THEORETICAL QUESTIONS OF COMPUTER SCIENCE, COMPUTATIONAL MATHEMATICS,
COMPUTER SCIENCE AND COGNITIVE INFORMATION TECHNOLOGIES

VK 510.643 Original article]
DOI: 10.25559/SITITO.16.202003.543-550

Dynamic Separation Logic and its Use in Education

E. M. Makarov

Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
23 Gagarin Av,, Nizhny Novgorod 603950, Russian Federation
evgeny.makarov@itmm.unn.ru

Abstract

Mathematical logic is widely used in hardware and software verification. Hoare logic is particularly
suitable for reasoning about imperative programs. Its extension, separation logic, introduces the sep-
arating conjunction, which makes it possible to reason about programs working with pointers and
mutable data structures. Dynamic logic, an example of modal logic, is yet another formalism used for
verification. This article introduces propositional dynamic separation logic, which adds separating con-
junction to dynamic logic.

We describe syntax, semantics and Hilbert-style deductive system for propositional dynamic separa-
tion logic and prove its soundness. The definition of the logic is rather abstract. Thus, the programming
language consists of so-called regular programs rather than while-programs, and the set of atomic com-
mands can be arbitrary as long as they correspond to local actions. Special attention is devoted to the
soundness of the frame rule, which allows writing program specification using a small footprint, i.e.,
specifying exactly the portion of the heap that the program reads or writes. Programs that perform tests
are also treated differently from regular dynamic logic.

The article also argues for the use of separation logic in computer science curriculum. It is more intu-
itive that other substructural logics and can be taught even in introductory logic courses. At the same
time, it is an active research area with numerous verification tools built on its foundation. Therefore, it
serves an excellent introduction to formal methods.

Keywords: dynamic separation logic, frame rule, soundness.
The author declares no conflicts of interest.
For citation: Makarov E.M. Dynamic Separation Logic and its Use in Education. Sovremennye

informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2020;
16(3):543-550. DOI: https://doi.org/10.25559/SITIT0.16.202003.543-550

© Makarov E. M., 2020

@ KonTeHT focTyneH nog auueHsueii Creative Commons Attribution 4.0 License.
The content is available under Creative Commons Attribution 4.0 License.

Vol. 16, No. 3. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Modern
Information
Technologies
and IT-Education

TEOPETUYECKUE BONPOCHI MIHOOPMATUKW, MPUKNALHOWN MATEMATUKM, .
KOMMNbIOTEPHbIX HAYK N KOTHUTUBHO-UH®OPMALVNOHHbIX TEXHOTOI MK

OpurnHanbHasa cTaTbs

JAMHaMHuyYecKasi JIOTUKa pa3Je/ieHHMH U ee UCN0/Ib30BaHUE B
00pa3oBaHUU

E. M. Makapos

®Tr'AOY BO «HanuoHanbHbIN Hcclei0BaTeNbCKUN Hikeropoackuil rocyjapCTBEHHbIM YHUBEPCUTET
M. H.W. Jlo6aueBckoroy, r. HrmxHuit HoBropog, Poccuiickas ®efepanus

603022, Poccuiickas ®enepanus, r. Huxkauid Hosropop, np. larapuna, 7. 23
evgeny.makarov@itmm.unn.ru

AHHOTanua

MaTtemaTH4yeckas JIOTUKaA IIUPOKO NMPpUMEHAEeTCA A4 BepHCl)l/IKaI_lHI/I nporpamMm M anmnapaTHoro 066-
CIte4yeHHd. OL[HOFI U3 JIOTHK, HauboJsiee noaxoodAI X Ui Bepml)mcaunn HUMIIEPAaTUBHbIX NIPOr'paMM,
ABJIAETCA JIOTHUKA Xoapa. Ee pacluiMpeHue, JIOoruka pa3ﬂeﬂeHPIﬁ, HCII0JIb3YyeT pasfe/Anllyl0 KOHDb-
IOHKIUIO, KOTOpad IIO3BOJIAET PACCYXKAATh O IpOrpaMmax, UCIOJIb3YIOUIHUX YKa3aTeJIu U USBMEHAEeMble
CTPYKTYpHI AaHHBIX. Eme ogHuM dopMannsmMoM, UCNOIb3yeMbIM B BepUUKALNH, ABISETCA JUHA-
MHYecKasl JIOTMKa — 4YaCTHBIN cnyqaﬁ MO,E[aJIbHOﬁ JIOTUKH. [laHHaH CTAaTbdA OIMUCBIBAET INPOIO3ULH-
OHAJIbHYI0 JUHAMUWYECKY10 JIOTUKY pasaenel—mﬁ, KOTOpas ,£[06aBJIHeT pa3zesidriyo KOHbIOHKIUIO K
,E[PIHaMH‘{eCKOﬁ JIOTUKE.

Mgl onMchIBaeM CUHTAKCUC, CEMAHTUKY U UCYUCJIEHHE B I‘PI]II:GepTOBCKOM CTUJIe AJid NPONO3rULHU0-
HaJIbHOH ,ZLHHaMPI'—IecKOﬂ JIOTUKH pa3ﬂeHeHHﬁ W IOKa3bIBaeM €€ KOPPEKTHOCTb. Onpeaenel—me JIOTHU-
KH ABJIAeTCAd JOCTATOYHO a6CTpaKTHbIM. TaK, I/ICHOJILSyeMbIﬁ A3bIK NPOrpaMMHUPOBaHUA COCTOUT M3
TaK Ha3blBa€MbIX PETYJ/ISIPHBIX IPOrPaMM BMECTO MPOrpaMM C 0GbIYHBIMU KOHCTPYKIUAMHU if 1 while.
MHOecTBO ATOMAapHBbIX IPOrpaMM MOXKeET 6GBITh IIPOU3BOJIBHBIM IIPH YCJIOBHUH, HTO OHU MMOPOXKAAKT
JIOKAJIbHbIE AeﬁCTBHH. Oco60e BHUMaHHUe yaeadeTcda KOPPpEeKTHOCTHU IIpaBUJIa KaZjpa, IO3BOJIAOIEro
IIHUCaTh JIOKAJIbHbIE cneumbm(aunn nporpamMmmM, To €CTb YKa3bIBaTb Y4AaCTKHU [IaMATH, KOTOPbI€ HEIl0-
CpeACTBEHHO YUTAKTCA UJIM U3MEHATCA HpOFpaMMOﬁ. YcnoBHbIE OoIepaTophbl TaKXe pacCMaTpuBa-
OTCA OTJIMYHO OT CTaH,ELapTHOﬁ LLI/IHaMI/I‘{eCKOﬁ JIOTUKH.

