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Abstract
Let there be a set of objects, where each object is characterized by Boolean features. Let logical query 
or Boolean query denote a query to find objects characterized by a Boolean function by features, for 
example, “documents with all words ...and any words ...and without words ...”. The terms “object” and 
“document” are used interchangeably hereinafter. The features may have different semantics, i. e. some 
features may correspond to the words of the document, some to labels or categories, and some to per-
bit time quantum of a document’s date. Although indices executing Boolean queries are well researched 
in the literature, the common technique of maintaining posting lists is not always acceptable. If the data 
volume can reach to the order of petabytes, a compact index structure becomes vital. The aim of the 
research is to suggest a method to build an efficient bitmap index in secondary memory that allows us 
toupdate or append data being indexed with high write throughput. We propose an efficient LSM-based 
index for bitmaps and feature design for practical applications. We also discuss aspects of building of 
joined indices in order to achieve good scalability. The paper describes the architecture and algorithms 
of a suggested index and include results of our experiments that show sustainable performance of our 
solution.
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Аннотация
Пусть существует набор объектов, где каждый объект характеризуется логическими признаками. 
Пусть логический запрос или Булевский запрос обозначает запрос на поиск объектов, характери-
зуемых логической функцией, по признакам, например, "документы со всеми словами... и любыми 
словами ... и без слов... ". Термины "объект" и "документ" в дальнейшем используются как взаимо-
заменяемые. Компоненты могут иметь различную семантику, т.е. некоторые компоненты могут 
соответствовать словам документа, некоторые ‒ меткам или категориям, а некоторые ‒ побито-
вым квантам времени даты документа. Хотя индексы, использующие логические запросы, хорошо 
изучены в литературе, общий метод ведения списков рассылки не всегда приемлем. Если объем 
данных может достигать порядка петабайт, компактная структура индекса становится жизненно 
важной. Цель исследования ‒ предложить метод построения эффективного растрового индекса 
во вторичной памяти, позволяющий обновлять или дополнять индексируемые данные с высокой 
скоростью записи. Мы предлагаем эффективный индекс на основе LSM для растровых изображе-
ний и дизайн элементов для практических приложений. Мы также обсуждаем аспекты построе-
ния объединенных индексов для достижения хорошей масштабируемости. В статье описываются 
архитектура и алгоритмы предлагаемого индекса, а также результаты наших экспериментов, ко-
торые показывают устойчивую производительность нашего решения.

Ключевые слова: полнотекстовый поиск, битовый индекс, LSM-дерево, вычисления с 
интенсивным использованием данных, логические запросы
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Introduction

Nowadays both science and industry are affected by explosive 
growth of data. For a significant amount of time, astrophysics and 
high-energy physics were famous for their behemoth amounts of 
data being generated in experiments at daily basis [1], [3], and 
now biology, especially genomics, uses terabyte-sized datasets and 
petabyte-sized data repositories, which volume doubles every year, 
too [4]. The amount of data used and generated in business appli-
cations, such as financial and social media analytics, is an another 
example of exponential growth [5]. In such a circumstances, a fea-
sible data management solution is determined by having abilities 
to capture and save data into external memory at sustainable rate.
For hard disk drives, the sequential write speed is about 1000 times 
higher than the random access speed [6]. For solid-state disks, writ-
ing in random access mode leads to performance degradation by 
about an order of magnitude [7, 8], and even despite the fact that 
the controllers of most modern Flash-media carry out data group-
ing before writing, sequential write may be about 3 times faster 
than writing in random access mode [9]. This means that the algo-
rithm must support batching of writes and perform writes to exter-
nal memory in append-only mode.
Log-structured merge tree (LSM-tree) [10] is a complex multi-level 
index that solves the problem of performance of writing to exter-
nal memory by batching changes and writing in sequential manner. 
An LSM-based index is used by many modern commercial database 
systems, such as BigTable [11], [12], HBase [13], Cassandra [14], 
LevelDB [15], RocksDB [16], and AsterixDB [17].
The LSM-tree consists of multiple sorted runs, the size of which grows 
exponentially, as suggested by the original work [10], or according to 
another, possibly complex, rules [15, 18]. Updates always go to the 
input component (usually referred as C0), which takes residence in 
the main memory, and, when a sufficient number of them is accumu-
lated, they are sequentially transferred to external memory during 
so-called merge, or compaction, procedure, that may involve merging 
of the sorted runs together, including those already written to exter-
nal memory storage. All sorted runs of an LSM-tree, that are exter-
nal memory resident, are immutable since they are created during 
merge procedure. That makes the difference between a LSM-tree 
and traditional indexes, such as B-tree, that allow in-place updates. 
Out-of-place update strategy of the LSM-tree eliminates random I/O 
problem, because all I/Os are sequential. it should be noted that LSM-
tree architecture allows concurrent reading while the merge proce-
dure is running, that significantly simplifies concurrency control.
Different components can contain elements with the same keys; in 
this case, the value in the tree with less number (often called level) 
is taken. Deletion of elements is performed by inserting a special 
element (deletion marker, or tombstone) with the required key; the 
physical removal of an item from the index occurs during the merge 
procedure that forms the last-level component.
The structure of the components can be varied. Original paper [10] 
proposes a red-black or AVLtree for the memory component C0, 
while most modern implementations adopt some concurrent data 
structures such as a skip-list or a B+-tree [15]. On-disk components 

