted expressions“
are not frequent enough to be discovered. Yet it is known that a

48 ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ИНФОРМАТИКИ, ПРИКЛАДНОЙ МАТЕМАТИКИ,
КОМПЬЮТЕРНЫХ НАУК И КОГНИТИВНО-ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ

С. Петрович,
Ю. Сидорова

Том 16, № 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Современные
информационные
технологии
и ИТ-образование

References

[1] Navarro G., Raffinot M. Flexible Pattern Matching in
Strings: Practical On-Line Search Algorithms for Texts and
Biological Sequences. Cambridge: Cambridge Universi-
ty Press; 2002. (In Eng.) DOI: https://doi.org/10.1017/
CBO9781316135228

[2] Baeza-Yates R., Gonnet G.H. A new approach to text search-
ing. Communications of the ACM. 1992; 35(10):74-82. (In
Eng.) DOI: https://doi.org/10.1145/135239.135243

[3] Chitrakar A., Petrović S. Approximate search with con-
straints on indels with application in SPAM filtering. In:
Proceedings of Norwegian Information Security Con-
ference (NISK-2015), Ålesund, Norway; 2015. p. 22-33.
Available at: https://ntnuopen.ntnu.no/ntnu-xmlui/han-
dle/11250/2380987 (accessed 21.01.2020). (In Eng.)

[4] Knuth D.E., Morris Jr. J.H., Pratt V.R. Fast Pattern Matching
in Strings. SIAM Journal on Computing. 1977; 6(2): 323-350.
(In Eng.) DOI: https://doi.org/10.1137/0206024

[5] Boyer R.S., Moore J.S. A fast string searching algorithm.
Communications of the ACM. 1977; 20(10):762-772. (In
Eng.) DOI: https://doi.org/10.1145/359842.359859

[6] Horspool R. Practical Fast Searching in Strings. Software:
Practice and Experience. 1980; 10(6):501-506. (In Eng.)
DOI: https://doi.org/10.1002/spe.4380100608

[7] Sunday D.M. A very fast substring search algorithm. Com-
munications of the ACM. 1990; 33(8):132-142. (In Eng.)
DOI: https://doi.org/10.1145/79173.79184

[8] Crochemore M., Rytter W. Text algorithms. Oxford Universi-
ty Press, Inc., USA; 1994. (In Eng.)

[9] Navarro G., Raffinot M. Fast and flexible string matching by
combining bit-parallelism and suffix automata. ACM Journal
of Experimental Algorithmics. 2000; 5:4-es. (In Eng.) DOI:
https://doi.org/10.1145/351827.384246

[10] Zhang Y., Liu P., Liu Y., Li A., Du C., Fan D. Attacking Pattern
Matching Algorithms Based on the Gap between Aver-
age-Case and Worst-Case Complexity. Journal on Advances
in Computer Network. 2013; 1(3):228-233. (In Eng.) DOI:
https://doi.org/10.7763/JACN.2013.V1.45

[11] Sipser M. Introduction to the Theory of Computation, 2nd ed.
Thomson, USA; 2006. (In Eng.)

[12] Levenshtein V. Binary Codes Capable of Correcting De-
letions, Insertions and Reversals. Soviet Physics Doklady.
1966; 10(8):707-710. (In Eng.)

[13] Wagner R.A., Fischer M.J. The String-to-String Correction
Problem. Journal of the ACM. 1974; 21(1):168-173. (In Eng.)
DOI: https://doi.org/10.1145/321796.321811

[14] Oommen B.J. Constrained String Editing. Information Sci-
ences. 1986; 40(3):267-284. (In Eng.) DOI: https://doi.
org/10.1016/0020-0255(86)90061-7

[15] Hyyrö H., Navarro G. Faster Bit-Parallel Approximate String
Matching. In: A. Apostolico, M. Takeda (ed.) Combinatorial
Pattern Matching. CPM 2002. Lecture Notes in Computer
Science, vol. 2373. Springer, Berlin, Heidelberg; 2002. p.
203-224. (In Eng.) DOI: https://doi.org/10.1007/3-540-
45452-7_18

[16] Wu S., Manber U. Fast text searching: allowing errors. Com-
munications of the ACM. 1992; 35(10):83-91. (In Eng.) DOI:
https://doi.org/10.1145/135239.135244

[17] Golić J.Dj., Mihaljević M.J. A generalized correlation attack
on a class of stream ciphers based on the Levenshtein dis-
tance. Journal of Cryptology. 1991; 3(3):201-212. (In Eng.)
DOI: https://doi.org/10.1007/BF00196912

[18] Schryen G. Anti-SPAM Measures: Analysis and Design.
Springer, Berlin, Heidelberg; 2007. (In Eng.) DOI: https://
doi.org/10.1007/978-3-540-71750-8

[19] Chitrakar A., Petrović S. Constrained Row-Based Bit-Paral-
lel Search in Intrusion Detection. In: Proceedings of Norwe-
gian Information Security Conference (NISK-2016), Bergen,
Norway; 2016. p. 68-79. Available at: https://ojs.bibsys.no/
index.php/NISK/article/view/375 (accessed 21.01.2020).
(In Eng.)

