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ABSTRACT

Tikhonov-type Cauchy problems are investigated for systems of ordinary differential equations
of infinite order with a small parameter y and initial conditions. It is studying the singular

perturbated systems of ordinary differential equations of infinite order of Tikhonov-type
x= f(x(t,8,),y(t,8,)1), uy==F(x(t,g,), y(t,g,),t) with the initial conditions
x(ty,g)= 8, y(t,.8,)=g, where x,f€X, XeR" are n-dimensional functions;
v, FeY, Ycl are infinite-dimensional functions and t € [to,t]] (t, <t, <o), teT,
TeR; g €X and g, € Y are given vectors, pt > 0 is a small real parameter. The results

may be applied to the queueing networks, which arise from the modern telecommunications.
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HUCII0/1b30BAHUE CUHTYJIAPHO BO3MYILIEHHBIX CUCTEM
JUOPEPEHIIMA/IBHBIX YPABHEHUM AJ1S1 AHAJIU3A CYETHBIX MAPKOBCKUX
LIETIEN

AHHOTALUA

B cmamve uccaedosarbl 3adavu Kowiu 0451 cucmem 06blKHOBEHHbIX dugpepeHyuasbHbIX
ypasHeHull 6eckOHe4Ho20 nopsAdka ¢ MaablM NAPAMempoM p  MUXOHOBCKO20-muna

x= f(x(t,8,),y(t,8,).1), puy==F(x(t,g,),y(,g,),t) c HauarbHbmMu ycaosusmu
x(ty,8,) =g ¥(t),g,)=g,, 2dex,feX, XeR" - dynkyuu komeunozo uucaa
usmepenutl; y,F €Y, Y Cl - PyHkyuu 6eckoHeuHozo uucaa usmepenuli u t € [to,t]] (

ty<t,<0)tel, TeR;g X, 6 amakxe g, € Y 3adannvie eexmopui, 11> 0 - maawiil

napamemp. Pesyremamul OdaHHOU pabombl mo2ym 6bimb npumeHeHbl 05 aHAAU3A
NPUKAAOHBIX 3a0A4ax 8 Meopuu Macco8o20 06CAYHCUBAHUSL.

K/IIOYEBBIE C/IOBA

Cucmembl dugppepeHyua1bHbIX ypasHeHUll 6eCKOHeYH020 NopsidKa; CUH2YASIPHO 803MYUJEHHbIX
cucmembl duddepeHyuarbHbIX ypasgHeHull; Mablll napamemp; cuemuvle yenu Mapkosa.

Introduction

The recent research of service networks with complex routing discipline in [16], [17], [18]
transport networks [1], [4], [5] faced with the problem of proving the global convergence of the solutions of
certain infinite systems of ordinary differential equations to a time-independent solution. Scattered results
of these studies, however, allow a common approach to their justification. This approach will be expounded
here. In work [11] the countable systems of differential equations with bounded Jacobi operators are
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studied and the sufficient conditions of global stability and global asymptotic stability are obtained. In [10]
it was considered finite closed Jackson networks with N first come, first serve nodes and M customers.
In the limit M —> 0w, N -0, M /N — A >0, it was got conditions when mean queue lengths are
uniformly bounded and when there exists a node where the mean queue length tends to infty under the
above limit (condensation phenomena, traffic jams), in terms of the limit distribution of the relative
utilizations of the nodes. It was deriven asymptotics of the partition function and of correlation functions.

Cauchy problems for the systems of ordinary differential equations of infinite order was
investigated A.N. Tihonov [13], K.P. Persidsky [12], O.A. Zhautykov [19], [20], Ju. Korobeinik [7] other
researchers.

It was studied the singular perturbated systems of ordinary differential equations by A.N. Tihonov
[14], A.B. Vasil’eva [15], S.A. Lomov [9] other researchers.

A particular our interest is the synthesis all these methods and its applications in
telecommunications. In this paper we apply methods from [11] for the singular perturbated systems of
ordinary differential equations of infinite order of Tikhonov-type.

TIKHONOV-TYPE CAUCHY PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS OF
INFINITE ORDER WITH A SMALL PARAMETER

Let us consider Tikhonov-type Cauchy problems for systems of ordinary differential equations of
infinite order with a small parameter g and initial conditions:

x=f(x(t,8,),¥(t,8,).0),
puy =F(x(g,),y(g,).1); 6]

x(4),8,)= &,
¥(4,8,)=8,

where x,f € X, X €R" are n-dimensional functions; y,FeY, Y c [, are infinite-dimensional