1 Manning C.D., Raghavan P., Schütze H. Introduction to Information Retrieval. USA: Cambridge University Press; 2008. 506 p. (In Eng.)
2 Pilosa: A Technical Overview. Tech. rep. Dec. 2017. 7 p. [Electronic resource]. URL: https://www.pilosa.com/pdf/PILOSA%20-%20Technical%20White%20Paper.pdf 
(accessed 13.01.2022). (In Eng.)

may be organized using B+-trees or so-called sorted string tables 
(SSTables).
Although LSM-like index is a way to achieve sufficient write perfor-
mance, it is not clear how to perform complex Boolean queries on 
such an index1. In order to do so, one need to maintain a number 
of sets such as union, intersections and difference operations can 
be performed efficiently [2]. Integer indexes are split into blocks 
of 216 elements in each block in order to make a container for one. 
Roaring bitmap format allows fast random access, rank and select 
operations on a container, as well as fast union, intersect and dif-
ference operations between containers, even if the containers are 
of different types [19, 20, 21]. Those operations can be performed 
on a compressed container without decompression, so if N denotes 
the length of the block and S the number if significant bits, the oper-
ations mentioned above will have O(S) complexity, not O(N), as for 
uncompressed bitmap.
If the data being indexed is read-only and index is never changed 
(as in [22], it is obvious to make an index with bitmaps as values 
corresponding to object features as keys. In order to execute a Bool-
ean query, one should take bitmaps corresponding to the selected 
features and perform bitwise operations on them. The problem 
with straightforward approach is following: if the features are the 
keys of a container, and the bitmaps are its values, then adding a 
new document to such an index leads to updating a large number of 
bitmaps, possibly all. therefore a large index in secondary memory 
on a mutable or expandable data would not be functional. In this 
paper, we study how to overcome this difficulty and make an LSM-
based index with bitmaps that allows to add, update and remove 
data efficiently. Then, we discuss how to scale our solution up.
The paper is organized as follows. In the next section, we present an 
overview of our architecture. Next, in Section 4 we discuss dictio-
nary design in the view of overall scalability. Then, the experimental 
results are shown in Section 5. Finally, we conclude with Section 6.

Design and Implementation

1.1 Search Tree
We assume that the objects (documents) to be indexed are stored 
in some key-value storage and each object can be retrieved by a 
unique key. Hence the bitmap index being described is a secondary 
index that allows to obtain an object’s key by its features2.
From the logical point of view, we assign a bitmap for each feature, 
so we can execute Boolean queries in a straightforward way. In ex-
ample, in order to obtain a set of objects that have both feature X 
and feature Y , we can perform bitmap intersection for correspond-
ing features, that can be done efficiently, as stated before [20]. How-
ever, we do not store a huge bitset as is. Following the approach 
suggested in [19], we split a logical bitmap into blocks of a certain 
size, less than or equal to 216. Apart from better compression ratio, 
it is used to return paged query output (with page start token and 
size) efficiently, so the result page of given size starting from the 
given offset can be computed using a limited amount of blocks, not 
all logical bitset. In order to do so, bitmap blocks are stored as indi-
vidual entities and can be retrieved and processed independently.
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block 1 block 2

doc 1 doc 2 doc 3 doc 4 doc 5 ...

feature 1 0 0 1 0 1 ...

feature 2 1 1 0 0 1 ...

