
Том 16, № 2. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Современные
информационные
технологии
и ИТ-образование

УДК 004.855.5
DOI: 10.25559/SITITO.16.202002.398-406

Контент доступен под лицензией Creative Commons Attribution 4.0 License.
The content is available under Creative Commons Attribution 4.0 License.

Automatic Evaluation of Recommendation Models
O. A. Alievaa, E. S. Ganganb, E. A. Ilyushina*, A. I. Kachalinc

a Lomonosov Moscow State University, Moscow, Russia
1 Leninskie gory, Moscow 119991, Russia
* john.ilyushin@gmail.com
b Babes-Bolyai University, Cluj-Napoca, Romania
1 Mihail Kogălniceanu St., Cluj-Napoca 400084, Romania
c PJSC “Sberbank of Russia”, Moscow, Russia
19 Vavilova St., Moscow 117997, Russia

Abstract

The paper presents an overview of state-of-the-art algorithms used in recommender systems. We dis-
cuss the goal of collaborative filtering (CF) as well as different approaches to the method. Specifically,
we talk about Singular Value Decomposition (including optimizations, bias, time sensitive Singular
Value Decomposition (SVD) and enhanced SVD methods as SVD++), clustering approaches (using K
means clustering). We also discuss deep learning methods applied to recommender systems, such as
Autoencoders and Restricted Boltzmann Machines. We also go through qualitative evaluation metrics
of the algorithms, with a special emphasis on the classification quality metrics, as recommender sys-
tems are usually expected to have an order in which the recommendations are delivered. At the same
time, we propose a tool that automates the processes of CF algorithms launch and evaluation, that con-
tains data pre-processing, metrics selection, training launch, quality indicators checks and analyses of
the resulted data. Our tool demonstrates the impact that parameter selection has on the quality of the
algorithm execution. We observed that classical matrix factorization algorithms can compete with new
deep learning methods, giving the correct tuning. Also, we demonstrate a significant gain in time be-
tween the manual (involving a person that launches all the algorithms individually) and the automatic
(when the tool launches all the algorithms) algorithm launch.

Keywords: Automatization, Collaborative Filtering, Recommender Systems, Recommender Tool.

For citation: Alieva O.A., Gangan E.S., Ilyushin E.A., Kachalin A.I. Automatic Evaluation of Recommen-
dation Models. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technol-
ogies and IT-Education. 2020; 16(2):398-406. DOI: https://doi.org/10.25559/SITITO.16.202002.398-406

© Alieva O. A., Gangan E. S., Ilyushin E. A., Kachalin A. I., 2020

RESEARCH AND DEVELOPMENT IN THE FIELD OF NEW IT AND THEIR APPLICATIONS

399

Vol. 16, No. 2. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern
Information
Technologies
and IT-Education

ИССЛЕДОВАНИЯ И РАЗРАБОТКИ В ОБЛАСТИ НОВЫХ ИНФОРМАЦИОННЫХ
ТЕХНОЛОГИЙ И ИХ ПРИЛОЖЕНИЙ

Автоматическая оценка моделей рекомендаций
О. Алиева1, Е. Ганган2, Е. Ильюшин1*, А. Качалин3

1 ФГБОУ ВО «Московский государственный университет имени М. В. Ломоносова», г. Москва,
Россия
119991, Россия, г. Москва, ГСП-1, Ленинские горы, д. 1
* john.ilyushin@gmail.com
2 Университет Бабеш-Боляи, г. Клуж-Напока, Румыния
400084, Румыния, г. Клуж-Напока, ул. Михаила Когэлничану, д. 1
3 ПАО «Сбербанк России», г. Москва, Россия
117997, Россия, г. Москва, ул. Вавилова, д. 19

Аннотация

В статье представлен обзор современных алгоритмов, используемых в рекомендательных си-
стемах. Мы обсуждаем цель коллаборативной фильтрации (CF), а также различные подходы
к этому методу. В частности, мы говорим о сингулярном разложении (включая оптимизацию,
смещение, чувствительное ко времени сингулярное разложение (SVD) и расширенные методы
SVD как SVD++), подходах к кластеризации (с использованием метода K-средних). Мы также об-
суждаем методы глубокого обучения, применяемые к рекомендательным системам, такие как
Автоэнкодеры и ограниченные машины Больцмана. Мы также рассматриваем качественные
метрики оценки алгоритмов, уделяя особое внимание метрикам качества классификации, по-
скольку рекомендательные системы обычно должны иметь порядок, в котором выполняются
рекомендации. В то же время мы предлагаем инструмент, автоматизирующий процессы запуска
и оценки алгоритмов коллаборативной фильтрации, содержащий предварительную обработку
данных, выбор метрик, запуск обучения, проверку показателей качества и анализ полученных
данных. Наш инструмент демонстрирует влияние выбора параметров на качество выполнения
алгоритма. Мы наблюдали, что классические алгоритмы матричного факторизации могут кон-
курировать с новыми методами глубокого обучения, давая правильную настройку. Кроме того,
мы демонстрируем значительный выигрыш во времени между ручным (с участием человека,
который запускает все алгоритмы индивидуально) и автоматическим (когда инструмент запу-
скает все алгоритмы) запуском алгоритма.

Ключевые слова: автоматизация, коллаборативная фильтрация, рекомендательные систе-
мы, рекомендательный инструмент.

Для цитирования: Алиева, О. А. Автоматическая оценка моделей рекомендаций / О. А. Алиева,
Е. С. Ганган, Е. А. Ильюшин, А. И. Качалин. – DOI 10.25559/SITITO.16.202002.398-406 // Современ-
ные информационные технологии и ИТ-образование. – 2020. – Т. 16, № 2. – С. 398-406.

