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Abstract

Quantum computing is still a developing, but an extremely promising area. The article lays out the main
ideas behind quantum computing in simple terms. The topic of quantum computers based on qudits
- multidimensional analogues of qubits, which have recently received much attention due to their effi-
ciency, is also covered. The fundamentals of quantum mechanics, which are necessary for understand-
ing the principles of operation of a quantum computer, such concepts as qubits and qudits, linear opera-
tors, the measurement process, etc are introduced. As an example of quantum computing, the principle
of operation of the Deutsch-]Jozsa algorithm, one of the first quantum algorithms to demonstrate their
advantages, and its generalization to qudits, are analyzed in detail. The process of writing the simplest
quantum computer emulator in the Python programming language is described step by step. The emu-
lator operates with an arbitrary number of qubits and allows you to apply arbitrary operators to them
and carry out multiple measurements of the final state of the qubit. A generalization of this emulator
for working with qudits is given after that. To demonstrate the emulator we have written, we present
programs that implement the Deutsch-Jozsa algorithm and its generalizations on it, and test them.
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AHHOTanUs

KBaHTOBBIE BbIYHUCJIEHUI — 3TO pasBuBarwoaacdad u ‘{peBBbI‘laﬁHO NepcCrieKTHuBHAaA 06J'IaCTb. B craTbe
IIPOCTBIMU CJIOBAMHU H3JIOKEHBI OCHOBHbIE HJEH, JieXKallhe B OCHOBE KBAHTOBBIX BbIYMCJIEHUH.
Takxe ocCBellaeTcd TeMa KBAHTOBbIX KOMIIBIOTEPOB Ha OCHOBeE Ky6I/ITOB — MHOTOMEpPHbIX
AdHaJIOTOB Ky6I/ITOB, KOTOpbIM B IocC/JieAHEe BpeMdA yAesdeTcda 60JIbIlIOE BHUMaHHe 6ﬂaroaapﬂ nux
3(1)(1)8KTI/IBHOCTH. BBOLLHTCH OCHOBbI KBAHTOBOM MEXaHHKH, KOTOpbIe HeOﬁXO,E[I/leI AJisd TIOHUMAaHUA
IIPUHIHUIIOB paGOTbI KBAaHTOBOI'O KOMIIbXOTEPA, TAKHWE IOHATHUA, KaK Ky6PITbl U KyAWUTHI, JIMHEWHbIE
onepaTopshl, npouecc uaMepeHusd U T.A. B kauecTBe npruMepa KBAaHTOBbBIX BbIYUCJIEHUH HOAp06HO
AHAJIM3UPYIOTCA NPUHLUII paGOTbI aJropuTMa Lloﬁqa-ﬂoxca, OJHOro M3 IEepBbIX KBAHTOBLIX
AJITOPUTMOB, NPOAEMOHCTPUPOBABLIEro CBOMU IIpeuMylieCcTBa, U €ro 0606LL[8HI/18 Ha KyAWTBI.
[lomaroBo omnucaH nponecc HallMCaHUudA HpOCTeﬁLLIeI‘O IMYJIATOPA KBAHTOBOI'O KOMIIBIOTEpa Ha
s13bIKe mporpaMMupoBaHus Python. Imynstop pa6oTaeT ¢ MpoU3BOJIBHBIM KOJHYECTBOM KyOHUTOB
U TI03BOJIAET INPUMEHATb K HHM IIPOHU3BOJIbHbIE OIllepaTOpbl W IPOBOAWUTbL MHOXKECTBEHHbIE
HU3MEpEeHHA KOHEYHOI'o COCTOAHUSA Ky6I/ITa. [Mocse aToro AaeTcda 0606H.IBHI/IB 3TOr'o 3MyJsiATOpa AJA
pa6oThl ¢ KyaguTaMu. YTO6BI TPOJEMOHCTPUPOBATh HAMMCAHHBIA HAMU 3MYJISITODP, Mbl IPEJCTABIsIEM
IPOrpaMMbl, peaiM3ylolue aaropuTm Joiua-Hoxa 1 ero 06061eHus Ha HEM, U TECTHPYEM HX.