F i g. 1. An overview of bitmap index with blocks

For each object feature (i. e. word / label / date) an ID is assigned; 
on the matter of feature to feature ID mapping, see Section 4. For 
each document, a number document ID is assigned to it,  that de-
termines the document unambiguously. That document ID is to be 
translated into index in a bitmap with formula
 
document ID = block ID × block size + integer in a block bitmap
 (3.1)

A document ID is to be assigned as a per-index incremental counter. 
The advantage of this approach is that newer documents (objects) 
will have greater document IDs, so we can perform paginated que-
ries in the order of the document’s index time.
The bitmap blocks are to be stored in the LSM-tree (referred as 
search tree hereinafter), where keys corresponds to (block ID, fea-
ture ID) pair, and values are compressed bitmap blocks.
Since the document ID to assign always increments, the current 
block ID always increments too. Therefore insertions of the nodes 
with the keys of the form (block ID, feature ID) are partially ordered 
in key order. It implies that the merging of the LSM sorted runs may 
be trivial since the key ranges of the runs likely do not intersect, 
and merging can even be omitted since the insertions in the block 
order results in the sorted runs that can be viewed as partitions in 
a partitioned LSM [15], that means much lesser write amplification. 
Moreover, if the older documents is considered historical and are 
to be accessed infrequently, the sorted runs / partitions might be 
stored on a cheaper cold storage [23-25] or on the write-once-read-
many (WORM) devices.
In order to obtain a complete logical bitmap for a feature with the 
ID equal to X, one should get the blocks (b1,X),(b2,X),...,(bnX,X), where 
b1,b2,...,bnX, 0 ≤ b1 < b2 < ··· < bnX is the sequence of the block IDs such 
that for each i, 0 ≤ i ≤ nX a document with the number within a block 
with the feature X exists (the blocks of zeroes should not be stored) 
and for each i such that i > nX there is no blocks with the ID equal to 
i for the feature X. Hence in order to get IDs of the documents that 
have feature X,  one shoud perform nX +1 “greater or equal” lookups 
in a tree, from the key (0,X) to the (bnX + 1,X), and enumerate the 
significant bits in the blocks. The complexity of the operation is O(nX 
logF), where F is the total number of features.
In order to get ID of the documents that have both feature X and 
feature Y, one should perform an intersection operation on the cor-
responding bitmap blocks. In general, in order to obtain documents 
that are characterized by some Boolean function on features f, one 
should perform queries for corresponding features and execute f on 
the blocks. It is always possible, as any Boolean function f may be 
converted to disjunctive normal form or conjunctive normal form, 
so it can be calculated using union, intersection and difference op-
erations on bitmaps.

The compound key defined would allow to paginate search results, 
since on the first request only N blocks may be processed, the ID of 
N-th block and an index within that block may be encoded as a page 
token, on second request blocks from N to N + M may be processed, 
and so on.
The insertion into index is a bit tricky. As was mentioned above, 
we do not want to update a lot of bitmaps / bitmap blocks when on 
a new document indexing procedure. Instead, we want to update 
only bitmaps in the memory component C0; even lookup in on-disk 
components of the LSM-tree should not be performed.
The document ingestion algorithm is following.

Algorithm 3.1 Insert a new document into a search tree

lastDocId ⇐ a value from global head docId ⇐ lastDocId + 1
global head counter ⇐ docId
blockId ⇐ docId/blockSize
idx ⇐ docId mod blockSize
for all feature ∈ document features do
insert a bitmap of a single significant bit idx to an LSM
end for

Unlike usual LSM-tree implementations, an older value is not to be 
replaced by a newer one during LSM merge procedure. Instead, a 
union of bitmap values (bitwise OR) should be performed. Lookup 
procedure in the search tree does not stop on the first match, as in 
regular LSM-tree. Instead, it finds results from all components and 
performs union operation on them. Therefore Bloom filtering is im-
portant to skip some components from the search.