CtaTbhq Takxe COAEPNKUT apryMeHTbl B I10JIb3y HCIOJIb30BAaHUA JIOTUKHU pa3aenel—m17[B U3y4Y€HUU
KOMIIbIOTEPHBIX HayK. /laHHas Jloruka 6oJjiee MpOCTa, YeM APyTHe CY6CTPYKTYPHBIE JIOTHKH, U MOXKET
npenoAaBaTbCd AaxKe B Ha4aJIbHBIX KypcCax MaTeMaTU4YeCKUH JIOTUKU. B To ke BpewMs, JIOTUKaA pas-
,C[e]'[eHPIFI ABJIAETCA 06/1aCThI0 aKTUBHBIX HCCJ]e,ElOBaHPIFI C 6OJIBIIUM KOJIM4EeCTBOM HpHMeHeHHﬁ. Ha
OCHOBE 3TOH JIOTUKHU IMOCTPOEHO MHOI'O MHCTPYMEHTOB AJid Bepmbmcal.um. HOZ-)TOMy OHa gdBJideTcd
OTJIMYHBIM BBEeJIEHUEM B d)OpMaJIbeIe MeTOoAbI.

KiroueBble C/10Ba: auHaMuyeckas JIOTUKA pas3/e/IeH|H, IPaBUII0 Kazipa, KOPPEKTHOCT.
Asmop 3ase11em 06 omcymcmeuu KOHPAUKMA UHMEpecos.

JI1 BUTUPOBAHUA: Makapos, E. M. /IuHaMUyecKast JIOTHKA pa3/ie/IeHUi U ee UCIO0JIb30BaHue B
o6pasoBanuu / E. M. Makapos. — DOI 10.25559/SITIT0.16.202003.543-550 // CoBpeMeHHble WUH-
dopmanuoHHble TexHosoruu U UT-o6pasoBanne. — 2020. — T. 16, Ne 3. — C. 543-550.

CoBpemeHHble

NH(OPMALMOHHbIE .
TeXHonoruu Tom 16, N2 3. 2020 ISSN 2411-1473 sitito.cs.msu.ru

u UT-06pa3oBaHmne A T

THEORETICAL QUESTIONS OF COMPUTER SCIENCE, COMPUTATIONAL MATHEMATICS,

£ M. Makarov COMPUTER SCIENCE AND COGNITIVE INFORMATION TECHNOLOGIES | 242
. starting in ¢ ends in a state satisfying F. Thus, Hoare triple
Introduction {F}C{G} canbe expressed as F' — [C]G. As a result, dynamic

Mathematical logic has long been used to help create and verify
computer software [1]. While generic first- and higher-order logics
can be used to prove properties of programs,’ in practice special-
ized logics are necessary. One of the oldest examples of such logic
is Hoare logic [2; 3]. It uses formulas, or assertions, of first-order
logic (or some other chosen logic) to describe contents of vari-
ables, or states. The derivable judgments of Hoare logic, called
triples, have the form {F}C{G} where F' and G are assertions,
called pre- and postconditions, respectively, and C' is a program,
or command. Such triple may express partial or total correctness
of the program C.. In the first case, the triple means that if C' starts
in a state satisfying F' and finishes execution, then the final state
satisfies GG. Total correctness additionally demands that C' termi-
nates.

As a calculus, Hoare logic provides axiomatic semantics to pro-
grams. It includes a collection of axioms and inference rules that
allow deriving specifications of programs.

A serious shortcoming of Hoare logic has to do with shared muta-
ble data structures. When a program is allowed to use pointers, a
single field can be referenced from different places, and updating
the content of one pointer may unexpectedly change the content of
a seemingly unrelated pointer. This situation is known as aliasing.
To deal with such programs, in early 2000s Reynolds, O'Hearn and
others invented separation logic [4; 5].

Assertions and reasoning about them in separation logic is bor-
rowed from the so-called logic of bunched implications (BI
logic) [6]. During the early days of separation logic assertions were
primarily though of as predicates on heaps, i.e., memory segments.
BI logic adds to classical logic new connectives * and —x, called
separating conjunction and separating implication. Assertion
F1 % Fy is considered true on a heap o if it can be divided into
two disjoint portions ¢y and 3 such that F1 is true on o1 and Fy
is true on 02. The connective —x is an implication that approxi-
mately relates to * and ordinary implication relates to conjunction.
To talk about heaps, separation logic uses the predicate [— v,
which means that value v is stored in the heap at location /. Vari-
ous axioms, for example, saying that the > is a partial function,
can be added. Separation logic also includes an important frame
rule.

{FyC{G}
{F«H}C{G* H}

It means that if C' converts a heap satisfying I into one satisfying
G, then it will work similarly when run on a larger heap and won't
touch the excess part. This rule allows writing function specifica-
tion using small footprint, i.e., specifying exactly the portion of the
heap that the function reads or writes. Using the frame rule, this
specification can be lifted to reason about a larger program.