400 ИССЛЕДОВАНИЯ И РАЗРАБОТКИ В ОБЛАСТИ НОВЫХ
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИХ ПРИЛОЖЕНИЙ

О. А. Алиева, Е. С. Ганган,
Е. А. Ильюшин, А. И. Качалин

Том 16, № 2. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Современные
информационные
технологии
и ИТ-образование

Introduction

Recommender systems represent a specific type of software that
are designed to predict user behavior and suggest items that are
of most interest for a user at a given time (items can be movies,
articles, music, etc.). As a result, user satisfaction grows and so does
the service’s income. The income does not have to be direct reve-
nue; the service can capitalize on gaining user loyalty and retention,
that in a long run might turn into revenue from ads, subscriptions,
or others [1]. With giants like Netflix, YouTube, Amazon and many
others, recommender systems (RecSys) gained influence in the in-
dustry and became an important part of service-user interaction.
Depending on the business model, RecSys may be the core of the
service (think TripAdvisor or Booking) or can be a complimentary
service that eases navigation and decision making. There are 2 gen-
eral approaches in RecSys: content based filtering and collaborative
filtering.
Content based filtering uses previous knowledge and items features
to recommend users similar items to what they have already liked.
The recommended content is based on user interest and their ex-
plicit feedback [2]. Product description of all available items is re-
quired. Usually, content-based filtering is applied to movies, books
and articles. It is best suited for cold-start problems as it does not
require big amounts of data to work. However, the method is highly
influenced by user’s (or item’s) features, so the diversity of recom-
mendations may suffer [3].
Collaborative filtering looks at the user’s interaction history with
different items (purchases, ratings), but also observes similar de-
cisions in other users. Thus, the recommendation is constructed
based on the user-item interaction as well as the interactions of
users with similar characteristics with the same item. By using an-
other user’s information to decide, CF employs group knowledge to
construct the recommendation based on user similarity [3, 4]. In
such context, recommendations are based on filtering users with
related behavioral patterns. One of the shortcomings of CF is the
cold-start problem, because the method requires vast prior knowl-
edge of user’s habits or user-item interaction. On the other hand, it
is not bound by user (item) features, making the recommendation
span wider.

Problem Formulation

A. Scope of the paper
The scope of this work is to review all the major CF algorithms and
their evaluation metrics and to propose a tool that automates the
processes of CF algorithms training and evaluation.
B. Related work
The closest tool to our approach is Cornac, written in Python by
Preferred.Ai1. It was designed to work with models that use as input
data: image, text, social networks and enables fast experimentation.
Cornac is compatible with the most important ML frameworks,
such as TensorFlow, PyTorch. It allows users to pick any model from
their model zoo and test them on available datasets - MovieLens,
Netflix Prize, Amazon, Tradesy etc., and set test-training splits. It
also offers evaluation metrics such as MAE, RMSE, Recall, NDCG,
AUC (ROC-curve). Finally, the user can see the statistics of the mod-
el’s performance in a generated table.

1 Cornac: A Comparative Framework for Multimodal Recommender Systems [Электронный ресурс]. - URL: https://cornac.preferred.ai/ (дата обращения: 14.07.2020).

C. Requirements
Requirements for our tool are based on Cornac’s specs, defined in
section I.B, as well as our own considerations: the program must
have as input parameters: algorithm model, configuration, eval-
uation metrics and dataset; the output should be a table with the
experiment’s statistics in a configurable directory. Must have the
possibility to input different algorithm parameters for comparative
evaluation.

Collaborative filtering goal

As mentioned before, CF algorithms work based on analyzing and
comparing user preferences. They need vast amounts of data to
work properly. Regardless, they have gained popularity because
of their diversity in recommendations and are widely used at Net-
flix, Amazon, YouTube. There are 2 types of CF: heuristic (memo-
ry-based) and model-based.
A. Heuristic approach
In its turn, the heuristic approach can be split into user-item filter-
ing and item-item filtering.
User-item filtering choses an user and then finds other users with
similar behavior and recommends the former items that were pre-
viously liked by the latter [5]. Item-item filtering choses an object
instead of an user, then identifies users who liked this item, after
which it finds other items that were also liked by these users (or
ones similar to them).
The main difference between the heuristic approach and the mod-
el-based one is that it does not use gradient descent (or any other
optimizator) to compute weights. The similarity between the us-
ers is calculated using cosine similarity or Pearson correlation co-
efficient, both being based only on arithmetical operations. Thus,
algorithms that do not use weight computation and don’t employ
optimization are categorized as heuristic methods and considered
easy to use. However, their performance drops when using sparse
data and make this approach not scalable for real-world problems.
B. Model-based approach
In this approach, CF models employ machine learning algorithms
and techniques for constructing recommendations. These algo-
rithms can be sub-categorized into matrix factorization, clustering,
and deep learning.
Matrix factorization Let A be a matrix of dimension (m,n). This ma-
trix can be viewed as a product of 2 matrices of sizes (m,k) and (k,n).
For example, A matrix can be the ratings users gave to movies [6].
Each row represents a user, while each column represents a movie.
Obviously, this is a sparse matrix (not all users rated all movies).
One of the benefits of Matrix Factorization (MF) is that it can infer
user preferences when explicit feedback is not available [7]. Using
implicit feedback, it can infer if a user might like a movie they have
not yet seen and recommend it. MF can be formulated as an opti-
mization problem with loss functions and constraints. Constraints
are selected based on the model’s features [8]. MF can be executed
using various techniques, such as: Singular Value Decomposition
(SVD), Probabilistic Matrix Factorization (PMF), or Non-negative
matrix factorization (NMF) [9].
Clustering The idea of clustering is similar to the heuristic approach
in RecSys. Clustering algorithms also utilize user similarity in order
to predict ratings. The difference is that the similarity is computed
using unsupervised learning methods and not cosine similarity or