 

F i g. 2. A search tree with feature F

1.2 Overall Architecture
In order to translate document ID, that is calculated by formula 3.1, 
to a primary key-value storage key, a special tree is needed, referred 
as mapping hereinafter. Mapping is a regular LSM-tree where docu-
ment IDs serves as keys and primary index keys as values.
In order to convert text words, physical quantity value, etc. to fea-
ture ID, a special dictionary tree may be needed. The matter is dis-
cussed in Section 4 below.
In a regular mode of operation, documents are never removed from 
search tree, and last document ID counter never decrements. In or-
der to filter deleted documents out, a special deleted documents fil-
ter is needed. That is a LSM-tree with block IDs as keys and bitmaps 
of deleted documents as values. To filter deleted documents out, 
one need to calculate the difference between bitmap calculating us-
ing search tree (see 3.3 below) and the bitmap of the corresponding 
block retrieved from deleted documents filter. If there’s B blocks in 
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the index and F features, the size of the search tree is proportional 
to B · F in the worst case, while the size of the deleted documents 
tree is proportional to just B. The problem of garbage collection is 
discussed in Section 3.4.

3.2 Overall Architecture

In order to translate document ID, that is calculated by formula 3.1, to a primary key-value storage
key, a special tree is needed, referred as mapping hereinafter. Mapping is a regular LSM-tree where
document IDs serves as keys and primary index keys as values.

In order to convert text words, physical quantity value, etc. to feature ID, a special dictionary
tree may be needed. The matter is discussed in Section 4 below.

In a regular mode of operation, documents are never removed from search tree, and last document
ID counter never decrements. In order to filter deleted documents out, a special deleted documents
filter is needed. That is a LSM-tree with block IDs as keys and bitmaps of deleted documents
as values. To filter deleted documents out, one need to calculate the difference between bitmap
calculating using search tree (see 3.3 below) and the bitmap of the corresponding block retrieved
from deleted documents filter. If there’s 𝐵𝐵 blocks in the index and 𝐹𝐹 features, the size of the
search tree is proportional to 𝐵𝐵 · 𝐹𝐹 in the worst case, while the size of the deleted documents tree is
proportional to just 𝐵𝐵. The problem of garbage collection is discussed in Section 3.4.

User input Dictionary Search tree

Deleted documents
filter

Mapping Primary
key-value index

Words / dates / etc. Features

Document IDs Primary index keys

Document IDs

Figure 3: Search request flow

3.3 Nested Iterators

In a practical application, per-feature bitmaps may be very sparse, so many logical blocks may
contain no significant bits and therefore be not present in a search tree at all. In such conditions,
it would be very impractical to traverse LSM block-by-block and compute unions or intersections of
blocks with empty ones. Instead, computations should be performed only when non-empty result is
possible. For example, the logical OR (union) of bitmap blocks may be not empty only if there’s at
least some non-empty block with that block ID, in other words, a block stored in the tree. Then, to
the logical AND (intersection) of bitmap blocks may be not empty only if all blocks with the block
ID are stored. That means that if there is a feature 𝐹𝐹1 that a lot of documents have, and a feature
𝐹𝐹2 that a few documents have, a lot of bitmap blocks that are stored for feature 𝐹𝐹1 may be skipped
from computation.

In order to achieve this an iterator can be implemented, that takes some block ID as start, finds
oiut first block ID with non-empty blocks and computes the result for them, returning this block ID
along with the computed bitmap. Furthermore, an iterator can be built on top of another iterators.
A Boolean query can be represented as a tree with features as leaf nodes and logical operators in
directory nodes, for example, AND, OR, NOR, NOT. A skipping iterator can be built for each node,
with the topmost iterator returning results of the whole query. This approach allows to execute even
complex queries efficiently.

5

F i g. 3. Search request flow

1.3 Nested Iterators
In a practical application, per-feature bitmaps may be very sparse, 
so many logical blocks may contain no significant bits and therefore 
be not present in a search tree at all. In such conditions, it would 
be very impractical to traverse LSM block-by-block and compute 
unions or intersections of blocks with empty ones. Instead, com-

putations should be performed only when non-empty result is pos-
sible. For example, the logical OR (union) of bitmap blocks may be 
not empty only if there’s at least some non-empty block with that 
block ID, in other words, a block stored in the tree. Then, to the log-
ical AND (intersection) of bitmap blocks may be not empty only if 
all blocks with the block ID are stored. That means that if there is a 
feature F1 that a lot of documents have, and a feature F2 that a few 
documents have, a lot of bitmap blocks that are stored for feature F1 
may be skipped from computation.
In order to achieve this an iterator can be implemented, that takes 
some block ID as start, finds out first block ID with non-empty 
blocks and computes the result for them, returning this block ID 
along with the computed bitmap. Furthermore, an iterator can be 
built on top of another iterators. A Boolean query can be represent-
ed as a tree with features as leaf nodes and logical operators in di-
rectory nodes, for example, AND, OR, NOR, NOT. A skipping iterator 
can be built for each node, with the topmost iterator returning re-
sults of the whole query. This approach allows executing even com-
plex queries efficiently.

