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Abstract

Nowadays interest of the deterministic differential system of Lorentz equations is still primarily due to
the problem of gas and fluid turbulence. Despite numerous existing systems for calculating turbulent
flows, new modifications of already known models are constantly being investigated.

In this paper we consider the effect of stochastic additive perturbations on the Lorentz convective tur-
bulence model. To implement this and subsequent interpretation of the results obtained, a numerical
simulation of the Lorentz system perturbed by adding a stochastic differential to its right side is carried
out using the programming capabilities of the MATLAB programming environment.
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AHHOTanUA

Ha ceroHslIHUI fleHb UHTEpeC K JleTepMUHUPOBaHHOMN JuddepeHnnanbHON cUcTeMe YpaBHEHUH
JlopeH1a no-npexHeMy 06yCJIOBJIEH NpeX/ie BCero nNpobseMoi TypOyIeHTHOCTH ra30B U XHAKOCTH.
HecMoTps Ha 60J/1bLIO€ YHCJIO CYLECTBYIOIUX CUCTEM JJI pacyeTa TypOy/JIeHTHBIX Te4eHUH, I0CTOo-
SHHO HUCCJIelyI0TCA HOBble MOJMUKALMH yrKe U3BECTHBIX MOZe/eH.

B aHHOM pa6oTe paccMaTpUBaeTCs BAUAHHE CTOXaCTUYECKUX aJl/iIMTUBHBIX BO3MYILL|eHUI Ha MOZieJlb
KOHBEKTMBHOM Typ6ysieHTHOCTH JlopeHna. /19 peanusanuy 3TOr0 U Noc/aeAyouied MHTepnpeTaluy
N0JIyYE€HHBIX Pe3y/IbTaTOB, OCYIECTB/IATCA YNCIEHHOE MO/le/IMpOBaHue cucTeMbl JlopeH1a, BO3My-
IeHHOM 3a cyeT J06aB/IeHHd B ee IpaByIo YaCThb CTOXaCTUYeCKOro AuddepeHana, € UCIo/1b30BaHuU-
€M IIPOrpaMMHbBIX BO3MOXKHOCTeH cpe/ibl mporpaMmmupoBaHust MATLAB.

Ki1royeBble CJI0Ba: cucreMa nuddepeHIMaNbHBIX YpaBHeHUH JlopeH1a, HeJTMHeHast IUHAMUKA,
JleTepMUHHPOBAHHBIN Xa0C, CTOXaCTUYeCKHe BO3MYIEHHUS.

Aemopul 3a581510m 06 omcymcmeuu KOHPAUKMA UHMepecos.

Jlnga nuTupoBaHUA: Qupcos, A. H. UucieHHOe HCCIeA0BaHHE BJMSHHS CTOXaCTHYECKUX
BO3MYIL[eHUH Ha MOBeJieHHEe pellleHuH HEKOTOPhIX AuddepeHHanbHbIX ypaBHeHUH / A. H. ®upcos,
U. H. UHoBenkos, B. B. Tuxomupos, B. B. Hedenos. - DOI 10.25559/SITIT0.17.202101.730 //
CoBpeMeHHble HHPOpMaLMOHHBIE TexHOOruK U UT-o6pa3oBanue. - 2021. - T. 17, Ne 1. - C. 37-43.
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Introduction Then we will check the Lorenz system for fixed points:
Nowadays every human faces one of the most difficult challenges, xX=y
turbulence every day. This thorny issue attracted new scientists o(y—x)=0 xX=y
year-by-year ar?d as a result of their. studies the Lorenz st'ra.ng.e x(r—2)—-y=0{x(r-1-2)=0< x=0 (3)
attractor was discovered. It was the first example of deterministic z=r—1
chaos. xy—bz=0 x> =bz ,

X" =bz

The Lorenz model [1] was created in 1963 owing to a series of trans-
formations of the Navier-Stokes equations. Its solutions were inter-
esting because of their quasi-stohastic trajectories and absence of
external sources of noise. Such solutions for the first time appeared
in a deterministic system. Overall the Lorenz model is based on a
two-dimensional thermal convection. For the stochastic part of the
model, a stochastic differential equation (SDE) will be used. Such
differential equations contain a stochastic term, and therefore their
solution is also a stochastic process.

This study focuses on modelling and analysis of the stability of
the Lorenz system under the influence of stochastic disturbances.
In order to realize it and to interpret results, a simulation of the
additively disturbed Lorenz system was carried out with MATLAB
software package.