401RESEARCH AND DEVELOPMENT IN THE FIELD
OF NEW IT AND THEIR APPLICATIONS

O. A. Alieva, E. S. Gangan,
E. A. Ilyushin, A. I. Kachalin

Vol. 16, No. 2. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern
Information
Technologies
and IT-Education

the Pearson correlation coefficient [10]. Also, the number of similar
users is constrained to k, making this approach more scalable. In
order to deal with sparse data, K-means clustering algorithm was
proposed, and became the most popular algorithm that uses this
approach [11].
Deep learning Recently, deep learning has been actively used for
building RecSys. Deep learning algorithms gained popularity be-
cause they can overcome the shortcoming of traditional methods
and achieve high recommendation quality [12]. Due to its nature
to capture nonlinear relationships between users and items, deep
learning provides better representations for them, which leads to
better recommendations [13]. With neural networks, users and
items can be modeled into low dimensional vectors in a latent
space [14]. There are many models based on deep learning; some
of the most popular are Autoencoders, convolutional neural net-
works (CNN) based recommendations, Restricted Boltzmann ma-
chine-based recommendations (RBM) and also recommendations
based on Recurrent Neural Networks (RNN) [15].

Major collaborative filtering algorithms
review
A. Top-N Recommendations
Top-N recommendations are a good example of heuristic algo-
rithms. The idea of the algorithm is to recommend a set of N items
with highest ratings, which would be of interest for a user. Top-N
recommendations analyze the user-item interaction matrix to find
correlations between them to produce recommendations. Top-N
are divided into 2 subgroups: user-based Top-N recommendations
and item-based Top-N recommendations [16].
User-based Top-N recommendations first identify k most similar us-
ers (nearest neighbors) for a specific user, using cosine similarity
or Pearson’s correlation coefficient. After the neighbors have been
identified, the corresponding rows in the interaction matrix are
concatenated to obtain the set of items C, that interested similar us-
ers; the frequency of item incidence is also accounted for. Next, the
most frequent N items previously unseen by the user from set C are
recommended. This algorithm has limitations in terms of scalability
and real-time execution [17].
Item-based Top-N recommendations were developed to overcome
the scalability issue. The algorithm first identifies k most similar
items and, reasoning from their features, creates the set C of poten-
tial recommendation candidates. Then the set U of items already
seen by the user is deleted from C and all the new items similar to
C and U, but unseen by the user, are collected into the final set. This
set is sorted in descending order by item frequency and the user is
recommended the first N objects [18].
B. SVD
1) Classical SVD
SVD algorithm is based on MF and is one of the most popular in
RecSys; it was proposed by Simon Fank at the Netflix Prize competi-
tion2. It is partially based on the SVD algorithm from linear algebra,
where the main formula is:

 (1)
Where matrix is of size , size of n × n, and their col-
umns are orthonormal. is a diagonal matrix of size m × n, contain-
ing singular values of A. Because is a diagonal matrix, it can be

2 MovieLens data [Электронный ресурс]. — URL: http://www.grouplens.org (дата обращения: 14.07.2020).

combined with either or , which resulted into the classic for-
mula of SVD recommender algorithm [7]:

 (2)
Each item and user is represented as a latent vector (for object i
and for user u, respectively) of size k, which is a parameter of
the model corresponding to the number of features. in this sce-
nario is the expected rating by a user u on an item i, for example a
movie rating. It is worth mentioning that linear algebra SVD can be
computed only for dense matrices. If the initial matrix has a missing
value, SVD cannot be calculated; in this case the initial matrix can
be approximated. In order to obtain a dense initial matrix, missing
values were filled in. Soon it turned out this scenario is not feasi-
ble, as it distorted the data. Thus, a special normalized model was
proposed, that made use only of known ratings. In order to get the
latent vectors and for users and items and predict the future
rating , the system minimizes the normalized root square error
on multiple known ratings:

 (3)

where D is the number of (u, i) pairs for which the rating is
known. The system trains the model using previously known rat-
ings. Its goal is to generalize these figures to predict future ratings.
In order to avoid overfitting, the length of latent vectors is penal-
ized. Regularization is executed by optimizing the loss and some
other feature function, for example vector norms. The responsi-
ble for regularization is computed using cross-validation.
2) Optimizations
The main mechanism of optimizing the formula to find factor vec-
tors (3) is gradient descent. Simon Fank [19] used stochastic gradi-
ent descent, where the algorithm goes through all the user ratings
in the training set. For each case, the system predicts and
computes the error:

 (4)
Then the vectors are updated by taking a step in the opposite di-
rection to the gradient of the loss function with some parameter

 , and thus:
 (5)

 (6)

3) Bias
One of the strengths of MF is its flexibility in working with different
data. Formula (4) analyzes the interaction between users and items
and comes up with the rating. It happens that some users over-rate
or under-rate some items, which in their turn can be less or more
popular. That is why SVD’s performance might suffer. To solve this
problem, bias is introduced:

 (7)

where is the bias of the rating , item bias, user bias,
аnd μ — global bias or the general rating mean. With this, formula
(2) becomes:

 (8)

Finally, SVD learns by minimizing the square root error.

