CoBpemeHHble
MH(OPMaLMOHHbIE
TexHonornu

n UT-o6pasoBaHue

NCCNENOBAHNA 1 PASPABOTKI B OBNACTI HOBbIX WNHOOPMALIMOHHDIX
TEXHONMOMMU U X NPUNOXXEHWUN / RESEARCH AND DEVELOPMENT IN THE FIELD
OF NEW IT AND THEIR APPLICATIONS

VIK 004.651.4 Original article]
DOI: 10.25559/SITITO.18.202201.134-143

Horizontably Scalable LSM-tree Based Index for Full-Text
Search Boolean Queries

A. M. Neganov

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russian Fed-
eration

Address: 9 Institutskiy per., Dolgoprudny 141701, Moscow Region, Russian Federation
neganovalexey@gmail.com

Abstract

Let there be a set of objects, where each object is characterized by Boolean features. Let logical query
or Boolean query denote a query to find objects characterized by a Boolean function by features, for
example, “documents with all words ...and any words ...and without words ... The terms “object” and
“document” are used interchangeably hereinafter. The features may have different semantics, i. e. some
features may correspond to the words of the document, some to labels or categories, and some to per-
bit time quantum of a document’s date. Although indices executing Boolean queries are well researched
in the literature, the common technique of maintaining posting lists is not always acceptable. If the data
volume can reach to the order of petabytes, a compact index structure becomes vital. The aim of the
research is to suggest a method to build an efficient bitmap index in secondary memory that allows us
toupdate or append data being indexed with high write throughput. We propose an efficient LSM-based
index for bitmaps and feature design for practical applications. We also discuss aspects of building of
joined indices in order to achieve good scalability. The paper describes the architecture and algorithms
of a suggested index and include results of our experiments that show sustainable performance of our
solution.

Keywords: full-text search, bitmap index, LSM-tree, data-intensive computing, Boolean query
The author declares no conflict of interest.
For citation: Neganov A.M. Horizontably Scalable LSM-tree Based Index for Full-Text Search Boolean

Queries. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies
and IT-Education. 2022; 18(1):134-143. doi: https://doi.org/10.25559/SITIT0.18.202201.134-143

© Neganov A. M., 2022

@ KonTeHT foctynen nog nvuensueii Creative Commons Attribution 4.0 License.
The content is available under Creative Commons Attribution 4.0 License.

Tom 18, N2 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru

WCCNEAOBAHMSA N PA3PABOTKU B OB/TACTU HOBbIX MHMOPMALIMOHHbIX
TEXHOMOIMIA N UX NPUNOXEHWUIA

HayuyHas cTaTbs

FOpl/ISOHTaJIbHO MaCllITaﬁI/lp}IEMblﬁ HHAEKC Ha OCHOBE
LSM-AGpEBa AJIA JIOTHYE€CKHUX 3aIlIPpOCOB IMTOJIHOTEKCTOBOTO
IO CKa

A.M. HeraHnos

OTAOY BO «MockoBCKHMH (U3UKO-TEXHUYECKUH WHCTUTYT (HALlMOHAJBHBIN HCCJIE0BAaTeNbCKUN
YHUBEPCUTET)», I. JlosronpyaHbii, Poccuiickas ®enepanus

Anpec: 141701, Poccuiickas Penepanus, MockoBckas o6Jsacts, I. JoaronpyaHeii, UHcTUTYTCKUI
nepeyJok, 4. 9

neganovalexey@gmail.com

AHHOTaUA

[lycTb cyiiecTByeT HaGop 00BEKTOB, I/le KX/l 06'bEKT XapaKTepHU3yeTCsl JIOTHYeCKUMHU TPU3HAKaMHU.
[IycTp noruyeckuii 3anpoc uiau byseBckuil 3arpoc 0603HavaeT 3aNpoc Ha MOMCK 06'bEKTOB, XapaKTepH-
3yeMbIX JIOTHYeCKOH QYHKI[MEH, 10 MPU3HAKaM, HallpuMep, "ZIOKYMEHTbI CO BCEMU CJIOBAMHU... U JIIOGBIMU
CJIOBAMH ... ¥ 6€3 CJIOB... ". TepMUHBI "06beKT" U "[JOKYMeHT" B Ja/IbHEHIIIEM HCITO/Ib3YIOTCS KaK B3aUMO-
3aMeHsieMble. KOMIIOHEHTBI MOTYT UMeTb Pa3IMYHyI0 CEMaHTHKY, T.e. HEKOTOPbIe KOMIIOHEHThI MOTYT
COOTBETCTBOBATh CJI0BAM [IOKYMEHTA, HEKOTOpbIE — METKaM WJIM KaTeropusiM, a HEKOTOpbIe — MOGUTO-
BbIM KBaHTaM BpeMeHH JJaThl JJOKYMeHTa. XOTsl MH/IEKChI, UCIIOJIb3YIOIIHeE JIOTHYECKHe 3alPOChl, XOPOLIO
HU3y4yeHbI B JIUTEpPAType, OOLIMI METO/ BeIeHHs CIHCKOB PacChLIKU He Bcerza npremieM. Ecin o6bemM
JIAaHHBIX MOXKET JJOCTUTATh MOPsAKa MeTabaiT, KOMIIAKTHAs CTPYKTYypa UH/EKCa CTAHOBUTCS »KU3HEHHO
BakHOM. Llesb viccefoBaHUs — MPEAJIOKUTD METOJ, OCTpoeHUs 3G EKTUBHOIO pacTPOBOro UHAEKCA
BO BTOPUYHOM NaMsTH, TO3BOJISIIOIINHA OGHOBJISATH UJIH JIOTIONHATD HHAEKCHPyeMble JaHHbIE C BBICOKOM
CKOPOCTHI0 3anucu. Mbl npegiaraeM 3¢ GeKTUBHBIN HH/IEKC Ha 0CHOBe LSM /1151 pacTpoBBIX H306pake-
HUU U IU3aiH 3JIEMEHTOB [JIs1 NPAKTHUECKUX MPUJIOKEHUH. MBI TakkKe 06Cy»aeM acreKThl MOCTpoe-
HUS 06'beJMHEHHBIX MH/IEKCOB JIJIs1 IOCTHIKEHHS XOPOlllei MaclITabUpyeMOCTH. B cTaTbe onuchIBalOTCS
ApXUTEKTypa U aJITOPUTMbI IPe/I/IaraeMoro UH/EKCa, a TaKXKe pe3y/IbTaThl HAlllMX 9KCIIEPUMEHTOB, KO-
TOpbIE NOKA3bIBAIOT YCTOMYMBYIO MPOU3BOIUTENBbHOCTD HAIIEr0 peleHusl.