Hoare logic and separation logic have enjoyed great success as ma-
chinery for specifying and proving program correctness. Many
software tools were created for verifying software with different
degrees of human participation. Some successful projects are
listed in Section 4.

Dynamic logic [7] is yet another formalism for reasoning about
programs. Unlike Hoare and separation logics, its judgments are
not restricted to triples and can be arbitrary formulas. It is a modal
logic that for every program C' includes a modal operator [C] For-
mula [C]F is true in a state 0 if every terminating execution of C

1)

logic is at least as expressive as Hoare logic.

Dynamic logic has also been quite useful for practical verification.
For example, the KeY Project [8] uses dynamic logic in a tool that
allows verifying Java programs against specifications written in
the Java Modeling Language.

Since Hoare logic can be embedded into dynamic logic, it makes
sense to extend the latter by adding separating connectives. To
our knowledge, this has not been done. So the first contribution of
this paper is a formulation of propositional dynamic separation
logic and a proof of its soundness. The second contribution is a
discussion of why dynamic and separation logics form a particu-
larly suitable subject in computer science education.

This paper deals with propositional dynamic separation logic and,
following [9], abstracts from many concrete details of a program-
ming language. For this reason it does not show examples of veri-
fying realistic algorithms. Several examples, including in-place re-
versal of a linked list, copying a tree and Schorr-Waite graph
marking algorithm, can be found in [4].

The outline of this paper is as follows. Section 2 introduces dy-
namic separation logic and describes its similarity with traditional
separation logic. Section 3 proves soundness of dynamic separa-
tion logic. The use of dynamic and separation logics in education
is discussed in Section 4. Finally, Section 5 concludes and points to
future research.

Dynamic Separation Logic

This section introduces dynamic separation logic. Most
of the technical details are based on [9] and are similar to regular
separation logic. The main difference is that separation logic uses
triples while dynamic separation logic uses formulas of the BI
logic with added modal operators [C].

Definition 1. Formulas F' and commands C are described using
the following mutually recursive grammar.

F,Gu=p]|true|false |emp | -F |FAF|FVF|F—F|FxF|[C|F
Cu=a|C;C|C+C|C"|F?

The command C7; Cy executes C followed by Cq; C7 + Co
nondeterministically chooses and runs one of C4, Cy; C* executes
C zero or more times, while F'? does nothing if F' is true in the
current state and terminates the process normally otherwise (in-
stead of terminating the process may be though of as diverging
since we are interested in partial correctness). This language is
nondeterministic due to the presence of +, so there may be multi-
ple computations starting in the same state.

In this programming language some operators can be expressed
using well-known translation [7, Sect. 5.1].

skip = true?
fail = false?
if F' then Cy else Cy = (F7;C1) + (—F;C2)
while F do C = (F'?;C)*; - F?
repeat C' until F = C; (-F?;C)*; F?
Variable p ranges over the countable set of proposi-

tional variables, and a ranges over the set of atomic commands.
The following example is taken from [5].

! For example, it is well-known that Kleene’s T predicate, which describes the computation of a given Turing machine, is representable in formal arithmetic and so can
be used to express and formally prove properties of algorithms encoded by Turing machines.

Vol. 16, No. 3. 2020 ISSN 2411-1473 sitito.cs.msu.ru

Modern
Information
Technologies
and IT-Education

546

TEOPETUYECKME BOMPOCHI UHOOPMATUKN, MPUKIAQHOW MATEMATUKY,
KOMMbIOTEPHbIX HAYK 1 KOTHUTUBHO-MH®OPMALMOHHbBIX TEXHONOT WA

E. M. Makapos

Example 2. Let arithmetic expressions F and atomic actions a be
defined by the following grammar.

Eu=uy,...|0|1|E+E|ExE|E-E
az=z:=FE|xz:=[E]|[E]:=E|x:=cons(E,...,E) | dispose(E)

Here [E] denotes the content of memory, or heap, at address F.
Therefore, := [E] reads the content of memory at address F
into x; [F1]:= E writes the value of Fy to address Fj;
x = cons(E1, ..., E,)allocates n consecutive cells, writes val-
ues of Fy,..., E, there and assigns « to the address of the first of
those cells; and dispose(E) frees the memory cell at address F.
Commands that access the heap may generate a fault if the re-
quired address is not allocated.

Commands are interpreted as binary relations on the set > of
states. Historically the first example of states was heaps possibly
paired with stores, i.e., values of local variables. A crucial feature of
heaps is that they support the operation of union of disjoint por-
tions of a heap. Over time, many other interpretations of states
were proposed. The following definition generalizes over them.

Definition 3. A separation algebra is a triple (27 *, e) where * is a
partial binary operation on X and e € X satisfying the following
properties forall 01, o9 € X.

1.01 x 090 = 09 % 07;

2.ex0=0%e=0;

3.01 %0 =09 %0 —> 01 = O9.

Thus, Y is a partial commutative monoid. We write 01 = 09 if
09 = 01 * 0 forsome 0 and 01 # 09if 01 * 0 is defined.

Example 4. Let > = Heaps = L —g, V where L is a set of lo-
cations, V' is a set of values, and —g,, denotes the set of finite par-
tial functions. Then e denotes the nowhere defined function and *
is the union of functions with disjoint domains.

One can take L = N and V' = Z [5]. For another example, con-
sider unspecified disjoint sets Atoms and Addresses, let
L = Addresses and V' be the set of all finite tuples whose ele-
ments come from Z U Atoms U Addresses [4]. This construction
allows representing linked lists, i.e., sequences of pairs whose sec-
ond element is either an atom nil or an address of the following
pair.

Example 5. Let Var be the set of local variables and I, and V be as
in the previous example. Then Y = Stores x Heaps where
Stores = Var —g,, V. This represents the variables-as-resource
model [10].