402 ИССЛЕДОВАНИЯ И РАЗРАБОТКИ В ОБЛАСТИ НОВЫХ
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИХ ПРИЛОЖЕНИЙ

О. А. Алиева, Е. С. Ганган,
Е. А. Ильюшин, А. И. Качалин

Том 16, № 2. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Современные
информационные
технологии
и ИТ-образование

4) SVD ++
In «Factorization Meets the Neighborhood» [17] the authors de-
scribe a modification of the SVD model. Each user is associated with
2 groups of items: R(u) — the set of items with known ratings and
N(u) — the set of items which do not have an explicit rating. SVD++
method uses implicit feedback. Because implicit feedback may
sometimes be unavailable, N(u) can be replaced R(u), as R(u)⊂N(u)
always holds.
5) Asymmetric SVD++
Along SVD++, authors in [17] propose an alternative model. The
idea behind this model is also to use implicit feedback.
6) Time SVD++
One of the well-known flexible models is TimeSVD++. In datasets
like MovieLens3 [28] and Netflix Prize4, besides the history of user
ratings, there is also information about the time they were given.
In order to make use of these data, the paper «Matrix Factorization
Techniques for Recommender Systems» [7] suggested plugging into
SVD++ some knowledge about time. Time SVD++ makes use of bias.
2 types of bias can be used: item bias and user bias. With item bias,
time intervals in which ratings are observed are split into bins (30
in this paper) and for each item a time changing bias parameter -

- is added. The parameter is chosen based on the bin of
variable t. User bias is more difficult to compute; similarly, the user’s
bias is added for each user, along with a term .
C. K-means clustering
Clustering considers objects as vectors in a high-dimensional space
and forms groups such that objects inside every group are most
similar to one another and most different from objects in other clus-
ters. In clustering, the dimensionality of input data is divided into k
partitions. Choosing the right initial k is crucial, because incorrect
choice of the k parameter may lead to fault results. The main con-
cept of the algorithm consists of minimizing the sum of the squared
distance between the data points and centroids:

 (9)

where is the number of clusters, — resulted clusters,
 , and — centroid af all vectors from cluster

. The algorithm was first described in «An improved parallel
K-means clustering algorithm with MapReduce»5 and consists of 4
steps: chose k, which will denote the centroids of the cluster; cal-
culate the Euclidean distance between the k centroids and the rest
of the vectors; the closest vectors are assigned to that one cluster;
centroids is re-computed; the algorithm stops after centroids stop
changing or on another specific condition.
D. Autoencoders
The Autoencoder is an artificial neural network with input, hid-
den and output layers. The input and output layers have the same
number of neurons. It is an unsupervised learning method that
encodes input data and outputs learned data representations, by
ignoring the “noise” in the data. The basic idea is that it learns to
copy its input to its output. The autoencoder first maps data to
some latent, more compact representation, only to restore the
data to the original dimensionality, but free of noise, with only the
most important information retained. Hidden layer has the func-

3 MovieLens data [Электронный ресурс]. URL: http://www.grouplens.org (дата обращения: 14.07.2020).
4 MovieLens data [Электронный ресурс]. - URL: http://www.grouplens.org (дата обращения: 14.07.2020).
5 Funk S. “SVD algorithm” [Электронный ресурс]. — URL: https://sifter.org/simon/journal (дата обращения: 14.07.2020).

tions to and
[21]. The goal of the autoencoder is to obtain a d-dimensional rep-
resentation of data in such a way that the error between and

is minimal. During training, the
encoder gets as input, for example, the vector of movie ratings and
computes its latent representation z. In forward-pass, it takes a user
from the training data (represented by their rating-vector ,
where n is the number of rated items). Notice that x is sparse, while
the input of the decoder, , is dense, and contains pre-
dicted ratings for all items. The latent representation is calculated
by:

 (10)
Where f is some non-linear activation, W is the weight matrix and b
is the bias. It has been found that it is important that the activation
function f contains a non-zero negative part in the hidden layers
[21]. It’s impossible to fully restore input vector x in the output y
by representation z; that’s why after obtaining vector y, training re-
sumes to using stochastic gradient descent for minimizing the loss
(for example the MSE - Mean Squared Error). In «Denoising Autoen-
coder-Based Deep Collaborative Filtering Using the Change of Simi-
larity» [22], the autoencoder has both the encoder and the decoder
consisting of feed-forward neural networks with fully connected
layers calculated by formula (1).
An extension of the simple autoencoder is the Deep Autoencoder,
that has multiple hidden layers, which proves useful when working
with complex data because of their tendency to learn higher order
features.
E. Restricted Boltzmann Machines
Restricted Boltzmann Machine (RBM) is a generative stochastic
neural net that determines the probability distribution over the
input data. RBM is based on binary elements in a Bernoulli distri-
bution that constitute the visible and hidden network layers.
The connection between the layers is given by a weight matrix

, with bias for the visible layer and for the hidden
one. The probability distribution over the vectors of the visible and
hidden layers is given by:

 (11)

where is called the energy function for the network . In RBM,
the neurons form a bipartite graph, with visible units on one side
(inputs) and hidden on the over, fully connected. The structure of
the graph allows it to be trained using gradient descent. «Restrict-
ed Boltzmann Machines for Collaborative Filtering» [23] considers
using RBM for recommendations. Say we have M items; N users and
ratings are from 1 to K. In order to use RBM, the first problem to be
addressed are the possible missing ratings. If all N users rated the
same set of M items, then each user could be considered as a train-
ing instance for a RBM, with M SoftMax visible units. Each hidden
unit could learn to model the dependency between ratings for dif-
ferent films. In the case when the majority of the ratings are miss-
ing, every user should be modeled with a different RBM. Each RBM
has the same number of hidden units, but the visible SoftMax units
correspond to the ratings given by the user.

403RESEARCH AND DEVELOPMENT IN THE FIELD
OF NEW IT AND THEIR APPLICATIONS

O. A. Alieva, E. S. Gangan,
E. A. Ilyushin, A. I. Kachalin

Vol. 16, No. 2. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern
Information
Technologies
and IT-Education