KiroueBble C/I0BA: NONHOTEKCTOBBIA TOMCK, GUTOBBIA MHJEKC, LSM-epeBo, BLIMMCIEHHUS C
MHTEHCHBHBIM UCNOJIb30BaHUEM JAHHBIX, IOTUYECKHE 3alIpOChl

Asmop 3as8151em 06 omcymcmauu KoH@AUKMa UHMepecos.

Jl11 U TUPOBAHUA: HeranoB A. M. [OpH30HTa/JIbHO MaclITabUpPyeMblil HHAEKC Ha 0CHOBe LSM-
JlepeBa IS JIOTHYECKUX 3allPpOCOB MOJHOTEKCTOBOro noucka // CoBpeMeHHble MHOpPMALMOHHbIE
TexHosoruu U WT-o6pasoBanme. 2022. T. 18, Ne 1. C. 134-143. doi: https://doi.org/10.25559/SITI-
T0.18.202201.134-143

Modern

- Information
Vol. 18, No. 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru Technologies

e — and IT-Education

136 NCCNEAOBAHUA 1 PASPABOTKMN BpBl’IACTVI HOBbIX . oK
NHDOPMALIMOHHbIX TEXHOMOT N 1 UX NPUNOXEHWIA S Teranos
Introduction may be organized using B+-trees or so-called sorted string tables

Nowadays both science and industry are affected by explosive
growth of data. For a significant amount of time, astrophysics and
high-energy physics were famous for their behemoth amounts of
data being generated in experiments at daily basis [1], [3], and
now biology, especially genomics, uses terabyte-sized datasets and
petabyte-sized data repositories, which volume doubles every year,
too [4]. The amount of data used and generated in business appli-
cations, such as financial and social media analytics, is an another
example of exponential growth [5]. In such a circumstances, a fea-
sible data management solution is determined by having abilities
to capture and save data into external memory at sustainable rate.
For hard disk drives, the sequential write speed is about 1000 times
higher than the random access speed [6]. For solid-state disks, writ-
ing in random access mode leads to performance degradation by
about an order of magnitude [7, 8], and even despite the fact that
the controllers of most modern Flash-media carry out data group-
ing before writing, sequential write may be about 3 times faster
than writing in random access mode [9]. This means that the algo-
rithm must support batching of writes and perform writes to exter-
nal memory in append-only mode.

Log-structured merge tree (LSM-tree) [10] is a complex multi-level
index that solves the problem of performance of writing to exter-
nal memory by batching changes and writing in sequential manner.
An LSM-based index is used by many modern commercial database
systems, such as BigTable [11], [12], HBase [13], Cassandra [14],
LevelDB [15], RocksDB [16], and AsterixDB [17].

The LSM-tree consists of multiple sorted runs, the size of which grows
exponentially, as suggested by the original work [10], or according to
another, possibly complex, rules [15, 18]. Updates always go to the
input component (usually referred as), which takes residence in
the main memory, and, when a sufficient number of them is accumu-
lated, they are sequentially transferred to external memory during
so-called merge, or compaction, procedure, that may involve merging
of the sorted runs together, including those already written to exter-
nal memory storage. All sorted runs of an LSM-tree, that are exter-
nal memory resident, are immutable since they are created during
merge procedure. That makes the difference between a LSM-tree
and traditional indexes, such as B-tree, that allow in-place updates.
Out-of-place update strategy of the LSM-tree eliminates random 1/0
problem, because all I /Os are sequential. it should be noted that LSM-
tree architecture allows concurrent reading while the merge proce-
dure is running, that significantly simplifies concurrency control.
Different components can contain elements with the same keys; in
this case, the value in the tree with less number (often called level)
is taken. Deletion of elements is performed by inserting a special
element (deletion marker, or tombstone) with the required key; the
physical removal of an item from the index occurs during the merge
procedure that forms the last-level component.

The structure of the components can be varied. Original paper [10]
proposes a red-black or AVLtree for the memory component C,
while most modern implementations adopt some concurrent data
structures such as a skip-list or a B+-tree [15]. On-disk components

(SSTables).

Although LSM-like index is a way to achieve sufficient write perfor-
mance, it is not clear how to perform complex Boolean queries on
such an index®. In order to do so, one need to maintain a number
of sets such as union, intersections and difference operations can
be performed efficiently [2]. Integer indexes are split into blocks
of 2'¢elements in each block in order to make a container for one.
Roaring bitmap format allows fast random access, rank and select
operations on a container, as well as fast union, intersect and dif-
ference operations between containers, even if the containers are
of different types [19, 20, 21]. Those operations can be performed
on a compressed container without decompression, so if N denotes
the length of the block and S the number if significant bits, the oper-
ations mentioned above will have O(S) complexity, not O(N), as for
uncompressed bitmap.