[20] Sagar S., Sidorova J. Sequence Retriever for Known, Discov-
ered, and User-Specified Molecular Fragments. In: M.S. Mo-
hamad, M.P. Rocha, F. Fdez-Riverola, F.J. Domínguez Mayo,
J.F. De Paz (ed.) 10th International Conference on Practical
Applications of Computational Biology & Bioinformatics.
PACBB 2016. Advances in Intelligent Systems and Comput-
ing, vol. 477. Springer, Cham; 2016. p. 51-58. (In Eng.) DOI:
https://doi.org/10.1007/978-3-319-40126-3_6

[21] Sidorova J., Fernandez A., Cester J., Rallo R., Giralt F. Pre-
dicting Biodegradable Quality of Chemicals with the TGI+.3
Classifier. In: Proceeding (717) Artificial Intelligence and
Applications / 718: Modelling, Identification, and Control -
2011. Innsbruck, Austria; 2011. p. 108-115. (In Eng.) DOI:

small distortion, say the substitutions of atoms within the column
in the periodic table or the substitutions of within the functional
group, does not change the activity of the compound. The expert
knowledge is incorporated into the modeling of the distortions of
the search pattern in the form of probabilities for the edit
operations. The first tuning parameter in the inexact retriever is
the number of permitted indels (insertions/deletions and
substitutions) on the input, and the second one is the probabilities
associated to the edit operations. The search should be performed
over parsed strings [21-25], not raw ones. The mechanism permits
to retrieve molecules that contain fragments similar to the exact
fragments, which were known or discovered to be critical to the
activity. They are obtained from an exact fragment via the
substitution of the groups of atoms known to make the compound
engage in certain reactions (functional groups), and via applying a
number of insertions and deletions.

Conclusion
In this paper, we have given an overview of constrained
approximate search algorithms. We first exposed the elementary
concepts of exact and approximate unconstrained search. Then we
explained the constraints that could be introduced in order to
reduce the number of false positives in certain big data
applications. We enumerated typical environments, in which it is
possible to achieve better results if we introduce such constraints
in search. Consequences on search efficiency have also been
discussed. Some experimental results that indicated the
circumstances under which it is worth using constrained
approximate search have been discussed. If the adequate
constraints are introduced, these results show that the false
positive rate in knowledge discovery procedures can be
significantly reduced.

49THEORETICAL QUESTIONS OF COMPUTER SCIENCE, COMPUTATIONAL MATHEMATICS,
COMPUTER SCIENCE AND COGNITIVE INFORMATION TECHNOLOGIES

S. Petrović,
J. Sidorova

Vol. 16, No. 1. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern
Information
Technologies
and IT-Education

https://doi.org/10.2316/P.2011.717-044
[22] Sidorova J., Anisimova M. NLP-inspired structural pat-

tern recognition in chemical application. Pattern Recog-
nition Letters. 2014; 45:11-16. (In Eng.) DOI: https://doi.
org/10.1016/j.patrec.2014.02.012

[23] Sidorova, J., Garcia, J. (2015). Bridging from syntactic to sta-
tistical methods: Classification with automatically segment-
ed features from sequences. Pattern Recognition. 2015;
48:3749-3756. (In Eng.) DOI: https://doi.org/10.1016/j.
patcog.2015.05.001

[24] Dietterich T.G., Bakiri G. Solving multiclass learning prob-
lems via error-correcting output codes. Journal of Artifi-
cial Intelligence Research. 1995; 2:263-286. (In Eng.) DOI:
https://doi.org/10.1613/jair.105

[25] Anand R., Mehrotra K., Mohan C.K., Ranka S. Efficient
classification for multiclass problems using modu-
lar neural networks. IEEE Transactions on Neural Net-
works. 1995; 6(1):117-124. (In Eng.) DOI: https://doi.
org/10.1109/72.363444

Submitted 21.01.2019; revised 10.03.2020;
published online 25.05.2020.

Поступила 21.01.2020; принята к публикации 10.03.2020;
опубликована онлайн 25.05.2020.

About the authors:
Slobodan Petrović, Professor of the Department of Information
Security and Communication Technology, Faculty of Information
Technology and Electrical Engineering, Norwegian University of
Science and Technology (22 Teknologiveien, Gjøvik 2815, Norway),
Ph.D. (Engineering), ORCID: http://orcid.org/0000-0002-4435-
2716, slobodan.petrovic@ntnu.no
Julia Sidorova, Associate Professor of the Department of Comput-
er Science, Blekinge Institute of Technology (SE-37179 Karlskrona,
Sweden), Ph.D. (Engineering), ORCID: http://orcid.org/0000-0002-
1024-168X, julia.a.sidorova@gmail.com

All authors have read and approved the final manuscript.

Об авторах:
Петрович Слободан, профессор кафедры информационной
безопасности и коммуникационных технологий, факультет
информационных технологий и электротехники, Норвеж-
ский университет естественных и технических наук (2815,
Норвегия, г. Йёвик, Технологический пр., д. 22), кандидат тех-
нических наук, ORCID: http://orcid.org/0000-0002-4435-2716,
slobodan.petrovic@ntnu.no
Сидорова Юлия, доцент кафедры информатики, Технологиче-
ский институт Блекинге (SE-37179, Швеция, Округ Блекинге,
г. Карлскруна), кандидат технических наук, ORCID: http://orcid.
org/0000-0002-1024-168X, julia.a.sidorova@gmail.com

Все авторы прочитали и одобрили окончательный вариант
рукописи.