Algorithm Quality Evaluation

The quality of the algorithm based on various metrics is the usual
method in evaluating CF algorithms. Most common datasets used in
RecSys evaluation are public: MovieLens, Netflix Prize Competition,
Goodreads and BookCrossing, although in many cases proprietary,
unpublic data is used. The quality criteria are accuracy of the fore-
cast or of the classifications, computed by specific metrics.
A. Forecast Quality
Forecast quality looks at the difference between the predicted rat-
ing by the recommender system and the real rating from the test
set.
Mean Absolute Error MAE computes the difference between the
prediction and the real rating. A normalized version of MAE called
NMAE is also used. It normalizes the error by the difference be-
tween minimum and maximum ratings.
Root Mean Square Error RMSE was popularized after Netflix Prize.
One of RMSE characteristics is that it disproportionally penalizes
big errors, thus making it sensitive to incorrect predictions. As in
the case of MAE the smaller the value, the better.
B. Classification Quality
The most important metrics to evaluate how good the algorithm
distinguishes good examples from bad ones are Precision, Recall,
F-score, and ROC curve. They measure if the recommended item is
suitable, without which one is better [24]. Of course, this is not al-
ways convenient, because the user usually focuses on best matches.
In such cases, NDCG is employed.
Precision and Recall Considering 4 types of possible output scenar-

6 Guo S. Analysis and Evaluation of Similarity Metrics in Collaborative Filtering Recommender System: Thesis of the Degree Programme in Business Information
Technology. Tornio, 2014. [Электронный ресурс]. - URL: https://www.theseus.fi/bitstream/handle/10024/80193/Shuhang%20Guo_BIT10_K0951349_FinalThesis.
pdf?sequence=1 (дата обращения: 14.07.2020).

ios for predictions: True Positive, True Negative, False Positive and
False Negative, Precision characterizes the aptitude of the model to
make correct predictions, while Recall gives the number of correct
predictions out of all predictions.
F-score This metric was introduced to balance the need of maximiz-
ing Precision and Recall [25]. It includes the information about both
Precision and Recall, proving itself as the best candidate for evaluat-
ing classification quality.
ROC-curve The metric based on the ROC-curve is an alternative to
Precision and Recall. It represents the dependency graph between
true positives rates (also called sensitivity; X-axis) and the total
number of false positives (also called specificity; Y-axis) for different
classification thresholds from point (0,0) (min) to (1,0) (max)6. One
major characteristic of the method is AUC (area under the curve)
that is used to identify the capacity of the model to attribute to a
random correct example a higher rank rather than a lower. It is an
aggregate measure of model’s performance; a model that outputs
100% correct classifications will have an AUC of 1.0. A good model’s
graph will flatten in the top left corner [26, 27].
DCG Discounted cumulative gain, usually noted as , is used
if the order or the recommendations is important. The metric ac-
counts for relevancy and position of the recommended item. Rele-
vant objects will rank higher. Also, there is the possibility to calcu-
late the normalized version of the metric, denoted as
. In this case the value of is divided by , which
is the maximum possible value for the for user u if all the
recommendations are ranked in correct order.

T a b l e I. Comparative analysis of different algorithms

rmse mae model batch_size epoch optimizer dataset train_loss eval_loss ndcg
0.897662 0.707663 Embedding 1024 40 Adam ml-1m 0.783518 0.805796 0.99172
0.91333 0.721112 Embedding 2048 40 Adam ml-1m 0.815496 0.834172 0.991212
0.913936 0.721648 Embedding 4096 40 Adam ml-1m 0.815425 0.835279 0.99121
0.913981 0.721799 Embedding 5096 40 Adam ml-1m 0.815205 0.835361 0.991221
0.921221 0.732688 Mf 2048 40 Adam ml-1m 0.952845 0.885261 0.99106
0.924686 0.740538 Mf 4096 40 Adam ml-1m 0.964502 0.890183 0.991041
0.919099 0.737387 Mf 5096 40 Adam ml-1m 0.957858 0.881622 0.991163
0.916629 0.72576 NFC 1024 40 Adam ml-1m 0.976101 0.978186 0.991013
0.920278 0.729483 NFC 2048 40 Adam ml-1m 1.016503 1.017418 0.990979
0.923661 0.736542 NFC 4096 40 Adam ml-1m 1.069894 1.069072 0.990804
0.908309 0.716352 SVD 1024 40 Adam ml-1m 0.809234 0.825025 0.991179
0.908263 0.71652 SVD 2048 40 Adam ml-1m 0.807266 0.824942 0.991184
0.908069 0.716626 SVD 4096 40 Adam ml-1m 0.805809 0.824589 0.991202
0.908197 0.717079 SVD 5096 40 Adam ml-1m 0.806059 0.824822 0.991209
0.890178 0.701217 Embedding 1024 50 Adam ml-1m 0.76251 0.792417 0.991969
0.906517 0.715482 Embedding 2048 50 Adam ml-1m 0.801086 0.821773 0.991433
0.913532 0.721314 Embedding 4096 50 Adam ml-1m 0.814093 0.83454 0.991211
0.923723 0.737501 Mf 1024 50 Adam ml-1m 0.964439 0.888988 0.990987
0.924147 0.740093 Mf 4096 50 Adam ml-1m 0.966159 0.884982 0.991166
0.924065 0.740294 Mf 5096 50 Adam ml-1m 0.967744 0.886099 0.99121
0.915574 0.727545 NFC 1024 50 Adam ml-1m 0.962916 0.960318 0.990916
0.915199 0.727524 NFC 2048 50 Adam ml-1m 0.975107 0.97591 0.990985
0.920537 0.732639 NFC 5096 50 Adam ml-1m 1.042509 1.041333 0.990921
0.908367 0.716569 SVD 1024 50 Adam ml-1m 0.809244 0.825131 0.991173
0.90823 0.716479 SVD 2048 50 Adam ml-1m 0.80724 0.824882 0.991187

404 ИССЛЕДОВАНИЯ И РАЗРАБОТКИ В ОБЛАСТИ НОВЫХ
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИХ ПРИЛОЖЕНИЙ

О. А. Алиева, Е. С. Ганган,
Е. А. Ильюшин, А. И. Качалин

Том 16, № 2. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Современные
информационные
технологии
и ИТ-образование