KiiloueBbI€ CJ/IOBA: KBaHTOBBIA KOMIBIOTED, KYOHUT, KyAWUT, KBAHTOBBIA 3MYJIATOp, airOPUTM
Jloitya-Moxa
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Introduction

Quantum computing is still a developing, but an extremely prom-
ising area.

Computations on quantum computers are carried out by applying
operations to qubits, the quantum counterparts of classical bits.
The main feature of qubits is stated in the principle of superposi-
tion: a qubit can be in several states at the same time. This allows
using one operation to perform calculations for all states of the
system at once, in contrast to a classical computer, in which cal-
culations would have to be performed sequentially or in parallel.
However, after this operation is executed, the qubit will also be in
a state of superposition, and when we try to measure the results
of calculations, we will find out the result of only one calculation,
randomly selected from all possible ones. Fortunately, we can get a
well-defined result with the help of certain additional operations,
from which we can get general information about the calculations
performed.

Since quantum computers are currently quite complex in design
and not available for general use, one has to resort to emulating
quantum algorithms on a classical computer to study them. A large
number of quantum emulators have been created by now! [1]-[9],
including the developments of such companies as Microsoft? and
IBM?, which even allow you to run algorithms on real quantum com-
puters. However, it is useful to understand how an emulator works
at a basic level for better understanding of this area.

Recently, computers based on the so-called “qudits”, that is, multi-
dimensional qubits, have become quite promising [10]-[19]. These
are quantum systems that have not two, but three (qutrits) or more
states. Qudits allow much fewer quantum systems to encode the
same information, and therefore are a possible solution to the main
problem of modern quantum computers - their instability. In May
2022, a group of scientists from the Russian Quantum Center re-
ceived a patent for the physical implementation of a quantum com-
puter based on qudits*.

In this article, we will try to outline the main ideas of quantum
computing, demonstrate them on the example of one of the first
quantum algorithms, and then consolidate them using a simple em-
ulation of a quantum computer on qubits and qudits in the Python
language. The simplicity of the emulator will allow it to be used on
normal personal computers, regardless of any additional software,
and will make it available everywhere.

Qubits and operations on them

A qubitis a quantum system that has two possible measurable
statesS. These states are referred as |0) and |1). The superposition
principle® states that a qubit can also be in a linear combination of
states |¢) = a|0) + b|1), where a and b are complex numbers
[20]-[23]. Thus, the set of states of a qubit lies in a two-
dimensional complex linear space, and for their designation, we
can use the matrix notation

a

Then

0= ()= (9)

When measuring a qubit in this state, the result can still be
only |0) and |1), and it is impossible to predict in advance which
state will be measured. The only available information is the
probabilities of obtaining different results, equal to aa* = |a|?
and bb* = |b|? for |0) and |1) respectively (a* is a complex
conjugate of a). The state of the qubit changes to correspond to
the result of the measurement. Since nothing but |0) and |1) can
be measured, the condition |a|? + |b|? = 1 is imposed on a and b.

Any qubit state transformations are given by a linear
operator’.

A a1 Qg2
A= ( ).
Qaz1 Az

Let [¢) = a|0) + b|1) and |¢) = c|0) + d|1) be two states ofa
qubit. We define their scalar product in the following formula

W) = W)t1p) = (@ b () =a'c+ bd,

where 1)) is the operation of vector transposition and complex
conjugation of its components. For any state |¢) (Y|P) = 1.

Let us define [Ay) = A1), then |A1p)+ = (|At.
(Aplp) = WI4TIp) = (pIAT9).