If the data being indexed is read-only and index is never changed
(as in [22], it is obvious to make an index with bitmaps as values
corresponding to object features as keys. In order to execute a Bool-
ean query, one should take bitmaps corresponding to the selected
features and perform bitwise operations on them. The problem
with straightforward approach is following: if the features are the
keys of a container, and the bitmaps are its values, then adding a
new document to such an index leads to updating a large number of
bitmaps, possibly all. therefore a large index in secondary memory
on a mutable or expandable data would not be functional. In this
paper, we study how to overcome this difficulty and make an LSM-
based index with bitmaps that allows to add, update and remove
data efficiently. Then, we discuss how to scale our solution up.

The paper is organized as follows. In the next section, we present an
overview of our architecture. Next, in Section 4 we discuss dictio-
nary design in the view of overall scalability. Then, the experimental
results are shown in Section 5. Finally, we conclude with Section 6.

Design and Implementation

1.1 Search Tree

We assume that the objects (documents) to be indexed are stored
in some key-value storage and each object can be retrieved by a
unique key. Hence the bitmap index being described is a secondary
index that allows to obtain an object’s key by its features?

From the logical point of view, we assign a bitmap for each feature,
so we can execute Boolean queries in a straightforward way. In ex-
ample, in order to obtain a set of objects that have both feature X
and feature Y, we can perform bitmap intersection for correspond-
ing features, that can be done efficiently, as stated before [20]. How-
ever, we do not store a huge bitset as is. Following the approach
suggested in [19], we split a logical bitmap into blocks of a certain
size, less than or equal to 2%¢. Apart from better compression ratio,
it is used to return paged query output (with page start token and
size) efficiently, so the result page of given size starting from the
given offset can be computed using a limited amount of blocks, not
all logical bitset. In order to do so, bitmap blocks are stored as indi-
vidual entities and can be retrieved and processed independently.

1 Manning C.D., Raghavan P, Schiitze H. Introduction to Information Retrieval. USA: Cambridge University Press; 2008. 506 p. (In Eng.)
% Pilosa: A Technical Overview. Tech. rep. Dec. 2017. 7 p. [Electronic resource]. URL: https://www.pilosa.com/pdf/PILOSA%?20-%20Technical%20White%20Paper.pdf

(accessed 13.01.2022). (In Eng.)

CoBpemeHHble
MH(OPMaLMOHHbIe
TeXHONnornun

n UT-o6pa3oBaHue

Tom 18, N2 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru

RESEARCH AND DEVELOPMENT IN THE FIELD OF NEW

IT AND THEIR APPLICATIONS 137

A. M. Neganov
block 1 block 2
doc 1 doc 2 doc 3 doc 4 doc 5
feature 1 0 0 1 0 1
feature 2 1 1 0 0 1

Fig. 1. An overview of bitmap index with blocks

For each object feature (i. e. word / label / date) an ID is assigned;
on the matter of feature to feature ID mapping, see Section 4. For
each document, a number document ID is assigned to it, that de-
termines the document unambiguously. That document ID is to be
translated into index in a bitmap with formula

document ID = block ID x block size + integer in a block bitmap
(3.1)

A document ID is to be assigned as a per-index incremental counter.
The advantage of this approach is that newer documents (objects)
will have greater document IDs, so we can perform paginated que-
ries in the order of the document’s index time.

The bitmap blocks are to be stored in the LSM-tree (referred as
search tree hereinafter), where keys corresponds to (block ID, fea-
ture ID) pair, and values are compressed bitmap blocks.

Since the document ID to assign always increments, the current
block ID always increments too. Therefore insertions of the nodes
with the keys of the form (block ID, feature ID) are partially ordered
in key order. It implies that the merging of the LSM sorted runs may
be trivial since the key ranges of the runs likely do not intersect,
and merging can even be omitted since the insertions in the block
order results in the sorted runs that can be viewed as partitions in
a partitioned LSM [15], that means much lesser write amplification.
Moreover, if the older documents is considered historical and are
to be accessed infrequently, the sorted runs / partitions might be
stored on a cheaper cold storage [23-25] or on the write-once-read-
many (WORM) devices.

In order to obtain a complete logical bitmap for a feature with the
ID equal to X, one should get the blocks (b,,X),(b,X),...(b,,X), where
b,b,..b ,0<b <b,<--<b isthesequence of the block IDs such
that for each j, 0 <i < n,a document with the number within a block
with the feature X exists (the blocks of zeroes should not be stored)
and for each i such that i > n, there is no blocks with the ID equal to
i for the feature X. Hence in order to get IDs of the documents that
have feature X, one shoud perform n, +1 “greater or equal” lookups
in a tree, from the key (0,X) to the (b, + 1,X), and enumerate the
significant bits in the blocks. The complexity of the operation is O(n,
logF), where F is the total number of features.

In order to get ID of the documents that have both feature X and
feature Y, one should perform an intersection operation on the cor-
responding bitmap blocks. In general, in order to obtain documents
that are characterized by some Boolean function on features f, one
should perform queries for corresponding features and execute fon
the blocks. It is always possible, as any Boolean function f may be
converted to disjunctive normal form or conjunctive normal form,
so it can be calculated using union, intersection and difference op-
erations on bitmaps.

Vol. 18, No. 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru

The compound key defined would allow to paginate search results,
since on the first request only N blocks may be processed, the ID of
N-th block and an index within that block may be encoded as a page
token, on second request blocks from N to N + M may be processed,
and so on.