Implementation Details

In this chapter we will describe the program package we created. It
corresponds to the requirements from II.C, containing 4 functional
modules. The package is developed on Python 3 using Tensorflow.
A. Workflow description
First step consists of defining the input parameters into the com-
mand line, which can be used with «—eval_only» mode (no train-
ing) or «—config» parameters. The config file contains information
about the datasets (MovieLens, Goodreads, BookCrossing); the
model parameters (batch size, epoch, learning rate); model archi-
tecture (keras layer description and directory path); used optimiz-
ers; usage of learning rate schedule ; evaluation metrics; possibil-
ity to save results into MLFlow; data input directory. In the second
part, the program performs training. The third step consists in com-
puting the model’s performance. Finally, the last step outputs the
result into the selected directory in the form of a .csv file containing
the name of the model, its parameters, used datasets as well as the
evaluation metrics. The possibility of multiple launch for evaluating
parameter tuning is executed by a special loop that creates a mul-
titude of parameter combinations and automatically launches the
created configuration.
B. Available models and evaluation metrics
The following models were considered: Matrix Factorization with:
SVD, SVD ++, Variational Autoencoder, Bayesian personalized rank-
ing; Neural collaborative Filtering; Turicreate (CF algorithm devel-
oped by Apple); Autoencoder.
As evaluation metrics we used Accuracy, Precision, Recall, RMSE,
AUC-ROC curve (with implementation from Keras); DCG score with
k=5 most relevant results and NDCG score with k=5 most relevant
results.
C. Input parameter reading, training and results output
Input parameters are sent to the main program using the command
line and loaded using a yaml.load file. This triggers the train_model
function (with arguments parsed from the config file) which trains
each model form the config file for all batch_size, epoch, learning_
rate values and selected optimizers. The model is compiled by the
model.compile function and trained in model.fit (skips this step if
eval_only was selected). After training is completed, the model is
evaluated using model.evaluate (with users, items and ratings from
datasets as parameters). The results are saved in a .csv file as well
as in MLFlow if that was opted for. The results are saved after each
training loop.

Experimental evaluation

This experiment considers the models described in chapters IV and
V. We used the MovieLens dataset, as it is the most used in evaluat-
ing recommendation algorithms performance (but Goodreads and
BookCrossing are also available). Experiments were run on 2 CPU
Intel Xeon Silver Cascade Lake-SP 4208 8C/16T; 4 GPU NVIDIA PNY
Quadro P5000 16GB GDDR5xPCle3; RAM 128 GB; 2 Tb SSD. Source
code for the experiment we published in https://github.com/Ily-
ushin/rec-tool.
A. Parameter tuning and algorithm performance
We demonstrated the influence of parameter tuning on the quality
of the model by using the multiple launch strategy that automati-
cally combines parameters over the fixed datasets and evaluation
metrics to get a result. Because of the large number of possible com-
binations, we will mention only the most interesting results and

will shoe a small portion of the results in the comparative analysis
section. The dataset has 6040 unique users and 3706 unique items.
For example, the best performance shown by Embedding was for
batch size 1024 for 50 epochs, while MF performed best on batch
size of 5096 on same number of epochs. Neural Collaborative Filter-
ing got good result with 50 epochs and a batch size of 2048. For The
performance of each model is determined by the correct parameter
tuning. Our package demonstrates this dependency and offers the
possibility to obtain the best configurations of parameters of data-
sets and evaluation metrics.
B. Comparative analysis of different algorithms
For comparative analysis, we launch the algorithms in the best con-
figurations obtained in VII.A. A part of the results for comparative
analysis on Movielens are presented in Table I. As we can see, the
developed tool gives the possibility to demonstrate the difference in
quality for various Collaborative Filtering algorithms on fixed eval-
uation metrics and datasets. Also, we can observe that classical MF
algorithms can compete with new deep learning methods, giving
the correct tuning. These results demonstrate once more that the
problem of parameter tuning is still actual and needs proper inves-
tigation.
C. Testing time gain analysis
We have implemented experiments to demonstrate the time gain
for manual vs multiple launch. Using a special time-measurement
utility, we calculated the time needed for a person to manually
launch all the tests for all the configurations and compared it with
quality, we do not care about the real metrics outputs and used only
random parameter values, while the datasets for both manual and
automatic launches are the same. We found that for the Movielens
dataset, the researcher’s times for launching the recommendation
models and looking for the best parameters’ combinations are:
•	 Manual launch - approx. 6 hours.
•	 Automatic launch - about 30 minutes.
It is easily observable that the time gain constitutes over 5 and half
hours, which demonstrates the capability of our program to dra-
matically decrease the time needed to manually pick parameter
configurations and launches for algorithm testing. Also, this ap-
proach eliminates the need of a person to be physically present to
relaunch an experiment after the previous terminates, as our pro-
gram automates this process and frees valuable human resources.

Conclusion

In this paper we investigated sophisticated functionalities of com-
plex programs, collaborative filtering algorithms and metrics for
their evaluation. We developed and implemented a program that
automates tests with these algorithms. We also conducted ex-
periments that compared the quality of different algorithms and
demonstrated the influence of specific parameter tuning on their
performance. Also, we have shown that matrix factorization algo-
rithms can compete with deep learning models, given the right pa-
rameter tuning. Besides that, we demonstrated a significant time
gain when testing the algorithm using our program rather than
launching each experiment by hand.