Example 6. Let V = Z x (0, 1]. Then heaps with values from V'
can be viewed as collections of cells with permissions. Permission
1 gives the process full access to the cell and allows reading, writ-
ing and freeing it. Permissions strictly smaller than 1 give only
reading access. The union of heaps is defined as follows.

if hy (1) = (v,p), h2(l) is undefined
if ha(l) = (v,p), h1(l) is undefined
if 7y (1) = (v, p1), ha(l) = (v,p2), p1 +p2 < 1

(v,p),
(v,p),
(v, p1 + p2),

(h1 x ho)(1) =

This definition allows sharing permissions between several pro-
cesses.

Definition 7. A predicate on a separation algebra (Z, *, 6) isa
subset of 3. Variables P, (), R range over predicates.

CoBpemeHHble
MH(OPMaLMOHHbIe
TeXHONnornun

n UT-o6pa3oBaHue

As usual in dynamic logic, the semantics of formulas is defined by
a function [[ﬂ mapping formulas to predicates. We write o ': Fif
o € [F]. Similarly, the semantics of commands is usually de-
scribed by a function that we'll also denote [H] mapping com-
mands to binary relations on Y. This turns X into a Kripke
frame [7, Sect. 3.7] and leads to the standard definition

o= [CF Y = vo' . o[Clo’ = o' EF.
However, one has to decide how to incorporate memory faults into
this definition. A computation starting from a certain state may
behave in one of the following ways:
1. finish normally and produce a final state;
2. terminate (for example, after executing F'?) without producing
a final state;
3. run forever;
4. terminate with a memory fault.
Options 2 and 3 do not violate partial correctness, but 4 does.
Namely, if one computation of C' starting in ¢ produces a fault,
then o £ [C]F by definition, even if other computations of C'
finish successfully. Thus we need to distinguish between cases 2
and 4 above.
In the early days of separation logic [5] this was done by defining
a state o safe for C' if option 4 above never happens when C' is
run in 0. This concept was then used to formulate the soundness
of the frame rule. However, [9] introduced a more compact way to
define o |= [C]F that automatically takes memory faults into ac-
count. Namely, instead of a binary relation [C] is viewed as a
function from ¥ to P(X) where P(-) denotes a powerset. Then
o = [C]F holds if [C](c) C [F]. To deal with faults, we give
the following definition.

Definition 8. Let P(X)T % P(2) U {T} where T ¢ P(X) s
a new greatest element. The order T is defined as follows:
ULCVholdsiff V=Tor UV € P(S)and U C V. The set
P(Z)T is clearly a complete lattice, whose join and meet are de-
noted by Ll and I, Variables U, V range over P(X) .

The greatest element T of P(Z)T should not be confused with
[true] = P(X). In particular, T is not a predicate and o |= T is
not defined.

Definition 9. An action is a function from ¥ to P(X) T The set of
all actions is a complete lattice under pointwise order: f C ¢ if
f(o) E g(o) forall ¢ € ¥. Somewhat abusing the notation, the
join and meet on the set of actions is also denoted by L/ and .
Variables f, g range over actions.

A semantics maps commands to actions. It has to be defined in
such a way that if C' may arrive at a memory fault starting in o,
then [C] (o) = T. Then the definition

o E[C]F holdsif [C](o)C [F]

has the desired effect: it implies that o F£ [C]F if C produces a
fault because [F'] € P(X) and therefore T T [F7is false.

It will be shown in Section 3 that the following definitions charac-
terizes actions satisfying the frame rule (1).

Definition 10. An action f: ¥ — P(X)7 is called local if
flo1 % 02) C f(01) * {02} foralloy # oo.

If f is local, then f(oy1) # T implies that f(cy * o) # T. For
f = [C] this means that if C' does not produce a memory fault
starting in o0, than it won't produce a fault starting in a larger

Tom 16, N2 3. 2020 ISSN 2411-1473 sitito.cs.msu.ru

THEORETICAL QUESTIONS OF COMPUTER SCIENCE, COMPUTATIONAL MATHEMATICS,
COMPUTER SCIENCE AND COGNITIVE INFORMATION TECHNOLOGIES

E. M. Makarov

547

state 01 * 0. Further, if C starts in 1 * 09, then every final state
can be split into a 0’1 and o3 where C converts o7 into 0’1. Thus,
C does not touch the additional portion o2 of the state, which is
exactly what the frame rule says.

It may seem at first that the condition on actions that is equivalent
to the frame rule can be states as follows.

o) € f(o1) = o} x09 € f(o1 *093)

But the allocation operator from Example 2 does not satisfy this
property. Indeed, consider the separation algebra consisting of
heaps from Example 4. Let [l; — v1,...,[, — v,] denote the
heap that maps [; to v; (all [; are assumed to be different). Then
2 := cons(1) may convert the empty heap e to [0 — 1]. But if
2 := cons(1) is executed in a heap where 0 is already allocated,
for example, in [0 — O], then it has to allocate a new address, so
x := cons(1) cannot convert € * [0 — 0] to [0 — 1] % [0 — 0],
Note, however, that - := cons(1) may convert e * [0 — 0] to,
say, [1 — 1] % [0 +— 0], and the same instructions is allowed to
change e into [1 — 1] in accordance with the definition of local
action.

It is proved in [5] that atomic actions from Example 2 are local.
One example of a non-local action is a constant function
f(o) ={e}. Indeed, Definition10 requires that
flovxo2) ={e} C f(o1) x {02} = {e} x {02} = {02},
which is false in general. Another non-local action ¢ assigns the
same value, say, 0, to all allocated cells. Then ¢ converts [0 — 1]
to [0— 0] but g does converts [0—1,1—2] to
[0 — 0,1+ 0] rather than [0 — 0, 1 — 2], as expected of a lo-
cal action.