The insertion into index is a bit tricky. As was mentioned above,
we do not want to update a lot of bitmaps / bitmap blocks when on
a new document indexing procedure. Instead, we want to update
only bitmaps in the memory component C; even lookup in on-disk
components of the LSM-tree should not be performed.

The document ingestion algorithm is following.

Algorithm 3.1 Insert a new document into a search tree

lastDocld < a value from global head docld < lastDocld + 1
global head counter «< docld

blockld < docld/blockSize

idx < docld mod blockSize

for all feature € document features do

insert a bitmap of a single significant bit idx to an LSM

end for

Unlike usual LSM-tree implementations, an older value is not to be
replaced by a newer one during LSM merge procedure. Instead, a
union of bitmap values (bitwise OR) should be performed. Lookup
procedure in the search tree does not stop on the first match, as in
regular LSM-tree. Instead, it finds results from all components and
performs union operation on them. Therefore Bloom filtering is im-
portant to skip some components from the search.

logical zeroed block is never stored

Co bitmaps to be unioned on search/merge

G

Fig. 2. A search tree with feature F

1.2 Overall Architecture

In order to translate document ID, that is calculated by formula 3.1,
to a primary key-value storage key, a special tree is needed, referred
as mapping hereinafter. Mapping is a regular LSM-tree where docu-
ment IDs serves as keys and primary index keys as values.

In order to convert text words, physical quantity value, etc. to fea-
ture ID, a special dictionary tree may be needed. The matter is dis-
cussed in Section 4 below.

In a regular mode of operation, documents are never removed from
search tree, and last document ID counter never decrements. In or-
der to filter deleted documents out, a special deleted documents fil-
ter is needed. That is a LSM-tree with block IDs as keys and bitmaps
of deleted documents as values. To filter deleted documents out,
one need to calculate the difference between bitmap calculating us-
ing search tree (see 3.3 below) and the bitmap of the corresponding
block retrieved from deleted documents filter. If there’s B blocks in

Modern
Information
Technologies
and IT-Education

138 NCCNEAOBAHUA N PASPABOTKW B OBMTACT HOBbIX

NHOOPMALIMOHHBIX TEXHOMTOTWN 1 X MPUNOXEHWI

A. M. HeraHoB

the index and F features, the size of the search tree is proportional
to B - F in the worst case, while the size of the deleted documents
tree is proportional to just B. The problem of garbage collection is

discussed in Section 3.4.

Words / dates / etc. , Features
Dictionary
Primary index keys

Document IDs
Mapping

Deleted documents | Document IDs
filter

Fig. 3. Search request flow

Primary

key-value index

1.3 Nested Iterators

In a practical application, per-feature bitmaps may be very sparse,
so many logical blocks may contain no significant bits and therefore
be not present in a search tree at all. In such conditions, it would
be very impractical to traverse LSM block-by-block and compute
unions or intersections of blocks with empty ones. Instead, com-

Algorithm 3.2 Pseudo-code implementation of AND iterator

interface BlockIterator {
NextAfter () (blockID BlockID,
}i

struct andIter { iters

result *Bitmap,

putations should be performed only when non-empty result is pos-
sible. For example, the logical OR (union) of bitmap blocks may be
not empty only if there’s at least some non-empty block with that
block ID, in other words, a block stored in the tree. Then, to the log-
ical AND (intersection) of bitmap blocks may be not empty only if
all blocks with the block ID are stored. That means that if there is a
feature F, that a lot of documents have, and a feature F, that a few
documents have, a lot of bitmap blocks that are stored for feature F,
may be skipped from computation.

In order to achieve this an iterator can be implemented, that takes
some block ID as start, finds out first block ID with non-empty
blocks and computes the result for them, returning this block ID
along with the computed bitmap. Furthermore, an iterator can be
built on top of another iterators. A Boolean query can be represent-
ed as a tree with features as leaf nodes and logical operators in di-
rectory nodes, for example, AND, OR, NOR, NOT. A skipping iterator
can be built for each node, with the topmost iterator returning re-
sults of the whole query. This approach allows executing even com-
plex queries efficiently.

empty Boolean, err Error)

[IBlockIterator
}i
func (ai *andIter) NextAfter (start BlockID) (BlockID, *Bitmap, Boolean, Error) {
var results = new([ai.iters.length]*Bitmap);
BEGIN:
for it in ai.iters {
position, bmap, empty, err := it.NextAfter (start);
if err != NULL or empty ({
// x AND 0 = 0, no results at all
return 0, NULL, true, err;
}
if position > start {
start =
position; goto
BEGIN;
}
results.append (bmap) ;
}
return nextBlock, results.And(), false, NULL;
}
1.4 Document deletion frequently changing data may increase quickly.

In order to support deletion of the documents, the special tree that
maps the block ID to the bitmap of the removed documents is add-
ed. Itallows to mark the document as deleted quickly and then filter
deleted documents out calculating the difference between resulting
bitmap from the search tree and the deleted documents bitmap.

As the number of deleted documents grows, it slows down index
lookups due to processing of garbage to be filtered. Moreover, if the
objects being indexed are mutable, each new object version will
correspond to a new “document”, so the amount of garbage for a

CoBpemeHHble
MH(OPMaLMOHHbIe
TeXHONnornun

n UT-o6pa3oBaHue

The idea of garbage collection procedure follows. Let a threshold
be the percent of removed documents per block, for example, 1/2
or 2/3. A block is subject to garbage collection if the number of re-
moved documents within a block exceeds the threshold. A bitmap
of the blocks that need garbage collection should be maintained, i.
e. it is possible to update that bitmap when a document is deleted
(with obvious optimizations). The procedure itself starts if the bit-
map of block that need garbage collection is not empty. It traverses
all keys of the search tree then, i. e. all (feature ID, block ID) pairs.