The operator At is said to be conjugate to the operator A. After
any transformation 4, the following equality must hold:

1= (Ayldy) = (p|ATAlyp),
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which is obviously true if the operator is unitary, thatis At = A~
Therefore, all operators which we will deal with are unitary.

The simplest and at the same time quite common example of
such operator is

2= o

Since X|0) = |1)and X|1) = |0), X is called an analogue of the
classical negation operation (NOT gate).
The Hadamard gate is another important operator.

o1
H=ﬁ(i 1)

It converts “pure” states into a “superposition” states and vice
versa:

_ 1
HI0>=E(|0>+|1)),
_ 1
HI1>=ﬁ(|0>—I1>),
o Ll o1y 1y _ 12 0y -
HH_E(1 —1)(1 —1)_5(0 2)_1'
H'=H

Systems of several qubits

Let us have two qubits in the states [¢,) = (Z) and [y,) =

(2) The general state of the system can be specified using the
Kronecker product:

a(2)\ _ (aa
- o I
[11) @ [1h2) = ) (2) = Z; -

Shorthand notation [¢1) ® [Y2) = [P1)[,) = Y1, ¥,) s
also used. For example, the probability of finding a system in a
state |0) ® |0) = |00) is equal to |ac|?> = |a|? |c|? (probabilities
are multiplied). However, according to the principle of
superposition, any linear combination of initial states is
permissible, therefore, in the general case, the state vector cannot
be decomposed into the product of the states of individual qubits.
There is a correlation between measurements of individual
qubits.

What do operators acting on pairs of qubits look like? Let A be
the operator acting on the first qubit and B - the operator acting
on the second one. Then

Alpy) ® Blypo) = (A® B) (1) ® [v2)),
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bll blZ) (bll blZ)
a a
1 (b21 bZZ 12 bZl bZZ

Ao s (B B12) g, (B B
21 D22 21 D22

ay1byy aiiby;  aipbyy aggby,

— ay1bay  ai1by;  aizbay agzby;
Az1b11 Az1biz  Azabin Azabin
A1b31  G21by;  Agzbyn Azabas

An important example of an operator acting on two qubits is
CX, also called CNOT (Controlled NOT) gate. As the name suggests, '
it applies NOT gate depending on the state of the qubits. Namely, -
if the first qubit is in the state |0) CNOT does nothing, but if the
state of the first qubit is |1), the NOT operation is applied to the
second one. Let us write an expression for CX:

1

0 0 O
o= (3 Dore() Dox=(3h 90
0 0 1 0

A system of two qubits can be brought into the so-called
“entangled state” using the operators A and CX: ’

A N N
Teion o [0 1 0 1 \[o)_1(o)_
Hlo =211 0 -1 o J{o)=F\1]7
01 0 -1/\o 0
= ),
1000y 1
- (001 0 o) Lfo)_ Lfo)_
X =10 0 o 1)z(1)7 Flo)=
0010 "\ 1
= —(|00) + 11)).
\/§(|>|>)

In this state, the measurement of one qubit completely
determines the state of the other, which can lead to interesting
consequences.

The Deutsch-Jozsa algorithm

Now let us consider the simplest quantum algorithm, which is
also one of the first, the Deutsch-Jozsa algorithm [24]. The
Deutsch-Jozsa algorithm solves a rather artificial problem, but it
clearly demonstrates the advantages of quantum computers and
the basic principles of their operation.

Let a Boolean function of one variable f be given: f:{0;1} —
{0; 1}. The main idea of the problem is to determine whether the -
function is constant or not. A classical computer has to compute
both values of the function, therefore two computations are
needed, but a quantum computer needs to compute it only once.
It may seem that one saved computation is not much. This is true,
but there is a simple generalization of this problem to the case of
a function of many variables. As the number of variables increases,
the number of computations required for a classical computer
grows exponentially, while a quantum computer still requires
only one computation. ‘
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Now let us consider only the simple case with one variable.