(2)

functions and ¢ e[to,t]] (¢, <t;,<w),teT, TeR; g €X and g, € Y are given vectors, £ >0 isa
small real parameter; x(7,g) and y(f,g,) are solutions of (1)-(2). Given functions
Sf(x(t,8,),y(,g,),t) and F(x(t,g,),y(¢,g,),t) are continuous functions for all variables. Let S is
an integral manifold of the system (1)-(2) in X x Y x T . If any point ¢ € [to,t]] (x(), y(t),£)eS of

trajectory of this system has at least one common point on S this trajectory (x(¢,G), y(t,g),t) €S
belongs the integral manifold S totally. If we assume in (1)-(2) that ¢ =0 than we have a degenerate
system of the ordinary differential equations and a problem of singular perturbations

x=f(x(t,g,),y(),0),
0=F(x(t,g,),y(),0); (3)

x(1), &) = &
where the dimension of this system is less than the dimension of the system (1)-(2), since the relations
F(x(2), y(t),t) = 0 in the system (3) are the algebraic equations (not differential equations). Thus for the
system (3) we can use limited number of the initial conditions then for system (1)-(2). Most natural for this
case we can use the initial conditions x(¢,,g )= g, for the system (3) and the initial conditions

y(t,, gy) = g, disregard otherwise we get the overdefined system. We can solve the system (3) if the
equation F'(x(¢), y(¢),t) =0 could be solved. If it is possible to solve we can find a finite set or countable
set of the roots y, (4,g,) =u, (x(f,g.),t) where ge N.

If the implicit function F'(x(¢), y(¢),#) =0 has not simple structure we must investigate the
question about the choice of roots. Hence we can use the roots y, (¢, g,) =u, (x(%,g,),t) (¢ € N)in (3)

and solve the degenerate system
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Xy =[x, (g )u, (x,(1,8,),0),0);

Yalty,8.)= &
Since it is not assumed that the roots y, (7, g,) =u,(x(¢, g,),?) satisfy the initial conditions of the Cauchy

(4)

problem (1)-(2) (y,(4,) # ., g € N), the solutions y(¢,g,) (1)-(2) and y,(#,g,) do not close to each

other at the initial moments of time ¢ > 0 . Also there is a very interesting question about behaviors of the
solutions x(#,g ) of the singular perturbated problem (1)-(2) and the solutions x,(#,g ) of the

degenerate problem (4). When =0 we have x(¢,,g )= x,(Z,,g,). Do these solutions close to each
other when 7 € (to,t] ] ? The answer to this question depends on using roots y, (#,g,) =u (x(f,g,),?)
and the initial conditions which we apply for the systems (1)-(2) and (3).

LOCAL EXISTENCE THEOREM FOR CAUCHY PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL
EQUATIONS OF INFINITE ORDER

Let Tikhonov-type Cauchy problems for systems of ordinary differential equations of infinite order
with a small parameter ¢ > 0 and initial conditions (1)-(2) has a form:

z=P(z(t,G, u),t, 1);z(t,, G, 1) = G,
z= (x],xz,...,xn,y],yz,...)T,
PG 1), 1) = (fys foseos fy 7 Bt By
G =(2s8urses &uns &> 82o)
where P(z(¢,G, u),t, 1) is the infinite-dimensional function; G is the given vector; te[to,t]] (

(5)

t, <t <L)

Let z(¢,G, 1) be a continuously differentiable solution of the Cauchy problems (5) then there are
O, G, u)=0z(t,G,u)/ 0G, Y(t,G, n) = 0z(t,G, 1)/ ou where O(¢,G, i) and WY(t,G, p) satisfy
of the system of ordinary differential equations in variations:

z=P(z(t,G, u),t, l),
(1, G, 1) =J.(t,G, ))®(t,G, ),
V(1,6 u)=J_(t,G, )Y (.G, 1)+ A, (t,G, p); (6)
z(t,,G,1u) =G, O(t,,G, u)=1,Y(t,,G,u)=0,t, €T,
where J_(¢,G,u)=(0F/0z,);;,, is Jacobi matrix, [ is an identity operator and
A, (t,G, )= (OB, / Op)._, is a vector.
Theorem 1 (local existence theorem). Let P(z(¢,G,u),t, 1), J_(1,G, 1), A, (t,G, 1) be

continuous and meet Gelder’s local condition with z € U_(G) then the system (6) has only one solution, which

meet the conditions z(t,,G,u)=G, z(t,G,u)eU_(G). Thus z(t,G, p) continuously differentiable

with respect to the initial condition, and its derivative meet the equation (6).
Proof. This statement is following from [3] (theorem 3.4.4) when the unlimited operator be 4 =0. End

proof.
The behavior of the solution z(¢,G, () (5) and the nonnegative condition for the off-diagonal

elements of the matrix J_(¢, G, i) is demonstrated by the following theorem.

Theorem 2. Let the solution z of (5) be z(t,G, u) €l, forany t 20, G €/, and . The following
claims are equal: (i) the off-diagonal elements J_(t,G, 1) are non-negative for any G; (ii) for any G and
anyvector hel,,h >0,z(t,G+h,u) 2 z(t,G, 1) .

Proof. Let us examine a convex set Z , and z(¢,G, i) € Z forany G € Z, derivative ®(t, G, 1)

of function z(¢,G, 1) can be specify by simultaneous equations (6). In that case the following formula is
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fair forany G°,G' € Z :
Z(l‘,Gl,‘Ll)—Z(l‘,GO,‘u) =
= [®(t.7(). (G - G")as’

where y(s)=(1-5)G" +5G',0<s<1.
In fact the function z(¢,G, ) transfer the segment ¥ () into the curve z(z,y(s), i) in (7). The
following formula is fair because of the continuous differentiability of function z(z, G, 1)

(7)

2(t,y (1), 1) = 2(t,G", p) +.[07st.