Tom 18, N2 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru

A. M. Neganov

RESEARCH AND DEVELOPMENT IN THE FIELD OF NEW

IT AND THEIR APPLICATIONS 139

For each pair, if the difference between bitmap for this feature and
block and deleted documents bitmap for the block is empty, the
(feature ID, block ID) key can be removed from the search tree (by
deleted marker insertion). If it is done for all features of the block,
deleted documents filter can be cleared too. Otherwise, deleted doc-
uments bitmaps remain, but “needs GC” bit is cleared until a new
document from this block is removed.

The advantage of the algorithm above is that it does not require sig-
nificant memory for execution and does not break “greater docu-
ment IDs for newer documents” rule.

Dictionary and consolidated index

1.1 Word Features

The most important document feature kind for a full-text search
engine is features of having a specific word in a document, called
word features hereinafter. In order to support such features, each
word should be mapped to a feature ID, that is to be used in a search
index key. There is a number of choices on how to do it. First of all,
the word token can be used directly (after the usual analysis and
tokenization), the second option is hashing and the final one is to
add an another tree.

The primary disadvantage of the word tokens as the feature IDs
is their arbitrary length, so they would take a lot of space in the
search index. Hashing can partially resolve this problem, however,
hash values should be large enough to avoid collisions, they are ran-
dom and hard to compress. Moreover, it is impossible to find minor
variants of the term in the index, because it can be hashed to a very
different hash value, or to enumerate all words in an index, which
may be useful for analytical purposes.

A special search tree for a dictionary overcome those issues. It maps
a word token into an integer, that is used as an ID in the search in-
dex. These IDs are relatively small and easy to compress due to their
incremental nature. In order to achieve high write throughput, a
LSM-tree should be used.

In order to search by prefix, one can make a range query in a dic-
tionary tree, get a list of features in a range, and then make an OR
query on those features in a search tree with document bitmaps.

If the set of words is more or less stable, for example, if the words
are from some natural language, keys may be never deleted from
the dictionary tree, like in Postgres GIN indexes. Otherwise, in or-
der to perform a garbage collection procedure, one should traverse
through the whole dictionary tree and for each feature lookup for a
corresponding element in a main search tree; the elements with no
corresponding bitmap blocks found are to be removed.

1.2 Datetime Features

It is suggested to adopt Pilosa’s bit-sliced indexing (BSI) technique
[1], with respect to Gregorian calendar (as it is likely that the user
will choose desired time range in a calendar form). For example, a
year between 1900 and 2155 can be represented as collection of 8
Boolean features: 1st would be 0 if the year is between 1900 and
2027 and 1 if it is between 2028 and 2155, 2nd is 0 for 1900-1963
/ 2028-2092 and 1 for 1964-2027 / 2092-2155 and so on. There-
fore time range 2020-2025 can be encoded as “NOT 1st 1900-2027
AND 2nd 1964-2027 AND 3rd 1996-2027 AND 4th 2012-2027
AND 5th 2020-2027 AND (NOT 6th 2020-2023 OR (6th 2024-
2027 AND NOT 7th 2024-2025)). Then, we can use 4 features/bit-

Vol. 18, No. 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru

maps for a month, 5 for a day and so on.

In order to reduce the number of bitmaps involved, a special feature
can be used for each calendar year, and bit-sliced indexing can be
used for a date-time within a year. For example, we can make a fea-
ture ID in a following way: feature type magic + year code for year
features or the order of the binary division for in-year features. For
each actual datetime “feature” of a document (for example, docu-
ment creation timestamp) there would be a number of the search
index features: first, a year feature; second, the “first division” fea-
ture, if the date is in the second half of the year; third, the “second
division” feature, if the date is in the second or fourth quarter of the
year, and so forth, and so on.

It is worthy of note that a dictionary index is not needed to work
with datetime features, their IDs is to be constructed on the fly.

1.3 Consolidated Index

While each database can benefit from more powerful hardware,
true scalability comes from the ability to add more nodes to the
cluster and to spread load between them. Read scalability can be
achieved through replicas that receive copied data from the prima-
ry node. It is less straightforward how to make a horizontally scal-
able system in terms of write operations.

The possible solution is to have a number of independent primary
nodes with a search index, that is the search tree, dictionary tree
and mapping tree as described above, and a special common dictio-
nary, that allows to omit searching in all nodes. That common dic-
tionary should comprise a mapping from the word token to the list
of nodes that have a document with this word. Said list is supposed
to be stored as a compressed bitmap.

The single word query execution is simple, one just need to select
relevant nodes from the corresponding list and make search que-
ries on this nodes. In order to execute more complicated queries,
one may need to calculate unions, intersections and differences of
such lists. Of course if a node has a document with the word 4 and
it has a document with the word B, it is not necessary that it has a
document with both A and B. However, the common dictionary still
significantly restricts the set of the nodes to be checked. Datetime
queries can be executed either purely on the second stage, when a
search on the node index is performed, or can be accelerated with
the common dictionary too. In order to do this, one need to choose
a “primary” date field of the documents (for example, creation or
modification date) and construct a common dictionary key as a
word + year number (or as a word + year + month, or even more
granular, dependent on the application). It may significantly im-
prove performance of “documents with words and within a time
range” queries in a distributed inde, if they are important.

In order to maintain such a common dictionary, each node can
maintain a log of the new words or word - year pairs that are in-
dexed since the first synchronization. The common dictionary then
can be updated with a background procedure that polls the nodes
and updates the dictionary with changes it got. If the vocabulary
size is within reasonable limits, the common dictionary updates are
not a bottleneck, especially considering that the new elements can
be inserted into nodes indexes concurrently not waiting for a com-
mon dictionary update.