Now we are ready to define the semantics of formulas and com-
mands.

Definition 11. A model is a pair of separation algebra (X, *,)
and a function [[ﬂ mapping propositional variables to predicates
and atomic commands to local actions. We define the following op-
erations on elements of P(X)T (recall that P,Q € P(X) and
UePX)N.

def

P\ p
def
PAQE PRQ
PvQ®pPuQ

P QY (=\P)UQ

13>,<Qd:ef{g|g—:g—1>¢<cr27 o1 € P, 02 € Q for some 01,09 € 3}

T«U=Us+TET
def

(U= A{o| flo) EU}

Using these operations a model extends the mapping [-] to all for-

mulas: for example, [F1 A Fs] def [F1] A [Fz]. In addition, the

semantics of atomic formulas is defined.
[true] = 3, [false] = 0, [emp] = {e}

It's important to note that for [F'] is a predicate, not T, for every
formula F'.
The mapping [[-] is extended to all commands as follows.

Vol. 16, No. 3. 2020 ISSN 2411-1473 sitito.cs.msu.ru

[C1;C2] = [Ch]; [C2]

[c*1=|]Ic1”

[C1+ Co] =[Ci] U [Cs]
{c}, YVo'.0 <0 = o' EF

[F7(0) =10, VYo'.o=o = o FF
T, otherwise
. T, flo)="T
(f;9)(0) = {|_|{g(0/) | o’ € f(o)}, otherwise
fO = idy
= g

The definition of [[C]] is expected possibly with the exception of
[£'?]: in regular dynamic logic [F'?] (o) is simply defined as {o}
if o = F and {) otherwise [7, Sect. 5.2].

It is proved in [9, Lemma 9] that local actions form a complete lat-
tice, which, together with the way [[C]] is defined, implies that all
actions corresponding to commands are local. We consider the
case of F'?, which is stated in [9] but not proved in detail.

Suppose 01 = o implies 0 ': F for all 0. Then the same prop-
erty holds when o7 is replaced with o1 * 9. Therefore,
[[F?]](O’l):{()'l}, [[Fr?]](O'l *O'Q)Z{O'l *0’2} and
[EF?]) (o1 % 02) C [F?](01) % {o2} holds since both sides are
equalto {0 * o2 }.

Suppose 01 = o implies o I;é F for all 0. Then again the same
property holds when o7 is replaced with o7 * 09, so
[E?)(o1) = [F?] (01 * 02) = (0, from which the desired con-
clusion follows.

Finally, if none of the cases above is true, then
[F?)(o1) =T =[F?](o1) * {o2} by Definition8, so the
property holds since T is the greatest element.

A natural question asks which formulas F' define actions [F'7]
that don't return T, i.e,, terminate normally. One such class of for-
mulas does not depend on the heap but uses only local variables,
i.e, the store. Since the content of the heap can be loaded into lo-
cal variables, this does not represent an essential restrictions and
corresponds to conditions used in the if operators in popular lan-
guages like C and Java. To take advantage of such formulas one has
to use predicate dynamic logic rather than propositional dynamic
logic considered in this paper.

Soundness of Dynamic Separation Logic

Lemma 12. Let M = (X,*,e,[]) be a model and
f: ¥ — P(2)T be an action. Then the following conditions are
equivalent:

1. fislocal iie, f(01 * 02) C f(01) * {02} foralloy # o9

2. [f]P * Q C [f](P * Q) for all predicates P, Q;

3. R C [f]P implies R * Q C [f](P * Q) for all predicates P,

)

Proof. (1) = (2). Fix P and and suppose o = [f]P * Q.
Then o = 01 * 02 where o1 = [f]P and o2 = Q for some
01,02 € ¥. By definition f(o1) E P and {02} C Q. By local-
ity f(o1 % 03) C f(01) * {o2} C P % Q. Here we use mono-

Modern
Information
Technologies
and IT-Education

548

TEOPETUYECKME BOMPOCHI UHOOPMATUKN, MPUKIAQHOW MATEMATUKY,
KOMMbIOTEPHbIX HAYK 1 KOTHUTUBHO-MH®OPMALMOHHbBIX TEXHONOT WA

E. M. Makapos

tonicity of * with respect to C, which is checked straightforwardly.
Therefore, o |= [f](P * Q).

(2) = (3). Fix P, @, R and assume that R C [f]P and
o): R % Q Then for some 01, 02 such that 0 = 01 * 02 we
have o1 = R, from where o1 |=[f]P, and o3 = Q, ie,
o = [f]P * Q. By assumption, o |= [f](P * Q).

(3) = (1). Fix arbitrary 07 and 02 and assume o # o9 If
f(o1) = T, then f(o1) * {o2} = T and the claim follows. Oth-
erwise, let P = f(01), Q= {02} and R =[f]P. Then
o1 = [f]P and 02 |= Q, that is, 01 * 03 |= [f]P * Q. By as-
sumption o1 x09 = [f](P*Q), ie,
[f](01 % 02) C PxQ = f(01) * {02}, as required.

Definition 13. Let M = (X, x, ¢, [-]) be a model. We say that a
predicate P is true in M and write M |= P if P = 3. A formula
F is called true in M (written M |= F) if M |= [F]. A formula
is called valid if it is true in every model. An inference rule deriving
predicate Q from Py,...,P, is sound if
M P,...,M | P, implies M = Q for every M. Simi-
larly, an inference rule deriving formula GG from F1y,..., F, is

soundif M |= Fy, ..., M = F, implies M = G for every M.