Algorithm 3.2 Pseudo-code implementation of AND iterator

interface BlockIterator {
 NextAfter() (blockID BlockID, result *Bitmap, empty Boolean, err Error)
};
struct andIter { iters 
 []BlockIterator
};
func (ai *andIter) NextAfter(start BlockID) (BlockID, *Bitmap, Boolean, Error) {
 var results = new([ai.iters.length]*Bitmap);
 BEGIN:
  for it in ai.iters {
   position, bmap, empty, err := it.NextAfter(start);
   if err != NULL or empty {
    // x AND 0 = 0, no results at all
    return 0, NULL, true, err;
   }
   if position > start {
    start = 
    position; goto 
    BEGIN;
   }
   results.append(bmap);
  }
 return nextBlock, results.And(), false, NULL;
}

1.4 Document deletion
In order to support deletion of the documents, the special tree that 
maps the block ID to the bitmap of the removed documents is add-
ed. It allows to mark the document as deleted quickly and then filter 
deleted documents out calculating the difference between resulting 
bitmap from the search tree and the deleted documents bitmap.
As the number of deleted documents grows, it slows down index 
lookups due to processing of garbage to be filtered. Moreover, if the 
objects being indexed are mutable, each new object version will 
correspond to a new “document”, so the amount of garbage for a 

frequently changing data may increase quickly.
The idea of garbage collection procedure follows. Let a threshold 
be the percent of removed documents per block, for example, 1/2 
or 2/3. A block is subject to garbage collection if the number of re-
moved documents within a block exceeds the threshold. A bitmap 
of the blocks that need garbage collection should be maintained, i. 
e. it is possible to update that bitmap when a document is deleted 
(with obvious optimizations). The procedure itself starts if the bit-
map of block that need garbage collection is not empty. It traverses 
all keys of the search tree then, i. e. all (feature ID, block ID) pairs. 
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For each pair, if the difference between bitmap for this feature and 
block and deleted documents bitmap for the block is empty, the 
(feature ID, block ID) key can be removed from the search tree (by 
deleted marker insertion). If it is done for all features of the block, 
deleted documents filter can be cleared too. Otherwise, deleted doc-
uments bitmaps remain, but “needs GC” bit is cleared until a new 
document from this block is removed.
The advantage of the algorithm above is that it does not require sig-
nificant memory for execution and does not break “greater docu-
ment IDs for newer documents” rule.

Dictionary and consolidated index

1.1 Word Features
The most important document feature kind for a full-text search 
engine is features of having a specific word in a document, called 
word features hereinafter. In order to support such features, each 
word should be mapped to a feature ID, that is to be used in a search 
index key. There is a number of choices on how to do it. First of all, 
the word token can be used directly (after the usual analysis and 
tokenization), the second option is hashing and the final one is to 
add an another tree.
The primary disadvantage of the word tokens as the feature IDs 
is their arbitrary length, so they would take a lot of space in the 
search index. Hashing can partially resolve this problem, however, 
hash values should be large enough to avoid collisions, they are ran-
dom and hard to compress. Moreover, it is impossible to find minor 
variants of the term in the index, because it can be hashed to a very 
different hash value, or to enumerate all words in an index, which 
may be useful for analytical purposes.
A special search tree for a dictionary overcome those issues. It maps 
a word token into an integer, that is used as an ID in the search in-
dex. These IDs are relatively small and easy to compress due to their 
incremental nature. In order to achieve high write throughput, a 
LSM-tree should be used.
In order to search by prefix, one can make a range query in a dic-
tionary tree, get a list of features in a range, and then make an OR 
query on those features in a search tree with document bitmaps.
If the set of words is more or less stable, for example, if the words 
are from some natural language, keys may be never deleted from 
the dictionary tree, like in Postgres GIN indexes. Otherwise, in or-
der to perform a garbage collection procedure, one should traverse 
through the whole dictionary tree and for each feature lookup for a 
corresponding element in a main search tree; the elements with no 
corresponding bitmap blocks found are to be removed.