Properties of the Lorenz system

Consider the following classical Lorenz equations:

e

x=0(y—x)
y=x(r-z)-y (1
ézxy—bz

The variable x represents the rotation rate of the Rayleigh-Benard
convection cells, ) characterizes the temperature difference AT
between rising and descending fluid, z shows the deviation of the
vertical temperature profile from the linear relationship. The pa-
rameters o, 7', b reflect the values of the Prandtl number, the
Rayleigh number, and the coefficient linked to the geometry of the
area respectively.

As well known the Lorenz system has the following properties:

1. Homogeneity. The first and most obvious property.

2. Symmetry. In the phase space symmetry is obvious after
x> (=x), y > (=)

3. Dissipation. In three-dimensional phase space (X, ),z)

we will consider vector of speeds L(xt’,yt', Z;) . Its negative diver-
gence characterizes dissipative system

divz=2(6y—Gx)+3(rx—y—x)+£(xy—bz)=—o‘—l—b<0 (2)
ox oy oz

Let’s look at set of Lorenz systems with different initial conditions.
They take volume A} while ¢ = (. During the evolution of the
system volume declines according to AV =V exp(-o — b —1).
At t — oo all phase-space trajectories are concentrated inside a
compact attractor.

The Lorenz system always has fixed point £,(0,0,0). Also when
r>1 two other fixed points appear B (\/b(r—1),/b(r—1),r =1)
and P, (—/b(r —1),—/b(r—1),r -1).

Point =1 is a bifurcation point. At r <7, 13,926 separatrices S,
and §, attract to the nearest fixed points A and P,.At r =7, sepa-
ratrices transform into a homoclinic loops. They afterwards trans-
form into the saddle orbits, borders of attraction area of P and P, .
Also separatrices S, and S, approaches to P, and A, accordingly.
More detailed information about the structure of the Lorenz system
can be found in various monographs [2-9]. The most interesting sit-
uation appears at r =r, =24,06. It corresponds to well-known Lo-
renz strange attractor, which has property of strong dependence on
initial conditions. It means that any small change in the coordinates
of the initial point leads to completely different solution.

Ito’s stochastic calculus

We will describe stochastic differential equations (SDE) with Ito’s
stochastic calculus. It is based on a stochastic Wiener process. Over-
all, stochastic process is a set of random variables that has been in-
dexed by some parameter such as time.
Initially we consider division {rf.N)} of a [0,7], which corresponds
to 0=tV <M <.<t"=T with A= max ‘r;i’]) —T;N)‘ —0.
0<j<N-1
Then we determine sequence of functions in the following way:
g"(m(t,a))zﬁ(rj"v),w) at te[er),T%)). j=0,1..,N-1.
Definition: Stochastic Ito integral for £ is a convergence in qua-
dratic mean of following expression, where f, is a Wiener process
[10-12]:

! T
. (N) (N) (N) _ . 4
lim 3 o) (/@00 60 = [ 2. “
J=!
As a result we need to determine multiple stochastic integrals for
introduction of a numerical scheme. Let’'s determine them by the

following expression:
[t [ ) @ dr® atk>0, O

Latk=0.
The simulated Lorenz system is demonstrated below:

Gedy) _
L

o (6)
X o(y—x) 0 0 0 m
dy|=|x(r—z)-y|dt+]0 0 0|d|W"
z xy —bz 0 0 ¢ Wi

In this paper we used the version of unified Taylor-Ito expansion
gained by Kulchitskiy' [13]. The main problem is that this expan-
sion contains multiple stochastic integrals, which are not easily ap-
proximated [14, 15]. We will use the fundamental results of

! Kulchitskiy 0.Yu., Kuznetsov D.F. Numerical simulation of stochastic systems of linear stationary differential equations. Journal Differential Equations and Control
Processes. 1998; (1):41-65. Available at: https://www.elibrary.ru/item.asp?id=25301726 (accessed 04.02.2021). (In Russ.)
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Kuznetsov [16, 17] to approximate these integrals properly® He
discovered expansions of our multiple stochastic integrals using in-
dependent random variables &, .

We will use several of them:

1) =NT=1¢,, ™
. (T t)}/Z ’

70 = (8)
i (fo \/_glJ

o _(T- t)” V3 9)
L = [50 &+ PN 52]

Using them in the Taylor-Ito expansion in the Kloeden-Platen form
[18, 19], we get the explicit numerical scheme directly from this ex-
pansion. For the sake of brevity we only present here the final re-
sult. Initially let us denote step of division {r, }j.io as h, j=1..N.
The explicit numerical scheme, which we have implemented, is as
follows: ) 5

X0 =X, +he+7(—he+crg)+h€e1 —hmcxjcvl, (10)
n (11)
Yia =Y, +hg+f((r z)e-g—x,f)- Se
- hmcxjv2 +h"? (—e +(1+ b)x , )cv1 +h"ecv,
2
1=z +hf+h L+ gx; bf+ f+ (12)
+h7cE — I bev, + hmc(b2 —x,=2)v.