Definition 14. A Hilbert-style deductive system for dynamic sepa-
ration logic is given by the following axioms and inference rules:
1. Axioms of classical propositional logic;
2.[CI(F = G) — ([C]F — [C]G);
3.[CI(F AG) « ([C]F A [C]G);
4, [Ol + OQ]F — [Cl]F/\ [CQ}F,'
5. [Cl; CQ]F — [C]][CQ}F,
6.[F] A [C][C*]F < [C*)F:
7.F N [C*|(F — [C]F) — [C*]F;
8.[C]F * G — [C](F + G);
F F—-G

9, ——«—;
G
[C]F
F xtrue - FF —F *xtrue — —F

[F?G + (F— G)

Theorem 15 (Soundness). The deductive system of Definition 14
is sound, i.e,, every derivable formula is valid.

Proof. One has to show that all axioms are valid and all inference
rules are sound. Axioms 1-7 are standard axioms of dynamic logic,
which are valid in all Kripke models. Axiom 8, called the frame ax-
iom, is valid by Lemma 12 since actions corresponding to all com-
mands are local. Inference rules 9 and 10 are also standard for a
modal logic. Finally, dynamic logic has the axiom that is the conclu-
sion of rule 11. The direction — is valid in our setting as well, but
as for the opposite direction, [F'?](0) may return T, in which
case 0 £ [F'?]G. To prevent [F?]|(c) = T formula F' must be
true in all ¢’ such that 0 < ¢’ or F' must be false in all o’ such
that 0 =< ¢’. This is ensured by the assumptions of rule 11. If
o' = Fxtrue—>F and o F for some o =< o', then
o’ |= F' as well, and similarly for = F".

Frame rule (1) can be written in dynamic separation
logic as follows.

R — [CIP
R+Q— [Cl(P*Q)

CoBpemeHHble
MH(OPMaLMOHHbIe
TeXHONnornun

n UT-o6pa3oBaHue

Points 2 and 3 of Lemma 12 shows that it is sound and can replace
the frame axiom.

The additional flexibility of dynamic logic with respect
to regular separation logic make several primitive inference rules
of the latter derivable. For example, [9] has the rule

{Vio, FYC{ViL, Gt {AiZ FYC{NZ Gi}

In dynamic logic we have the following facts about derivability: if

I'={F, = |C]G;|i=1,...,n}, then

FFOE%WKQ@)

i=1

n

MMFFAE%WKAQ)

i=1 =1

Separation Logic in Education

Dynamic and separation logics are excellent topics for introducing
students to formal methods and theoretical computer science.
Though they require certain mathematical maturity, they are ac-
cessible to undergraduate students. In fact, this article uses hardly
any concepts that cannot be considered in the introductory cour-
ses of discrete mathematics and mathematical logic.

The logic of bunched implications, on which separation logic is
built, is an example of a substructural logic, where the structural
rules of weakening and contraction

Tk F I,G,GFF
I[,GFF T,GFF

are not generally valid. This reveals itself in the fact that the for-
mula F' * F' <> F' is not valid, in contrast to F' A F' <+ F. In-
deed, o): F' % I means that the state o can be divided into 0
and 09, each of which validate F'. This is different from F' being
true on the whole state.

Another prominent substructural logic is linear logic [11, Chap. 9],
which is often used to describe resources. However, separation log-
ic is more accessible to new students due to its simple heap (or,
more generally, separation algebra) semantics. Even though classi-
cal logic can be embedded into linear logic via a translation, the BI
logic is simply an extension of classical logic. A student just needs to
understand the semantics of separation conjunction and separat-
ing implication (the latter is more rarely used in practice).

Thus studying separation logic introduces a student to a world of
non-classical logics in a natural way. It demonstrates how a logic
can create a model of a computational process and solve a nontriv-
ial problem of tracking pointers.

Hoare logic and separation logic represent a natural entry into the
world of formal verification since they can be naturally encoded
in a proof assistant such as Coq or Isabelle. This allows formaliz-
ing proofs both of properties about the logic themselves (such as
soundness and completeness) and of algorithm specifications [12].
As the author of one book on formal methods put it speaking about
correctness of programs, “the author and many other researchers
today feel that proofs on paper have outlived their usefulness. In-
stead, the proofs are all found in the parallel world of the accom-
panying Coq source code” [13]. It turns out that formal verification
of even well-known algorithms, such as computing vertex cover or
independent set, can uncover incompletenesses in existing proofs
and improve the complexity bounds [14].

A great success story in formal verification is the electronic text-

Tom 16, N2 3. 2020 ISSN 2411-1473 sitito.cs.msu.ru

THEORETICAL QUESTIONS OF COMPUTER SCIENCE, COMPUTATIONAL MATHEMATICS,
COMPUTER SCIENCE AND COGNITIVE INFORMATION TECHNOLOGIES

E. M. Makarov

549

book “Software Foundations” by B.C. Pierce et al., which is widely
used around the world. This book in five volumes covers a multitude
of topics: propositional and predicate logic, definitions and proofs
by induction, Hoare logic, simply typed lambda calculus, functional
programming, and so on. All definitions, theorem and proofs in the
book are implemented in Coq. The latest volume covers specifying
and verifying real-world C programs using separation logic. A sim-
ilar book based on Isabelle is [15-16]. Another textbook that uses
Coq and separation logic is [17]. Dynamic logic is used, for exam-
ple, in the “Bug Catching” course [18] at Carnegie Mellon University.
This course also utilizes a fully automatic system Why3 [19] based
on Hoare logic for proving program correctness.

Despite being accessible to students, separation logic is located at
the cutting edge of research in computer science [20; 21]. Many
software tools have been developed that allow verifying realistic
and intricate programs [22]. For example, a significant portion of
an industrial, preemptive OS kernel has been verified [23]. Peter
O’Hearn, one of the researchers at the origin of separation logic,
joined Facebook and developed a static analyzer tool that catches
thousands of bugs per month [24].