It can be shown that for any function f there exists a unitary
operator Uf, that takes the system from a pure state |x)|y) to the
state |x)|y @ f(x)), which is comparable in complexity to one
computation of f(x) on a classical computer. Here the operation
@® denotes addition modulo 2.

Let us prepare our system in the state |0)|1), then apply the
Hadamard gate to each qubit.

A® A0)11) =500+ [1)(10) ~ 1)),

Now we apply the operator Uy

0, (300 + 1900~ 1) =

N =

0r(10)(10) = 1) + [1)(10) = [1))) =
= %(|0>(|0 @ f(0) — 1@ f(0N) +
510D F(1) ~ 1@ FL))

It can be noticed that

10 @ £(0)) — |16 £(0)) = (=D @(j0) — [1)).

If £(0) =0, the state does not change, otherwise it just
changes its sign. A similar transformation is also valid for f(1).
Thus, we get:

2(D/@10)10) ~ 110 + DDA - 1) =
= %((—1)“%0) +(=D/WD)(0) - 1) =

= Do)+ (~DIOTO))(0) ~ [1))

f(0) + f(1)isevenif f(0) = f(1), and is odd if £(0) # f(1). With
a constant function f the first qubit is in the state \/—17(|0) + (1))

and, when the Hadamard gate is applied, goes into the state |0).
For f(0) # f(1) the first qubit is in the state %(|0) — 1)) and

goes into the state |1). Thus, if we apply the # ® I operator to our
system, and then measure the state of the first qubit, we are
guaranteed to know whether the function is constant.

Emulation of a quantum computer

Of course, the point of creating a quantum computer is to
implement algorithms that a classical computer is not able to
efficiently perform. However, an emulator is still a useful tool in
the study of quantum algorithms. An emulator makes it possible
to test small algorithms using commonly available tools - ordinary
computers.

We use the Python programming language because of its
simplicity, clarity, as well as a large number of libraries that can
simplify our work. Python is one of the most widely used
languages at the moment, including the field of quantum
computing.
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Fig. 1. Computation scheme

First, let us import the required libraries.

import numpy as np
import matplotlib.pyplot as plt
import itertools as it

The numpy library allows us to effectively handle vectors and
matrices, itertools increases the efficiency of working with loops,
and with the help of matplotlib we can display the results of
measurements.

All information about our algorithm will be stored in the
object of QuantumCircuit class

class QuantumCircuit:

def _init_ (self, nq, nb):
selfnq =nq
self.nb = nb
zero = np.array([1, 0])
self.initial_state = np.tile(zero, (nq, 1))
self.qbits = np.array([])
self.final_state = np.array([])
self.bits =0
self.measurements =[]
self.results = np.zeros(2 ** self.nb)

Modern
Information
Technologies
and IT-Education




460

OBPA3OBATE/TbHbIE PECYPCbI 1 TYYLLAA MPAKTUKA NT-OBPA3OBAH WA

A. C. AHLpees,
1. B. Xpanos

The parameters ng and n, determine the number of qubits
and classical bits in which the results of measurements of qubits
are stored. The initial state of the system is stored in the variable
initial_state as separate qubits so that they can be easily changed
individually. By default, each qubit is in the state |0). The general
state of the system after applying operators is stored in the
final_state vector, a copy of the final state, over which
measurements are made, is stored in the qubits vector, and the
measurement results are stored in bits. The measuremets list
contains information about all the measurements that will be
taken after operators have been applied. Since, in general, the
result of a quantum algorithm is probabilistic, it is useful to
measure the final state of the qubits multiple times to find out the
distribution of possible outcomes. The frequency of occurrence of
each result is stored in a results vector.