In the scheme (10)-(12) we made a number of some designations to
simplify the recording of the scheme that was written above:
e=—ox;+0y;, g=1x,-y,—Xx;z;, f==bz;+x,y,,

g =e ((—G—l)(r—zl))-%—sz -2x,y,+g (o‘(r—z/)+l—x;)+f(—e+(b+l)xj):

20

fize(2x,(r=2))-(b+1+0)y,)+ g (~(b+1+0)x, + 20y, )+ £ (b —x})

yhE L&, 8 &0, & &
N AN 3320

22\/— 6

Results of numerical modeling

It was decided to start with intermediate values to understand how
the system as a whole would behave. First the parameter r =20
was fixed and two situations were modelled: at ¢ =2 and at ¢=0.
Parameter ¢ shows the intensity of stochastic influence. The state
at ¢ =0 is given for comparison (Figure 1).

20

Fig.1.r=20,c=0

At ¢ =2 the trajectory loses its regularity, which is reasonably pre-
dictable. Further, let us increase ¢ to 3.

-15 -10 -5 0 5 10 15
Fig3. r=20,c=3

At ¢ =2 the trajectory loses its regularity, which is quite predict-
able (Figure 2). Further, let us increase ¢ to 3 (Figure 3). It turns out
that the trajectory of the interfered system seems like the Lorenz
attractor, while » value is sufficiently far from 24.06. Next, let us
increase the parameter ¢ to 4, to test this assumption, and get a
picture that is even more similar to Lorenz attractor (Figure 4).

2 Kuznetsov D.F. Stochastic Differential Equations: Theory and Practice of Numerical Solution. 3-rd ed. SPbPU Publ., SPb; 2009. (In Russ.)
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Fig.4.r=20,c=4

Then consider a different state of the system at » =13 and look at
the effect of noise, but in three-dimensional space.

Fig5 r=13,c=4

As be seen from the graph, with less » perturbed systems also
demonstrates similar behavior. Under these conditions, the change
of attractor occurs much earlier than in a classic system. As stochas-
tic intensity increases, the stochastic analogue of the Lorenz attrac-
tor with substantially smaller » can be observed. Overall there is an
negative relationship between the stochastic factor and the bifurca-
tion values of r. Itis interesting to see how the system works with
large values of r. We start with » =200 and build a determine sys-
tem (blue color) and interfered system with ¢=5.

200

100

> 0

-100

-60 -40 -20 0 20 40 60 80

-60 -40 -20 0 20 40 60 80

Fig.6. r=200,c¢=0,c=5
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The graphs are quite similar, and here we clearly see auto-oscillat-
ing mode. By increasing » to 300 (Figure 7), and then up to 500
(Figure 8), we can obtain a predictable result, based on fact that »
is an analogue of the Rayleigh number.

400

200

> 0

-200

-400

400

200

-200

-400 L L L L L n
-80 -60 -40 -20 0 20 40 60 80 100

Fig.7.r=200,c¢=0,c=5

As r increases, the role of noise will gradually decrease. The system
will be a stochastic analogue of the auto-oscillating movement,
which will differ from the calm system only by a slight irregularity
of the trajectory.

500

> 0Fr
-500 . : - :
-100 -50 0 50 100 150
X
500
> 0
-500 - . .
-100 -50 0 50 100 150
X
Fig.8. r=200,c=0,c=5
Conclusions

In conclusion we would like to make the following observations and
draw a parallel with the real physical system. All in all, it seems quite
logical that stochastic interferences strengthen quasi-stochastic os-
cillations around equilibrium positions. As a result a trajectory sim-
ilar enough to the Lorenz strange attractor appears at smaller ». The
same changes can be observed, for example, in real physical systems,
where turbulence occurs earlier in the presence of some noise
source than without it. Then, gradually, the noise reduces effect on
the system, because the Rayleigh number is already high enough.
The behavior of the system after the noise appearance demon-
strates quite clearly that stochastic interference plays a significant
role in describing turbulence. Lorenz [1] wanted to use his model
for long-term weather forecasting. Moreover, he wanted to prove
the theoretical existence of such a method. By and large, due to the
significant impact of additive interference, it is unlikely that such a
method will ever be developed.
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