405RESEARCH AND DEVELOPMENT IN THE FIELD
OF NEW IT AND THEIR APPLICATIONS

O. A. Alieva, E. S. Gangan,
E. A. Ilyushin, A. I. Kachalin

Vol. 16, No. 2. 2020 ISSN 2411-1473 sitito.cs.msu.ru
Modern
Information
Technologies
and IT-Education

References

[1] Miller B.N., Konstan J.A., Riedl J. PocketLens: Toward a per-
sonal recommender system. ACM Transactions on Informa-
tion Systems. 2004; 22(3):437-476. (In Eng.) DOI: https://
doi.org/10.1145/1010614.1010618

[2] Hofmann T. Latent semantic models for collabora-
tive filtering. ACM Transactions on Information Sys-
tems. 2004; 22(1):89-115. (In Eng.) DOI: https://doi.
org/10.1145/963770.963774

[3] Yu K., Schwaighofer A., Tresp V., Xu X., Kriegel H.-P. Prob-
abilistic memory-based collaborative filtering. IEEE
Transactions on Knowledge and Data Engineering. 2004;
16(1):56-69. (In Eng.) DOI: https://doi.org/10.1109/
TKDE.2004.1264822

[4] Resnick P., Iacovou N., Suchak M., Bergstrom P., Riedl J.
GroupLens: an open architecture for collaborative fil-
tering of netnews. In: Proceedings of the 1994 ACM con-
ference on Computer supported cooperative work (CSCW
‘94). Association for Computing Machinery, New York,
NY, USA; 1994. p. 175-186. (In Eng.) DOI: https://doi.
org/10.1145/192844.192905

[5] Balabanović M., Shoham Y. Fab: content-based, col-
laborative recommendation. Communications of the
ACM. 1997; 40(3):66-72. (In Eng.) DOI: https://doi.
org/10.1145/245108.245124

[6] Cacheda F., Carneiro V., Fernández D., Formoso V. Compar-
ison of collaborative filtering algorithms: Limitations of
current techniques and proposals for scalable, high-per-
formance recommender systems. ACM Transactions on the
Web. 2011; 5(1):1-33. Article No. 2. (In Eng.) DOI: https://
doi.org/10.1145/1921591.1921593

[7] Koren Y., Bell R., Volinsky C. Matrix Factorization Techniques
for Recommender Systems. Computer. 2009; 42(8):30-37.
(In Eng.) DOI: https://doi.org/10.1109/MC.2009.263

[8] Bell R.M., Koren Y. Improved Neighborhood-based Col-
laborative Filtering. In: Proceedings of KDDCup and Work-
shop. San Jose, California, USA; 2007. p. 7-14. Available
at: https://www.cs.uic.edu/~liub/KDD-cup-2007/pro-
ceedings/Neighbor-Koren.pdf (accessed 14.07.2020). (In
Eng.)

[9] Sarwar B., Karypis G., Konstan J., Riedl J. Incremental Sin-
gular Value Decomposition Algorithms for Highly Scalable
Recommender Systems. In: Fifth International Conference
on Computer and Information Science. 2002. Available at:
http://files.grouplens.org/papers/sarwar_SVD.pdf (ac-
cessed 14.07.2020). (In Eng.)

[10] Ungar L.H., Foster D.P. Clustering Methods for Collaborative
Filtering. In: Proceedings of the 1998 Workshop on Recom-
mender Systems. AAAI Press, Menlo Park; 1998. (In Eng.)

[11] O’Connor M., Herlocker J. Clustering items for Collaborative
Filtering. In: Proceedings of the ACM SIGIR Workshop on Rec-
ommender Systems: Algorithms and Evaluation. Berkeley,
California, USA; 1999. (In Eng.)

[12] He X., Liao L., Zhang H., Nie L., Hu X., Chua T. Neural Collab-
orative Filtering. In: Proceedings of the 26th International
Conference on World Wide Web (WWW’17). International
World Wide Web Conferences Steering Committee, Repub-
lic and Canton of Geneva, CHE; 2017. p. 173-182. (In Eng.)
DOI: https://doi.org/10.1145/3038912.3052569

[13] Zhang S., Yao L., Sun A., Tay Y. Deep Learning Based Recom-
mender System: A Survey and New Perspectives. ACM Com-
puting Surveys. 2019; 52(1):1-38. (In Eng.) DOI: https://doi.
org/10.1145/3285029

[14] LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;
521:436-444. (In Eng.) DOI: https://doi.org/10.1038/na-
ture14539

[15] Xue H.-J., Dai X., Zhang J., Huang S., Chen J. Deep Matrix Fac-
torization Models for Recommender Systems. In: Proceed-
ings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (IJCAI-17). Melbourne, Australia; 2017.
p. 3203-3209. (In Eng.) DOI: https://doi.org/10.24963/ij-
cai.2017/447

[16] Wang H., Wang N., Yeung D.-Y. Collaborative Deep Learning
for Recommender Systems. In: Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ‘15). Association for Computing Ma-
chinery, New York, NY, USA; 2015. p. 1235-1244. (In Eng.)
DOI: https://doi.org/10.1145/2783258.2783273

[17] Sarwar B., Karypis G., Konstan J., Riedl J. Item-based collab-
orative filtering recommendation algorithms. In: Proceed-
ings of the 10th international conference on World Wide Web
(WWW ‘01). Association for Computing Machinery, New
York, NY, USA; 2001. p. 285-295. (In Eng.) DOI: https://doi.
org/10.1145/371920.372071

[18] Koren Y. Factorization meets the neighborhood: a multi-
faceted collaborative filtering model. In: Proceedings of the
14th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD ‘08). Association for Com-
puting Machinery, New York, NY, USA; 2008. p. 426-434. (In
Eng.) DOI: https://doi.org/10.1145/1401890.1401944

[19] Karypis G. Evaluation of Item-Based Top-N Recommenda-
tion Algorithms. In: Proceedings of the tenth international
conference on Information and knowledge management
(CIKM ‘01). Association for Computing Machinery, New
York, NY, USA; 2001. p. 247-254. (In Eng.) DOI: https://doi.
org/10.1145/502585.502627

[20] Babu S. Towards automatic optimization of MapReduce
programs. In: Proceedings of the 1st ACM symposium on
Cloud computing (SoCC ‘10). Association for Computing Ma-
chinery, New York, NY, USA; 2010. p. 137-142. DOI: (In Eng.)
https://doi.org/10.1145/1807128.1807150