Modern
Information
Technologies
and IT-Education

140 NCCNEAOBAHUA N PASPABOTKW B OBMTACT HOBbIX

NHOOPMALIMOHHBIX TEXHOMTOTWN 1 X MPUNOXEHWI

A. M. HeraHoB

Evaluation

1.4 Experimental Setup

Implementaion

LSM tree is written in Go code and consists of approximately 5,500
lines of code. It relies on an abstract I/0 layer that encapsulates ac-
tual storage device and reports various metrics with approximately
1,000 lines of code. Search index is implented with approximately
5,000 lines of code.

The LSM implementation uses simple levelled compaction policy
[15]. It is generally suboptimal in terms of write amplification and
insert performance; however, there is a known optimization for a
key-order insert workload that reduces write amplification a lot.
The major advantages of the levelled policy is that it implies rela-
tively low space amplification and fewer number of components,
therefore it is characterized by better read performance than other
policies.

LSM data is compressed with Zstandard algorithm
prior to be written to external memory device. Point lookup que-
ries are optimized with Bloom filters.

For a mapping tree, the primary storage keys are 16 bytes long.

Experiment machine

The experiment machine is an Intel Core i5 (4 cores at 2.9 GHz) with
8 GB of RAM and a 1 TB SSD drive.

Dataset. The experiments in this section are performed with a Com-
monCrawl data. The CommonCrawl is an open repository of web
crawl data. Said data is an enormous collection of text written pri-
marily by humans in natural languages, therefore the distribution
of the word features may be close to one of the real documents in
information retrieval system. The vocabulary of the CommonCrawl
text is plenty rich due to nearly all human languages present in
the global web crawl data, and the documents may contain a vast
amount of some identifiers and other random byte sequences, so
the dictionary size is not limited in any way. Text data in WET for-
mat are split into documents to be indexed of 50 KiB each. For each
document, a date between 1 January 1980 and 1 January 2050 is
assigned using an uniform random distribution.

Defaults

The threshold for the C,tree was set to 8 MiB, so for each of the
three LSM trees involved (search tree, dictionary tree, mapping
tree) the maximum size for in-memory component is 8 MiB. The
block size of 2048 bits was chosen for the search tree.

1.5 Evaluation Results

In Figure 4, we study the impact of the actual amount of bytes writ-
ten to external memory device

S on the total size of documents inserted S, . The results show

written docs’

that the write amplification ratio has no trend to increase.

In Figure 5, the dependency of the average insertion time t,0n the
index size (in the number of documents of 50 KiB each N,) is il-
lustrated. In this experiment, the time to insert each 10,000 doc-
uments is measured and the average is calculated by deletion by
10,000. The results are coherent with the results shown on Figure 4
and show that the insertion time has no trend to increase with the

growth of the index.

CoBpemeHHble
MH(OPMaLMOHHbIe
TeXHONnornun

n UT-o6pa3oBaHue

SleLLen

docs

15 {°, .
BRALPEC PSR TRR ang T DN S

0.5 1

: : : ; f f ‘Sdocm GiB
2 4 6 8 10 12 14

Fig. 4. Impact of index size on write amplification

T;, IMS
4 5
® o
3+ °
o o
° o ® ° o L0
[e e
2+ e
(X L . N ° ... °
° °
14

Ndocs> 103

50 100 150 200 250

Fig. 5. Impact of index size on insert time

In the next several sets of experiments, the impact of the index
size on the search time is studied. The workload issues insert and
read operations. After each 10,000 documents inserted, the aver-
age search time is measured for the “simple” and “complex” query.
The “simple” one is for the documents containing the English word
is; since the vast majority of the documents contains it, the query
should be answered relatively quickly. The “complex” one can be
expressed as follows: “document, containing search and success
and either accomplished or achieved, and neither problem, nor bug
in date range from 5th March 1990 to 16th November 2016”. The
results illustrated in Figure 6 and Figure 7 show that the time to
answer the “simple” query T, is significantly inferior to the time to
answer the “complex” query t_, while both show no trend to in-
crease with the index size.

52!

Tom 18, N2 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru

RESEARCH AND DEVELOPMENT IN THE FIELD OF NEW

A M. Neganov IT AND THEIR APPLICATIONS | 141
Ts1, US In Figure 9 we compare the sizes of the main search tree with the
15 | . bitmaps and the dictionary tree. The results show that although the
000000 0000000000000 00000%00 dictionary size grows linearly (because of the vocabulary-rich data-
set), the search tree size grows much quicker. It should be noted
that the mapping tree size is limited to hundreds of kilobytes.
10 |
on-disk size, GiB
e Search tree size
15
5 1
10
} } } } } Nd0057 10° 5
50 100 150 200 250
Fig. 6. Impact of index size on “simple” search time total written amount, GiB
Fig.9. Sizes of the search tree and the dictionary
Tsy, IS
4%
. The impact of the suggested garbage collection procedure for the
31 ° ® search time is analyzed in the following experiments. In Figure 10
° o we study the impact of garbage collection on the search time, where
° e ® o o Lo the index comprises 8,000 documents, 2/3 of which were deleted,
9| /."—'/—f and the deleted and remaining documents are mixed uniformly, so
o ° e © M o ® for all block number there may be ones that need garbage collec-
° i tion. Two search queries were evaluated. The “simple” one is for
1! the documents included a word search, and the “complex” one is for
the documents with creation date between 5 March 2005 and 16
November 2006, so that many features are involved, according to
; ; ; ; — Nypes, 10° the date encoding.
50 100 150 200 250

Fig. 7. Impact of index size on “complex” search time

In Figure 8 we study the amount of LSM merge operations required
to insert 10,000 documents
Nmerges on the index size before the insertion S, . The results show

that the number of merges is stable, with a initial peak.