Using this research may help develop computer science curriculum
that takes professional standards seriously and actively uses edu-
cational software [25-27]. For these reasons it seems a good idea
to teach separation logic in mandatory and optional courses as an
excellent introduction to modern computer science.

One personal positive example for the author was supervising a
master’s thesis devoted to proving soundness of the frame rule for
separation logic with regular programs used in this paper as op-
posed to while programs in [5]. The project received an excellent
grade.

Conclusion and Future Work

We have introduced propositional dynamic separation logic and
proved its soundness. We have also argued for including separation
logic into computer science curriculum as an excellent introduction
to both research problems and practical software verification.

The next obvious step is proving completeness of dynamic separa-
tion logic, considering its first-order variant and studying whether
the use of dynamic logic creates advantages over regular separation
logic that uses Hoare triples in practical program verification. An-
other important variant of separation logic that can be converted to
dynamic flavor is concurrent separation logic [22].

References

[1] Clarke E.M., Wing]J.M. Formal methods: state of the
art and future directions. ACM Computing Surveys.
1996; 28(4):626-643. (In Eng) DOI: https://doi.
org/10.1145/242223.242257

[2] Hoare C.A.R. An axiomatic basis for computer program-
ming. Communications of the ACM. 1969; 12(10):576-580.
(In Eng.) DOI: https://doi.org/10.1145/363235.363259

[3] Apt K.R,, Olderog E.R. Fifty years of Hoare’s logic. Formal
Aspects of Computing. 2019; 31(6):751-807. (In Eng.) DOI:
https://doi.org/10.1007/s00165-019-00501-3

[4] Reynolds].C. Separation logic: a logic for shared mutable
data structures. In: Proceedings 17th Annual IEEE Sympo-

Vol. 16, No. 3. 2020 ISSN 2411-1473 sitito.cs.msu.ru

(5]

(6]

(7]

(8]

[9]

[10]

(11]

[12]

[13]

[14]

[16]

[17]

sium on Logic in Computer Science. Copenhagen, Denmark;
2002. p. 55-74. (In Eng.) DOI: https://doi.org/10.1109/
LICS.2002.1029817

Yang H., O’'Hearn P. A Semantic Basis for Local Reasoning. In:
Nielsen M., Engberg U. (ed.) Foundations of Software Science
and Computation Structures. FoSSaCS 2002. Lecture Notes
in Computer Science. 2002; 2303:402-416. Springer, Berlin,
Heidelberg. (In Eng.) DOI: https://doi.org/10.1007/3-540-
45931-6_28

O’'Hearn PW.,, Pym D.]. The Logic of Bunched Implications.
Bulletin of Symbolic Logic. 1999; 5(2):215-244. (In Eng.)
DOI: https://doi.org/10.2307 /421090

Harel D., Kozen D., Tiuryn]J. Dynamic Logic. MIT Press;
2000. Available at: https://mitpress.mit.edu/books/dy-
namic-logic (accessed 02.09.2020). (In Eng.)

Ahrendt W., Beckert B., Bubel R,, et al. Deductive Software
Verification — The KeY Book. From Theory to Practice.
In: Ahrendt W, et al. Lecture Notes in Computer Science.
2016; 10001. Springer, Cham. (In Eng.) DOI: https://doi.
org/10.1007/978-3-319-49812-6

Calcagno C., O'Hearn PW, Yang H. Local Action and Ab-
stract Separation Logic. In: 22nd Annual IEEE Symposium
on Logic in Computer Science (LICS 2007). Wroclaw, Poland;
2007. p. 366-378. (In Eng.) DOI: https://doi.org/10.1109/
LICS.2007.30

Parkinson M., Bornat R., Calcagno C. Variables as Resource
in Hoare Logics. In: 21st Annual IEEE Symposium on Logic in
Computer Science (LICS’06). Seattle, WA, USA; 2006. p. 137-
146. (In Eng.) DOI: https://doi.org/10.1109/LICS.2006.52
Troelstra A., Schwichtenberg H. Basic Proof Theory. 2nd ed.,
Cambridge Tracts in Theoretical Computer Science. Cam-
bridge, Cambridge University Press; 2000. (In Eng.) DOI:
https://doi.org/10.1017/CB09781139168717

Chlipala A. Certified Programming with Dependent Types:
A Pragmatic Introduction to the Coq Proof Assistant.
MIT Press; 2013. Available at: https://mitpress.mit.edu/
books/certified-programming-dependent-types (accessed
02.09.2020). (In Eng.)

Chlipala A. Proof engineering: implementation challenges in
rigorously verified software. In: Proceedings of the Program-
ming Languages Mentoring Workshop (PLMW ‘15). Associa-
tion for Computing Machinery, New York, NY, USA; 2015:8.
(In Eng.) DOI: https://doi.org/10.1145/2792434.2792442
Effmann R, Nipkow T, Robillard S. Verified Approximation
Algorithms. In: Peltier N., Sofronie-Stokkermans V. (ed.) Au-
tomated Reasoning. I[JCAR 2020. Lecture Notes in Computer
Science. 2020; 12167:291-306. Springer, Cham. (In Eng.)
DOI: https://doi.org/10.1007/978-3-030-51054-1_17
Nipkow T. Term rewriting and beyond - theorem proving in
[sabelle. Formal Aspects of Computing. 1989; 1(1):320-338.
(In Eng.) DOLI: https://doi.org/10.1007/BF01887212
Nipkow T, Klein G. Concrete Semantics: With Isabelle/
HOL. Springer, Cham; 2014. (In Eng) DOI: https://doi.
org/10.1007/978-3-319-10542-0

Sergey I, Wilcox J.R., Tatlock Z. Programming and proving
with distributed protocols. Proceedings of the ACM on Pro-
gramming Languages. 2017; 2(POPL):28. (In Eng.) DOLI:
https://doi.org/10.1145/3158116