Now let us describe the class methods required for
computations.

set_initial_state(qgbit, state) allows you to set an initial state for
each qubit, which is then applied using the reset_state() function.

def set_initial_state(self, qudit, state):
if (abs(state) ** 2).sum() == 1:
self.initial_state[qudit] = state
else:
print("Incorrect state")

def reset_state(self):
state=1
for s in self.initial_state:
state = np.kron(state, s)
self.final_state = state
self.bits = 0

set_initial_state also checks the entered vector, the sum of the
probabilities must always be equal to one. The function
np.kron(state, s) denotes the Kronecker product |state) ® |s).

The apply_operator method multiplies the matrix of operator
A and the state vector.

def apply_operator(self, A):
self.final_state = A @ self.final_state

An operator is often applied to one qubit, while the rest
remain unchanged. Let n be the number of the qubit we want to
change (numbering starts from zero). Then the complete operator
looks like this

(= IRIR.QIxixI®I®. QI L®ARI,

n ng—n-—1

where [, is identity matrix of size 2% x 2.

For this purpose, we create a method apply1(A, gbit). The
variable gbit here denotes the number of the qubit to which the
operator is applied.

def apply1(self, A, gbit):
[1 = np.identity(2**qbit)
12 = np.identity(2 ** (self.nq - gbit - 1))
B =np.kron(I1, A)

CoBpemeHHble
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B = np.kron(B, 12)
self.apply_operator(B)

Let's move on to the implementation of the measurement
operation. The measurement function makes the measurement,
and measure adds information about the desired measurement
(the number of the measured qubit and the bit in which the result
is written) to the list of measurements that will be carried out
after the algorithm is executed.

def measurement(self, gbit, bit):
all = np.arange(2 ** self.nq)
indices1 = np.array([i foriin all if i & (2**qbit)], dtype=int)
indices0 = np.delete(all, np.isin(all, indices1)) # indices0 = all \
indices1
probability1 = (abs(self.gbits[indices1]) ** 2).sum()

if np.random.rand() < probability1:
self.gbits[indices1] /= np.sqrt(probability1)
self.qbits[indices0] = np.zeros(2 ** (self.nq - 1))
self.bits = self.bits | 2**bit

else:
self.qbits[indices0] /= np.sqrt(1 - probability1)
self.gbits[indices1] = np.zeros(2 ** (self.nq - 1))

def measure(self, gbit, bit):
self. measurements.append([qbit, bit])

First, indices of coordinates of the state vector, in which the
desired qubit is in the state |1) (indices1) or |0) (indices0) are
selected, and the probability of finding the qubit in the state |1) is
calculated. For example, if the system is in the state |) = a|00) +
b|01) + c|10) + d|11) and we need to measure the second qubit,
then probabilityl = |b|? + |d|?. Next, the np.random.rand()
function generates a random number in the interval [0; 1], and
depending on its output, the system collapses into one of two
states, and the measurement result is written to the self.bits
variable.

The run() method performs all measurements once and
returns their results.

def run(self):
self.gbits = self.final_state
for m in self.measurements:
self.measurement(m[0], m[1])
return self.bits

The simulate(num_of_iterations) method runs the algorithm a
given number of times and returns the frequency of occurrence of
each possible outcome.

def simulate(self, num_of_iterations):
self.results = np.zeros(2 ** self.nb)
for _in range(num_of_iterations):
self.results[selfrun()] += 1
self.results /= num_of_iterations
return self.results

The barplot() method plots the distribution of results.
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def barplot(self): Implementation of the Deutsch-Jozsa

labels = [] # column names

for x in range(2 ** nb):
b = bin(x)[2:] # trims '0b' at the beginning
b="0"* (nb - len(b)) + b # length alignment
labels += [b]

plt.bar(labels, self.results)

plt.show()

Now let us create functions which apply the most common
operators. This is quite simple for operators acting on a single
qubit.

def h(self, gbit): # the Hadamard operator

H =np.array([[1, 1], [1,-1]]) / np.sqrt(2)
self.apply1(H, gbit)

def x(self, gbit): # the X operator
X =np.array([[0, 1], [1, 0]])
self.apply1(X, gbit)

The case with the operator CX is more interesting. Let the
number of the controlling qubit g; be less than the number g, of
the qubit we want to transform. Then

) ® hnggyraz-1 ® 1@ I, +
) ® hng-grear-1 ® X @ hnymgpa

. 1 0 .