Nmerges

300 |

200 1

100 +

} } } } } }) Sdoc37 GiB
2 4 6 & 10 12 14
Fig. 8. Impact of index size on total number of LSM merges to insert 104

documents

Vol. 18, No. 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru

I Before GC
After GC

Search time, ms
= N
ot (%) t

—_

=
ot

0 -
Word search

Date search

Fig. 10. Impact of the garbage collection on the search time in case of uniformly
distributed deletions

The results show that the suggested garbage collection procedure
decreases the search time a lot for the complex queries, for exam-
ple, for a date query, that involves querying for a lot of features. The
“simple” query, however, seems to execute fast enough with deleted
documents filter.

In Figure 11 we study the garbage collection on the index where
8,000 documents were inserted and then the oldest 2/3 were de-
leted, so the blocks subject to the garbage are consequent, and the
search is performed in “from the newest to the oldest” order.

Modern
Information
Technologies
and IT-Education

142 NCCNEAOBAHNA U PASPABOTKI BpBl’I/—\CTVI HOBbIX . oK
VHOOPMALVOHHbIX TEXHOMOT U 1 UX NMPUMOXEHNI L reranos
gt The results unsurprisingly show that the garbage collection does
not improve the search time in the case, because there were no doc-
L - uments to filter out. However, it may be still needed to decrease the
' stored index size.
1
5 0e Conclusions and future work
E 0.6 A horizontally scalable bitmap search index with out-of-place
é 04 writes and ability to execute arbitrary complex Boolean queries
@ have been designed and implemented. The possible applications of
0.2 the method include, but not limited to a full-text search engine that
0 — implements searching for the text documents by words contained
Word search Date search and timestamps. However, the method being described can utilise

a completely different kind of a document features, with possible
Fig. 11. Impact of the garbage collection on the search time in case of the oldest ~ changes in dictionary design.

documents deleted The index implementation achieves high performance, both in
terms of write throughput and search time, that proves the design
choices. However, the implementation evaluated can be viewed as
a first version of the product and there are ways to further enhance
its performance. In particular, the compaction policy may be tuned
to decrease write amplification.

References

[1] Foster I., Kesselman C., Tuecke S. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. The International Journal of
High Performance Computing Applications. 2001; 15(3):200-222. (In Eng.) doi: https://doi.org/10.1177/109434200101500302

2] Ponte].M., Croft W.B. A language modeling approach to information retrieval. Proceedings of the 21st annual international ACM
SIGIR conference on Research and development in information retrieval (SIGIR’98). Association for Computing Machinery, New York,
NY, USA; 1998. p. 275-281. (In Eng.) doi: https://doi.org/10.1145/290941.291008

[3] Mattmann C.A. A vision for data science. Nature. 2013; 493(7433):473-475. (In Eng.) doi: https://doi.org/10.1038/493473a

[4] Marx V. The big challenges of big data. Nature. 2013; 498(7453):255-260. (In Eng.) doi: https://doi.org/10.1038/498255a

[5] Chen C.L.P, Zhang C.-Y. Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information
Sciences. 2014; 275:314-347. (In Eng.) doi: https://doi.org/10.1016/j.ins.2014.01.015

[6] Anderson D., Dykes |, Riedel E. More Than an Interface — SCSI vs. ATA. Proceedings of the 2nd USENIX Conference on File and Storage
Technologies (FAST'03). San Francisco, CA: USENIX Association; 2003. p. 245-257. Available at: https://www.usenix.org/confer-
ence/fast-03 /more-interface%E2%80%94scsi-vs-ata (accessed 13.01.2022). (In Eng.)

[7] Chen F, Koufaty D.A., Zhang X. Understanding Intrinsic Characteristics and System Implications of Flash Memory Based
Solid State Drives. ACM SIGMETRICS Performance Evaluation Review. 2009; 37(1):181-192. (In Eng.) doi: https://doi.
org/10.1145/2492101.1555371

[8] Picoli L.L., et al. UFLIP-OC: Understanding Flash I/0 Patterns on Open-Channel Solid-State Drives. Proceedings of the 8th Asia-Pacific
Workshop on Systems (APSys’17). Association for Computing Machinery, New York, NY, USA; 2017. Article number: 20. p. 1-7. (In
Eng.) doi: https://doi.org/10.1145/3124680.3124741

[9] Hu X.-Y,, et al. Write Amplification Analysis in Flash-based Solid State Drives. Proceedings of SYSTOR 2009: The Israeli Experimental
Systems Conference (SYSTOR'09). Association for Computing Machinery, New York, NY, USA; 2009. Article number: 10. p. 1-9. (In
Eng.) doi: https://doi.org/10.1145/1534530.1534544

[10] O’Neil P, et al. The Log-structured Merge-tree (LSM-tree). Acta Informatica. 1996; 33(4):351-385. (In Eng.) doi: https://doi.
org/10.1007 /5002360050048

[11] Chang F, et al. Bigtable: A Distributed Storage System for Structured Data. ACM Transactions on Computer Systems. 2008; 26(2):4.
(In Eng.) doi: https://doi.org/10.1145/1365815.1365816

[12] DeCandia G., et al. Dynamo: amazon’s highly available key-value store. ACM SIGOPS Operating Systems Review.2007; 41(6):205-220.
(In Eng.) doi: https://doi.org/10.1145/1323293.1294281