By the formula of complex derivative

Oy (L) _ 0z
PSR = (57 (6).

Recalling that 0z/0G = ® and 7'(s)=G' —G", with 7 =1 we get (7). Let us suppose that
statement (i) is fair. So because of (7)

1
2(t,G+h, 1) —z(t,G, 1) = jocb(z, y(s), 1)hds,
where y(s) =G + sh,0 < s <1. Because of non-negativeness of function J_ (¢, G, i) outside of diagonal
from (7) we get O (¢,y(s), 1) >0,s0 D(t,y(s), 1)h > 0 whence we get statement (ii).
Let us suppose that (ii) is fair. Under the conditions of Theorem 1 P,J_ with ze U, (G) be
continuous and meet Gelder’s local condition. Let Gelder’s local condition be PPP< M P JP<M,, and

there are numbers & > 0,8 = min(e /M ,,1/ M,). Let z(t,G, ) = G+z (¢,G, 1) be a solution of (7),
where z (1, G, 11) is a fixed point of Picard’s mapping (H@)(t) = J'IP(G +6(7))d7 under conditions
‘o

telt,—9o,,t,+06,],6, <. Mapping H is contraction with coefficient 4 =9,M, <1. Consider the
approximation to solution 2(t,G, u) = G+ % (t,G, u) = G+ (t —1,) P(z(t, G, p),t, 1) . We can see that
Pz(t,G,u)—z(t,G, u)P=
=Pz (t,G,u)-z (t,G, u)P<

SﬁPHE(ﬁG,ﬂ)_Z(f’ G,‘U)P,

[[6¢.G.)-2(t,G, ) =
= [ PG+ ~1))Pydz~ [ Pdr =

- It;(P(G +(r —t,)P) - P)dr = D.

Because of the derivative of the function P islimited and P meet Gelder’s local condition with the
constant M,, where PP(G+(7r—1))P(G))—P(G)P<M,P(t—t,))P(G)P<M M, |t—t,|, so
PDP<M M, (t—t,)* /2(1- 1), or PZ(t,G, u)— z(t,G, u) P< M M, (¢t —t,)* / 2(1— ). Using this
estimation and for all small £ > 0 we have that

0<z(t,G+Cle;, u)—z(t,G, 1) =Ce; +(t —1 )[P(G+{e,)— P(G)]+7(G,0),
where Py (G,t)P< M M, (t—1,)* /2(1- 1) and e; is a vector, which has all coordinates equal to 0 but
Jj-th  coordinate equal to 1. Component [# j of this inequality is given by
0<(—1)[P(G+{e;)— F(G)]+7,(G,1). Dividing by #—£, >0 and directing  —> £, on the right,
considering ¥,(G,#) /(¢ —t,) > 0 we get 0< P(G+Ce;)— P(G). Let us divide last expression by &
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and direct § — 0
P(G+{e)-P(G P
0< lim (Gtce)— I ):az:‘]l”’
-0+ g aG /

1

what is mean the fairing of statement (i). End proof.
Theorem 3. Let @® be Markovian mapping and G'.G'eX, t>0, u>0 than

Pz(t,G', ) - 2(t,G°, 1) P<PG' — G P.

Proof. Using (6) from the proofing of theorem 4 we have
P2(t,G', 1) — 2(t,G°, 1) P< j; PD(, 7(5))(G' —G*)Pds. (8)
Let function ®(¢,y(s)) is Markovian mapping for any
Pt>0,5 €[0,1]1PD(,y(s))(G -G )P<PG' - G°P.

Estimating the integral, considering this inequality, we get required. End proof.
This theorem shows us the following sufficient condition for the boundedness of the norm-solution

z(t,G, 1)
Corollary fact from theorem 3. Let 3G € X : z(t,G ,u)=G". Then Pz(t,G,u)—G <PG-G P
witht>20,Ge X .

This fact we can use for solutions analysis of the systems (5).

Conclusions

The boundaries of applications and possible generalizations. Some works in the routing disciplines.
All systems can be analyzed for the global stability but with some condition that the convergence to the
steady-state solution will not coordinate-wise, but the norm. We have seen that the most serious constraints
of our methods are non-negativity of the Jacobi matrix off-diagonal elements and the availability of the first
integral, which equal to the sum of the components. It would be interesting to understand the physical
meaning of these conditions. It is necessary to remember that such systems describes the behavior of the

queue lengths on the devices. Roughly speaking, z, is the proportion of units in the queue for a service, to

which there is at least k& requests (including requests, which are serviced at the moment). Non-negative
elements of the Jacobi matrix indicate that the rate of change of z, (i.e, the time derivative of z_) can only

grow at the expense of z; with j # k.Itcanbereduced (or decrease) only due to U, . Thus, with the increase

of the portion of queues with a minimum number of requests j in the system, the percentage change in

intensity with the minimum number of queues requests k£ # j can only increase.
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