=L® (0 0) ® Inq—ql—l +
. 00 . PR

+1,®(; 1) ® gt ® @ hnyg,or

In the case of g, < q4, the calculations are similar

def cx(self, q1, q2):
X =np.array([[0, 1], [1, 0]])
outer00 = np.diag([1, 0])
outer1l = np.diag([0, 1])
B1 = np.kron(np.identity(2 ** q1), outer00)
B1 = np.kron(B1, np.identity(2 ** (self.nq - q1 - 1)))
ifql <q2:
B2 =np.kron(np.identity(2**q1), outer11)
B2 =np.kron(B2, np.identity(2**(self.nq-q1+q2-1)))
B2 =np.kron(B2, X)
B2 =np.kron(B2, np.identity(2**(self.nq-q2-1)))
else:
B2 = np.kron(np.identity(2 ** q2), X)
B2 =np.kron(B2, np.identity(2 ** (self.nq - q2 + q1 - 1)))
B2 =np.kron(B2, outer11)
B2 =np.kron(B2, np.identity(2 ** (self.nq - q1 - 1)))
B=B1+B2
self.apply_operator(B)

Now our compiler has all the basic features of a quantum
computer. If needed, more operators can be added later.
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algorithm

Let us begin implementing the Deutsch-Jozsa algorithm. First, for
each function £:{0; 1} — {0; 1} we need to define operators F,
transforming |x)|y) into |x)|y @ f(x))x,y € {0;1}.

Using create_operator(f) we can create the desired operator
from the vector f that corresponds to function f (f[x] = f(x)).

def create_operator(f):
Uf = np.zeros((4, 4))
fori, jinit.product(range(2), repeat=2):
US[i*2 + (j + fi]) % 2, i*2+j] = 1
return Uf

Now let us create a function that implements the Deutsch-
Jozsa algorithm.

def deutsch_algorithm(f):
nq=2
nb=1
gc = QuantumCircuit(nq, nb)
Uf = create_operator(f)
qc.set_initial_state(0, np.array([1, 0]))
gc.set_initial_state(1, np.array([0, 1]))
qc.reset_state()
qc.h(0)
qc.h(1)
qc.apply_operator(Uf)
qc.h(0)
gc.measure(0, 0)
gc.simulate(100)
qc.barplot()

First, an object of the QuantumCircuit class is created, in which
our algorithm will be stored. We only need two qubits and one bit
for that. Then the system is initialized in the state |0)|1) and the
operators are applied, after which one hundred iterations
(theoretically, one is enough, but it's better to be sure) are
performed and the results are displayed.

Let us run the program:

f=10,1]
deutsch_algorithm(f)

1.0 1

0.8 4

0.6

0.4

0.2

0.0

Fig. 2. Result of the Deutsch-Jozsa algorithm for a non-constant function
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In 100% of cases, the first qubit is in the state, which is expected
for a non-constant function. If instead of the operator we use the
operator , we will see the opposite result.

g=[0,0]
deutsch_algorithm(g)

1.0 1

0.8

0.6

0.4

0.2

0.0 - T
0 1

Fig. 3. Result of the Deutsch-Jozsa algorithm for a constant function

Generalization of the Deutsch-Jozsa
algorithm to qudits

The Deutsch-Jozsa algorithm can be rather simply generalized
to quantum computers using qudits. Qudits are d-dimensional
analogues of qubits, instead of two states |0) and |1) they have d
different states |0), |1), |2), .., |d — 1).The state of one qudit is
described by a d-dimensional normalized complex vector.