[13] Hassan M.U, et al. A Comprehensive Study of HBase Storage Architecture — A Systematic Literature Review. Symmetry. 2021;
13(1):109. (In Eng.) doi: https://doi.org/10.3390/sym13010109

[14] Lakshman A, Malik P. Cassandra — A Decentralized Structured Storage System. ACM SIGOPS Operating Systems Review. 2010;
44(2):35-40. (In Eng.) doi: https://doi.org/10.1145/1773912.1773922

[15] Luo C., Carey M.J. LSM-based storage techniques: a survey. The VLDB Journal. 2020; 29(1):393-418. (In Eng.) doi: https://doi.
org/10.1007/s00778-019-00555-y

CoBpemeHHble

MH(OPMaLMOHHbIe ..
TexHonornuu Tom 18, N2 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru

u UT-o6pasosanve

RESEARCH AND DEVELOPMENT IN THE FIELD OF NEW | o
A-M. Neganov IT AND THEIR APPLICATIONS

[16] Dong S, et al. RocksDB: Evolution of Development Priorities in a Key-Value Store Serving Large-Scale Applications. ACM Transac-
tions on Storage. 2021; 17(4):26. (In Eng.) doi: https://doi.org/10.1145/3483840

[17] Alsubaiee S., et al. AsterixDB: A Scalable, Open Source BDMS. Proceedings of the VLDB Endowment. 2014; 7(14):1905-1916. Avail-
able at: https://www.vldb.org/pvldb/vol7 /p1905-alsubaiee.pdf (accessed 13.01.2022). (In Eng.)

[18] Lim H., Andersen D.G., Kaminsky M. Towards Accurate and Fast Evaluation of Multi-stage Log-structured Designs. Proceedings of
the 14th Usenix Conference on File and Storage Technologies (FAST’16). Santa Clara, CA: USENIX Association; 2016. p. 149-166. Avail-
able at: https://www.usenix.org/system/files/conference/fast16/fast16-papers-lim.pdf (accessed 13.01.2022). (In Eng.)

[19] Chambi S, et al. Better Bitmap Performance with Roaring Bitmaps. Software: Practice and Experience. 2016; 46(5):709-719. (In
Eng.) doi: https://doi.org/10.1002/spe.2325

[20] Lemire D., Ssi-Yan-Kai G., Kaser O. Consistently faster and smaller compressed bitmaps with Roaring”. Software: Practice and Expe-
rience. 2016; 46(11):1547-1569. (In Eng.) doi: https://doi.org/10.1002/spe.2402

[21] Wang]., et al. An Experimental Study of Bitmap Compression vs. Inverted List Compression. Proceedings of the 2017 ACM Interna-
tional Conference on Management of Data (SIGMOD’17). Association for Computing Machinery, Chicago, Illinois, USA; 2017. p. 993-
1008. (In Eng.) doi: https://doi.org/10.1145/3035918.3064007

[22] Pinar A, Tao T, Ferhatosmanoglu H. Compressing Bitmap Indices by Data Reorganization. Proceedings of the 21st International
Conference on Data Engineering (ICDE’05). USA: IEEE Computer Society; 2005. p. 310-321. (In Eng.) doi: https://doi.org/10.1109/
ICDE.2005.35

[23] Hsu Y.-F, et al. A Novel Automated Cloud Storage Tiering System through Hot-Cold Data Classification. 2018 IEEE 11th Interna-
tional Conference on Cloud Computing (CLOUD). IEEE Press, San Francisco, CA, USA; 2018. p. 492-499. (In Eng.) doi: https://doi.
org/10.1109/CLOUD.2018.00069

[24] Dayarathna M., Wen Y., Fan R. Data Center Energy Consumption Modeling: A Survey. [EEE Communications Surveys & Tutorials.
2016; 18(1):732-794. (In Eng.) doi: https://doi.org/10.1109/COMST.2015.2481183

[25] LiuS., HuangX., Fu H., Yang G. Understanding Data Characteristics and Access Patterns in a Cloud Storage System. 2013 13th IEEE/
ACM International Symposium on Cluster, Cloud, and Grid Computing. Delft, Netherlands; 2013. p. 327-334. (In Eng.) doi: https://
doi.org/10.1109/CCGrid.2013.11

Submitted 13.01.2022; approved after reviewing 05.03.2022; accepted for publication 16.03.2022.
Ilocmynuaa 13.01.2022; odobpeHa nocae peyensuposanus 05.03.2022; npunsma k nybauxkayuu 16.03.2022.

About the author:

Aleksei M. Neganov, Postgraduate Student, Moscow Institute of Physics and Technology (National Research University) (9 Institutskiy
per, Dolgoprudny 141701, Moscow Region, Russian Federation), ORCID: https://orcid.org/0000-0003-4451-5332, neganovalexey@
gmail.com

The author has read and approved the final manuscript.

HeranoB Asekceii MuxainoBuy, acnupaHT, PLAOY BO «MocCKOBCKHH (QU3UKO-TEXHUYECKUH MHCTUTYT (HaLlMOHAJbHbIN
vccienoBaTenbCKuil yHUBepcuTeT)» (141701, Poccuiickas @epepanusi, MockoBckass o06sacTb, I. JoaronpygaHbsid, UHCTUTYTCKUI
nepeyJsok, 7. 9), ORCID: https://orcid.org/0000-0003-4451-5332, neganovalexey@gmail.com

Aemop npouumads u 0006pu/s1 OKOHYaMeAbHbLI 8aPUAHM PYKONUCU.

Modern

- Information
Vol. 18, No. 1. 2022 ISSN 2411-1473 sitito.cs.msu.ru Technologies

e — and IT-Education