1.2 Datetime Features
It is suggested to adopt Pilosa’s bit-sliced indexing (BSI) technique 
[1], with respect to Gregorian calendar (as it is likely that the user 
will choose desired time range in a calendar form). For example, a 
year between 1900 and 2155 can be represented as collection of 8 
Boolean features: 1st would be 0 if the year is between 1900 and 
2027 and 1 if it is between 2028 and 2155, 2nd is 0 for 1900–1963 
/ 2028–2092 and 1 for 1964–2027 / 2092–2155 and so on. There-
fore time range 2020–2025 can be encoded as “NOT 1st 1900–2027 
AND 2nd 1964–2027 AND 3rd 1996–2027 AND 4th 2012–2027 
AND 5th 2020–2027 AND (NOT 6th 2020–2023 OR (6th 2024–
2027 AND NOT 7th 2024–2025)). Then, we can use 4 features/bit-

maps for a month, 5 for a day and so on.
In order to reduce the number of bitmaps involved, a special feature 
can be used for each calendar year, and bit-sliced indexing can be 
used for a date-time within a year. For example, we can make a fea-
ture ID in a following way: feature type magic + year code for year 
features or the order of the binary division for in-year features. For 
each actual datetime “feature” of a document (for example, docu-
ment creation timestamp) there would be a number of the search 
index features: first, a year feature; second, the “first division” fea-
ture, if the date is in the second half of the year; third, the “second 
division” feature, if the date is in the second or fourth quarter of the 
year, and so forth, and so on.
It is worthy of note that a dictionary index is not needed to work 
with datetime features, their IDs is to be constructed on the fly.

1.3 Consolidated Index
While each database can benefit from more powerful hardware, 
true scalability comes from the ability to add more nodes to the 
cluster and to spread load between them. Read scalability can be 
achieved through replicas that receive copied data from the prima-
ry node. It is less straightforward how to make a horizontally scal-
able system in terms of write operations.
The possible solution is to have a number of independent primary 
nodes with a search index, that is the search tree, dictionary tree 
and mapping tree as described above, and a special common dictio-
nary, that allows to omit searching in all nodes. That common dic-
tionary should comprise a mapping from the word token to the list 
of nodes that have a document with this word. Said list is supposed 
to be stored as a compressed bitmap.
The single word query execution is simple, one just need to select 
relevant nodes from the corresponding list and make search que-
ries on this nodes. In order to execute more complicated queries, 
one may need to calculate unions, intersections and differences of 
such lists. Of course if a node has a document with the word A and 
it has a document with the word B, it is not necessary that it has a 
document with both A and B. However, the common dictionary still 
significantly restricts the set of the nodes to be checked. Datetime 
queries can be executed either purely on the second stage, when a 
search on the node index is performed, or can be accelerated with 
the common dictionary too. In order to do this, one need to choose 
a “primary” date field of the documents (for example, creation or 
modification date) and construct a common dictionary key as a 
word + year number (or as a word + year + month, or even more 
granular, dependent on the application). It may significantly im-
prove performance of “documents with words and within a time 
range” queries in a distributed index, if they are important.
In order to maintain such a common dictionary, each node can 
maintain a log of the new words or word – year pairs that are in-
dexed since the first synchronization. The common dictionary then 
can be updated with a background procedure that polls the nodes 
and updates the dictionary with changes it got. If the vocabulary 
size is within reasonable limits, the common dictionary updates are 
not a bottleneck, especially considering that the new elements can 
be inserted into nodes indexes concurrently not waiting for a com-
mon dictionary update.
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Evaluation

1.4 Experimental Setup

Implementaion
LSM tree is written in Go code and consists of approximately 5,500 
lines of code. It relies on an abstract I/O layer that encapsulates ac-
tual storage device and reports various metrics with approximately 
1,000 lines of code. Search index is implented with approximately 
5,000 lines of code.
The LSM implementation uses simple levelled compaction policy 
[15]. It is generally suboptimal in terms of write amplification and 
insert performance; however, there is a known optimization for a 
key-order insert workload that reduces write amplification a lot. 
The major advantages of the levelled policy is that it implies rela-
tively low space amplification and fewer number of components, 
therefore it is characterized by better read performance than other 
policies.
LSM data is compressed with Zstandard algorithm 

 prior to be written to external memory device. Point lookup que-
ries are optimized with Bloom filters.
For a mapping tree, the primary storage keys are 16 bytes long.