The problem for the generalized algorithm is formulated as
follows: a function f:{0,1,...,d —1} - {0,1,..,d — 1}, can be
either constant or balanced, that is, each of the d values of the
function appears the same number of times, and we are required
to determine what type f belongs to [25]. We consider the
simplest case with a function of one variable, so the condition of it
being balanced is equivalent to being bijection, but this algorithm
can also be generalized to the case of functions of multiple
variables.

This generalization has practically no differences from the
original Deutsch-Jozsa algorithm in its structure. More complex
operations for qudits, which are analogous to operations for
qubits, are the only difference. We also need the operator Uy,
corresponding to the function f and taking the system from the
pure state |x)|y) to the state |x)|y @ f(x)), where @ now stands
for addition modulo d.

First, let us consider a generalization of the Hadamard
operator. It has the following form for a d-dimensional qudit:

1 wy wé wa wg_l

P 1 1 w3 wi wi w;(d_l)
TVal1l Wl w§ w2 e Y
1 wg—1 w;(d—l) ws(d—l) éd—l)z
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2mi
where w, =en. It is more convenient to represent this

operator as a sum of outer products of the form |j)(k|, which are
linear operators. The action of such a linear operator on the vector
|) is quite intuitive: the vector |j) is multiplied by the inner
product (k|y).

XKl [y = 1iXklp) = (kly) - 1))
Then
1 d-1d-1 )
) Zwy‘uxm.
j=0 k=0

Let us apply Hj to the state |0) and to the state |1)

d-1d-1 d-1 d-1
= > w0 = = @l H0l0) = = > 1)
d j=0 k=0 d j=0 d j=0
1 -1d-1 1 d-1 ) 1 d-1 )
—Z WD) == =D W 1) = = wll)).
ﬁj:o k=0 \/Ej=0 \/aJ':O

As in the original algorithm, we need two qudits in the state
[¥o) = |0)|1). Applying the operator A, to each of them, we get

ZI})

d—-1

1
= Z wklk).
k=0

Y1) = Hq ® Haltho) =

Now we apply the operator L7f

a-1 a-1
- 1 1
[P,) = UfW’l) = \/_EZ (U) ® ﬁz o¥lk D f()) )
j=0 k=0

Addition of f(j) in |k @ f(j))is equivalent to a shift of
coordinates by a constant (for a given j) number. Since wk*?® =

wk, we can rewrite [1,) as

d—1 d—
=L : _ k=f(j) k
) ﬁ;('” \FZ | >>

a-1

Z w0/l ® Z whlo).

T out of the

Now,if f(j) = f

summation sign

= const, we can take the factor w,,

d—-1 d—-1
_ —fi : i k
l2) = ﬁjz)l;)@ﬁ};wdlk).

Applying the operator H, to the first qudit once again, we
obtain
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d-1d-1

d—
1
= Wl m)nlwy TZ

m=0n=0 j=0
d-1d-1

=0 2> W mi =

For m = 0, we have

Form # 0, we have

Thus, for a constant function f, we have

d—1
. N _ 1
sy = A @ M) = 077 ]0) ® ﬁkzowl‘;'k)’

The factor (u;f is called the global phase, its presence does not

change the properties of the state in any way. When measuring the
first qudit, we will get |0) with one hundred percent probability.

If f is balanced, then after applying H, to the first qudit, we
will get

1 1 —F()y
70, D ermiml = w1 =
m=0n=0 i=0
1d—1 d-1
__ w;ﬂ]—f(}) |m).
L\
m=0 \ j=0

For m = 0, we have
d-1

W mj-f(j) _ Zw—m) Z“’

since f(j) runs through all values in {0,1,...,d — 1}. Therefore,
when measuring the first qudit, the probability of getting the state
|0) is zero. We have proved that the output values of the algorithm
on constant and balanced functions do not intersect, and therefore
we can always determine the type of the function with one
computation of it.