[21] Liao Q., Yang F., Zhao J. An improved parallel K-means clus-
tering algorithm with MapReduce. In: 2013 15th IEEE Inter-
national Conference on Communication Technology. Guilin;
2013. p. 764-768. (In Eng.) DOI: https://doi.org/10.1109/
ICCT.2013.6820477

[22] Barbieri J., Alvim L.G.M., Braida F., Zimbrão G. Autoencod-
ers and recommender systems: COFILS approach. Expert
Systems with Applications. 2017; 89:81-90. (In Eng.) DOI:
https://doi.org/10.1016/j.eswa.2017.07.030

[23] Suzuki Y., Ozaki T. Stacked Denoising Autoencoder-Based
Deep Collaborative Filtering Using the Change of Similarity.
In: 2017 31st International Conference on Advanced Infor-
mation Networking and Applications Workshops (WAINA).
Taipei; 2017. p. 498-502. (In Eng.) DOI: https://doi.
org/10.1109/WAINA.2017.72

[24] Salakhutdinov R., Mnih A., Hinton G. Restricted Boltzmann
machines for collaborative filtering. In: Proceedings of the
24th international conference on Machine learning (ICML

406 ИССЛЕДОВАНИЯ И РАЗРАБОТКИ В ОБЛАСТИ НОВЫХ
ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ И ИХ ПРИЛОЖЕНИЙ

О. А. Алиева, Е. С. Ганган,
Е. А. Ильюшин, А. И. Качалин

Том 16, № 2. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Современные
информационные
технологии
и ИТ-образование

‘07). Association for Computing Machinery, New York,
NY, USA; 2007. p. 791-798. (In Eng.) DOI: https://doi.
org/10.1145/1273496.1273596

[25] McLaughlin M.R., Herlocker J.L. A collaborative filtering al-
gorithm and evaluation metric that accurately model the
user experience. In: Proceedings of the 27th annual interna-
tional ACM SIGIR conference on Research and development in
information retrieval (SIGIR ‘04). Association for Computing
Machinery, New York, NY, USA; 2004. p. 329-336. (In Eng.)
DOI: https://doi.org/10.1145/1008992.1009050

[26] Brzezinski D., Stefanowski J. Prequential AUC: properties of
the area under the ROC curve for data streams with concept
drift. Knowledge and Information Systems. 2017; 52:531-
562. (In Eng.) https://doi.org/10.1007/s10115-017-1022-
8

[27] Davis J., Goadrich M. The relationship between Precision-Re-
call and ROC curves. In: Proceedings of the 23rd international
conference on Machine learning (ICML ‘06). Association for
Computing Machinery, New York, NY, USA; 2006. p. 233-240.
(In Eng.) DOI: https://doi.org/10.1145/1143844.1143874

[28] Herschtal A., Raskutti B. Optimising area under the
ROC curve using gradient descent. In: Proceedings of
the twenty-first international conference on Machine
learning (ICML ‘04). Association for Computing Machin-
ery, New York, NY, USA; 2004. p. 49. DOI:https://doi.
org/10.1145/1015330.1015366

Submitted 14.07.2020; revised 20.08.2020;
published online 30.09.2020.

Поступила 14.07.2020; принята к публикации 20.08.2020;
опубликована онлайн 30.09.2020.

About the authors:
Olga A. Alieva, MA student of the Faculty of Computational Math-
ematics and Cybernetics, Lomonosov Moscow State University (1,
Leninskie gory, Moscow 119991, Russia), ORCID: http://orcid.
org/0000-0002-9503-2042
Elena Gangan, Junior ML Specialist of the Faculty of Mathematics
and Computer Science, Babes-Bolyai University (1 Mihail Kogăl-
niceanu St., Cluj-Napoca 400084, Romania), ORCID: http://orcid.
org/0000-0002-6471-6492, lenagangan2@gmail.com
Eugene A. Ilyushin, Senior Software Developer of Open Informa-
tion Technologies Lab, Faculty of Computational Mathematics and
Cybernetics, Lomonosov Moscow State University (1, Leninskie
gory, Moscow 119991, Russia), ORCID: http://orcid.org/0000-
0002-9891-8658, john.ilyushin@gmail.com
Alexey I. Kachalin, Deputy Head of the Cyber Defense Center, PJSC
“Sberbank of Russia” (19 Vavilova St., Moscow 117997, Russia), OR-
CID: http://orcid.org/0000-0003-3039-7160, a.kachalin@gmail.
com

All authors have read and approved the final manuscript.

Об авторах:

Алиева Ольга, магистрант факультета вычислительной мате-
матики и кибернетики, ФГБОУ ВО «Московский государствен-
ный университет имени М. В. Ломоносова» (119991, Россия,
г. Москва, ГСП-1, Ленинские горы, д. 1), ORCID: http://orcid.
org/0000-0002-9503-2042
Ганган Елена, младший специалист по машинному обучению,
факультета математики и информатики, Университет Ба-
беш-Боляи (400084, Румыния, г. Клуж-Напока, ул. Михаила Ко-
гэлничану, д. 1), ORCID: http://orcid.org/0000-0002-6471-6492,
lenagangan2@gmail.com
Ильюшин Евгений, ведущий программист лаборатории
открытых информационных технологий, факультет вычис-
лительной математики и кибернетики, ФГБОУ ВО «Москов-
ский государственный университет имени М. В. Ломоносова»
(119991, Россия, г. Москва, ГСП-1, Ленинские горы, д. 1), ORCID:
http://orcid.org/0000-0002-9891-8658, john.ilyushin@gmail.com
Качалин Алексей, заместитель руководителя центра кибер-
защиты, ПАО «Сбербанк России» (117997, Россия, г. Москва, ул.
Вавилова, д. 19), ORCID: http://orcid.org/0000-0003-3039-7160,
a.kachalin@gmail.com

Все авторы прочитали и одобрили окончательный вариант
рукописи.