Modern
Information
Technologies
and IT-Education

550

TEOPETUYECKME BOMPOCHI UHOOPMATUKN, MPUKIAQHOW MATEMATUKY,
KOMMbIOTEPHbIX HAYK 1 KOTHUTUBHO-MH®OPMALMOHHbBIX TEXHONOT WA

E. M. Makapos

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Bradley A.R., Manna Z. The Calculus of Computation: Deci-
sion Procedures with Applications to Verification. Spring-
er, Berlin, Heidelberg; 2007. (In Eng.) DOI: https://doi.
org/10.1007/978-3-540-74113-8

Fillidtre J.C., Paskevich A. Why3 - Where Programs Meet
Provers. In: Felleisen M., Gardner P. (ed.) Programming Lan-
guages and Systems. ESOP 2013. Lecture Notes in Computer
Science. 2013; 7792:125-128. Springer, Berlin, Heidelberg.
(In Eng.) DOI: https://doi.org/10.1007 /978-3-642-37036-
6.8

Krebbers R. Jung R, Bizjak A. Jourdan].H. Dreyer D.,
Birkedal L. The Essence of Higher-Order Concurrent Sep-
aration Logic. In: Yang H. (ed.) Programming Languages
and Systems. ESOP 2017. Lecture Notes in Computer Sci-
ence. 2017; 10201:696-723. Springer, Berlin, Heidelberg.
(In Eng.) DOI: https://doi.org/10.1007 /978-3-662-54434-
1.26

Jung R, Jourdan J.-H., Krebbers R., Dreyer D. RustBelt:
securing the foundations of the rust programming lan-
guage. Proceedings of the ACM on Programming Lan-
guages. 2017; 2(POPL):66. (In Eng.) DOI: https://doi.
org/10.1145/3158154

Brookes S., O’Hearn PW. Concurrent separation logic. ACM
SIGLOG News. 2016; 3(3):47-65. (In Eng.) DOI: https://doi.
org/10.1145/2984450.2984457

Xu F, Fu M, Feng X,, Zhang X., Zhang H., Li Z. A Practical
Verification Framework for Preemptive OS Kernels. In:
Chaudhuri S., Farzan A. (ed.) Computer Aided Verifica-
tion. CAV 2016. Lecture Notes in Computer Science. 2016;
9780:59-79. Springer, Cham. (In Eng.) DOI: https://doi.
org/10.1007/978-3-319-41540-6_4

O’Hearn P. Separation Logic. Communications of the
ACM. 2019; 62(2):86-95. (In Eng) DOI: https://doi.
org/10.1145/3211968

Zakharova I., Kuzenkov O. The Experience of Updating the
Educational Standards of Higher Education in the Field of
ICT. Sovremennye informacionnye tehnologii i IT-obrazo-
vanie = Modern Information Technologies and IT-Educa-
tion. 2017; 13(4):46-57. (In Russ., abstract in Eng.) DOI:
https://doi.org/10.25559/SITIT0.2017.4.510

Zakharova 1., Kuzenkov O. Mathematical Programs Mod-
ernization Based on Russian and International Standards.
Sovremennye informacionnye tehnologii i IT-obrazovanie =
Modern Information Technologies and IT-Education. 2018;
14(1):233-244. (In Eng., abstract in Russ.) DOI: https://doi.
org/10.25559/SITITO.14.201801.233-244

Kuzenkov 0., Kuzenkova G., Kiseleva T. The use of electronic
teaching tools in the modernization of the course “Mathe-
matical modeling of selection processes”. Obrazovatel’nye
tehnologii i obshhestvo = Educational Technology & Soci-
ety. 2018; 21(1):435-448. Available at: https://elibrary.ru/
item.asp?id=32253185 (accessed 02.09.2020). (In Russ,,
abstract in Eng.)

Submitted 02.09.2020; approved after reviewing 14.10.2020;

accepted for publication 10.11.2020.

Ilocmynuaa 02.09.2020; odobpeHa nocse peyeH3uposaHus

14.10.2020; npuHama k ny6aukayuu 10.11.2020.

CoBpemeHHble
MH(OPMaLMOHHbIe
TeXHONnornun

n UT-o6pa3oBaHue

About the author:

Evgeny M. Makarov, Senior Instructor of the Department of Al-
gebra, Geometry and Discrete Mathematics, Institute of Informa-
tion Technology, Mathematics and Mechanics, Lobachevsky State
University of Nizhny Novgorod (23 Gagarin Av,, Nizhny Novgorod
603950, Russian Federation), Ph.D. (Computer Science), ORCID:
http://orcid.org/0000-0003-0399-0946, evgeny.makarov@itmm.
unn.ru

The author has read and approved the final manuscript.

MaxkapoB EBrenuii MapaToBu4, cTapiiuii npenojiaBaresb kade-
JIpbl aJre6pbl, reOMeTPUU U JUCKPETHON MaTeMaTUKH, HHCTUTYT
MHGOPMAIlMOHHBIX TEXHOJIOTMH, MaTeMaTUKU U MeXaHUKH, PTA-
0Y BO «HannoHanbpHbIN HMccief0BaTeNbCKUN Huxkeropoackui ro-
cypapcTBeHHbIM yHUBepcuTeT M. H.U. Jlo6aueBckoro» (603022,
Poccuiickasa ®epepanus, r. Hwxauih Hosropoa, mp. larapuna,
. 23), ORCID: http://orcid.org/0000-0003-0399-0946, evgeny.
makarov@itmm.unn.ru

Aemop npouumas u 0006pus1 OKOHYaMeAbHbLU 8APUAHM PYKONUCU.

Tom 16, N2 3. 2020 ISSN 2411-1473 sitito.cs.msu.ru