Experiment machine
The experiment machine is an Intel Core i5 (4 cores at 2.9 GHz) with 
8 GB of RAM and a 1 TB SSD drive.
Dataset. The experiments in this section are performed with a Com-
monCrawl data. The CommonCrawl is an open repository of web 
crawl data. Said data is an enormous collection of text written pri-
marily by humans in natural languages, therefore the distribution 
of the word features may be close to one of the real documents in 
information retrieval system. The vocabulary of the CommonCrawl 
text is plenty rich due to nearly all human languages present in 
the global web crawl data, and the documents may contain a vast 
amount of some identifiers and other random byte sequences, so 
the dictionary size is not limited in any way. Text data in WET for-
mat are split into documents to be indexed of 50 KiB each. For each 
document, a date between 1 January 1980 and 1 January 2050 is 
assigned using an uniform random distribution.

Defaults
The threshold for the C0 tree was set to 8 MiB, so for each of the 
three LSM trees involved (search tree, dictionary tree, mapping 
tree) the maximum size for in-memory component is 8 MiB. The 
block size of 2048 bits was chosen for the search tree.
1.5 Evaluation Results
In Figure 4, we study the impact of the actual amount of bytes writ-
ten to external memory device
Swritten on the total size of documents inserted Sdocs. The results show 
that the write amplification ratio  has no trend to increase.

In Figure 5, the dependency of the average insertion time τi on the 
index size (in the number of documents of 50 KiB each Ndocs) is il-
lustrated. In this experiment, the time to insert each 10,000 doc-
uments is measured and the average is calculated by deletion by 
10,000. The results are coherent with the results shown on Figure 4 
and show that the insertion time has no trend to increase with the 
growth of the index.
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In Figure 5, the dependency of the average insertion time 𝜏𝜏𝑤𝑤 on the index size (in the number of
documents of 50 KiB each 𝑁𝑁𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑) is illustrated. In this experiment, the time to insert each 10,000
documents is measured and the average is calculated by deletion by 10,000. The results are coherent
with the results shown on Figure 4 and show that the insertion time has no trend to increase with
the growth of the index.
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In the next several sets of experiments, the impact of the index size on the search time is studied.
The workload issues insert and read operations. After each 10,000 documents inserted, the average
search time is measured for the “simple” and “complex” query. The “simple” one is for the documents
containing the English word is ; since the vast majority of the documents contans it, the query should
be answered relatively quickly. The “complex” one can be expressed as follows: “document, containing
search and success and either accomplished or achieved, and neither problem, nor bug in date range
from 5th March 1990 to 16th November 2016”. The results illustrated in Fugure 6 and Figure 7
show that the time to answer the “simple” query 𝜏𝜏𝑑𝑑1 is significantly inferior to the time to answer the
“complex” query 𝜏𝜏𝑑𝑑2 , while both show no trend to increase with the index size.
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In the next several sets of experiments, the impact of the index 
size on the search time is studied. The workload issues insert and 
read operations. After each 10,000 documents inserted, the aver-
age search time is measured for the “simple” and “complex” query. 
The “simple” one is for the documents containing the English word 
is; since the vast majority of the documents contains it, the query 
should be answered relatively quickly. The “complex” one can be 
expressed as follows: “document, containing search and success 
and either accomplished or achieved, and neither problem, nor bug 
in date range from 5th March 1990 to 16th November 2016”. The 
results illustrated in Figure 6 and Figure 7 show that the time to 
answer the “simple” query τs1 is significantly inferior to the time to 
answer the “complex” query τs2, while both show no trend to in-
crease with the index size.
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Figure 7: Impact of index size on “complex” search time

In Figure 8 we study the amount of LSM merge operations required to insert 10,000 documents
𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑 on the index size before the insertion 𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑. The results show that the number of merges is
stable, with a initial peak.

2 4 6 8 10 12 14

100

200

300

𝑆𝑆𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, GiB

𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑑𝑑

Figure 8: Impact of index size on total number of LSM merges to insert 104 documents

In Figure 9 we compare the sizes of the main search tree with the bitmaps and the dictionary
tree. The results show that although the dictionary size grows linearly (because of the vocalulary-rich
dataset), the search tree size grows much quicker. It should be noted that the mapping tree size is
limited to hundreds of kilobytes.
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In Figure 9 we compare the sizes of the main search tree with the bitmaps and the dictionary
tree. The results show that although the dictionary size grows linearly (because of the vocalulary-rich
dataset), the search tree size grows much quicker. It should be noted that the mapping tree size is
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In Figure 9 we compare the sizes of the main search tree with the 
bitmaps and the dictionary tree. The results show that although the 
dictionary size grows linearly (because of the vocabulary-rich data-
set), the search tree size grows much quicker. It should be noted 
that the mapping tree size is limited to hundreds of kilobytes.
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Figure 9: Sizes of the search tree and the dictionary

The impact of the suggested garbage collection procedure for the search time is analyzed in
the following experiments. In Figure 10 we study the impact of garbage collection on the search
time, where thr index comprises 8,000 documents, 2/3 of which were deleted, and the deleted and
remaining documents are mixed uniformly, so for all block number there may be ones that need
garbage collection. Two search queries were evaluated. The “simple” one is for the documents
included a word search, and the “complex” one is for the documents with creation date between
5 March 2005 and 16 November 2006, so that many features are involved, according to the date
encoding.
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Figure 10: Impact of the garbage collection on the search time in case of uniformly distributed
deletions

The results show that the suggested garbage collection procedure decreases the search time a lot
for the complex queries, for example, for a date query, that involves querying for a lot of features.
The “simple” query, however, seems to execute fast enough with deleted documents filter.
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The results show that the suggested garbage collection procedure decreases the search time a lot
for the complex queries, for example, for a date query, that involves querying for a lot of features.
The “simple” query, however, seems to execute fast enough with deleted documents filter.
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The results show that the suggested garbage collection procedure 
decreases the search time a lot for the complex queries, for exam-
ple, for a date query, that involves querying for a lot of features. The 
“simple” query, however, seems to execute fast enough with deleted 
documents filter.
In Figure 11 we study the garbage collection on the index where 
8,000 documents were inserted and then the oldest 2/3 were de-
leted, so the blocks subject to the garbage are consequent, and the 
search is performed in “from the newest to the oldest” order.
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In Figure 11 we study the garbage collection on the index where 8,000 documents were inserted
and then the oldest 2/3 were deleted, so the blocks subject to the garbage are consequent, and the
search is performed in “from the newest to the oldest” order.
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Figure 11: Impact of the garbage collection on the search time in case of the oldest documents deleted

The results unsurprisingly show that the garbage collection does not improve the search time in
the case, because there were no documents to filter out. However, it may be still needed to decrease
the stored index size.

6 Conclusions and future work
A horizontally scalable bitmap search index with out-of-place writes and ability to execute arbitrary
complex Boolean queries have been designed and implemented. The possible applications of the
method include, but not limited to a full-text search engine that implements searching for the text
documents by words contained and timestamps. However, the method being described can utilise a
completely different kind of a document features, with possible changes in dictionary design.

The index implementation achieves high performance, both in terms of write throughput and
search time, that proves the design choices. However, the implementation eveluated can be viewed
as a first version of the product and there are ways to futher enhance its performance. In particular,
the compaction policy may be tuned to decrease write amplification.
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The results unsurprisingly show that the garbage collection does 
not improve the search time in the case, because there were no doc-
uments to filter out. However, it may be still needed to decrease the 
stored index size.

Conclusions and future work

A horizontally scalable bitmap search index with out-of-place 
writes and ability to execute arbitrary complex Boolean queries 
have been designed and implemented. The possible applications of 
the method include, but not limited to a full-text search engine that 
implements searching for the text documents by words contained 
and timestamps. However, the method being described can utilise 
a completely different kind of a document features, with possible 
changes in dictionary design.
The index implementation achieves high performance, both in 
terms of write throughput and search time, that proves the design 
choices. However, the implementation evaluated can be viewed as 
a first version of the product and there are ways to further enhance 
its performance. In particular, the compaction policy may be tuned 
to decrease write amplification.
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