The result of the algorithm for a balanced function is generally
not defined, since the coefficients for different |m) (m # 0) are not
necessarily equal to zero, but this does not affect the work of the
algorithm.

j=0

-
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Emulation of qudits

Now it's easy to generalize the emulator for qudits.

class QuantumCircuit:
def _init_ (self, d, nq, nd):

self.dimension = d
self.ng =nq
self.nd = nd
zero = np.array([1] + (d-1) * [0])
self.initial_state = np.tile(zero, (nq, 1))
self.qudits = np.array([])
self.final_state = np.array([])
self.digits = 0
self.measurements = []
self.results = np.zeros(d ** nd)

For the most part, the changes are rather cosmetic: renaming
qubits to qudits, bits to digits, and so on. An important change is
the additional self.dimension parameter, which defines the
dimension of our qudits. So, wherever the number 2 was used as
the dimension of qubits, it must be replaced by self.dimension. For
this reason, the definition of the vector zero has also changed.

Functions such as set_initial_state, reset_state,
apply_operator, measure, run remain completely unchanged
(except for renaming). In the following two functions only the
dimensionality of the qudits has been corrected:

def apply1(self, A, qudit):
I1 = np.identity(self.dimension ** qudit)
12 = np.identity(self.dimension ** (self.nq - qudit - 1))
B =np.kron(I1, A)
B = np.kron(B, 12)
self.apply_operator(B)

def simulate(self, num_of_iterations):
self.results = np.zeros(self.dimension ** self.nd)
for _in range(num_of_iterations):
selfresults[self.run()] += 1
self.results /= num_of _iterations
return self.results

The measurement function requires the biggest changes:

def measurement(self, qudit, bit):
indices0 = np.array([], dtype=int)
bunch = np.arange(self.dimension ** (self.nq - qudit - 1))
shift = self.dimension ** (self.nq - qudit)
for i in range(self.dimension ** qudit):
indices0 = np.concatenate((indices0, bunch))
bunch = bunch + shift

indices = [indices0 + k * self.dimension ** (self.nq - qudit - 1)
for k in range(self.dimension)]
probabilities = [(abs(self.qudits[i]) ** 2).sum() for i in indices]

rand_value = np.random.rand()
for i, p in enumerate(probabilities):
if rand_value < p:
self.qudits[indices[i]] /= np.sqrt(probabilities[i])
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for k in range(self.dimension):
ifk!=1i:
self.qudits[indices[k]] = np.zeros(self.dimension **

(self.ng - 1))

self.digits +=i * self.dimension ** bit

break

else:
rand_value -=p

To begin with, the indices of the components corresponding
to the states in which the measured qudit is equal to zero are
selected into the indicesO vector. Such indices are arranged in
evenly distributed bunches, the size of which depends on the qudit
number. These bunches are appended to the vector indices0 with
a shift by a constant number shift.

Then a list of all vectors with indices corresponding to the
state number is created, and for all states the probability of its
measurement is calculated (probabilities vector). After that, we
create a random value rand_value and determine which interval it
fell into in a loop. Further operations are similar to the case with
qubits.

Changes in the barplot function are related to the labels and
the increased number of states that need to be displayed. To
create captions, it is convenient to write an additional function
convert_base, which converts a number from the decimal number
system to a representation with a dimension equal to the
dimension of the qudit.

def convert_base(self, number):
base = self.dimension
string ="
foriin range(self.nd):
string += str(number % base) + "'
number = number // base
return string

def barplot(self):

labels = [self.convert_base(n) for n in range(self.dimension **
self.nd)]

plt.bar(labels, self.results)

plt.show()

Creation of functions which apply operators to qudits is
somewhat more complicated than for qubits, since the form of an
operator depends on the dimension of the qudit, and working with
qudits in general is not so common. We restrict ourselves to the
Hadamard operator, which is sufficient for our purposes.

The operator is created by the function create_h, and then
applied "manually” using the function apply1.

def create_h(self):
d = self.dimension
w =np.exp(2j * np.pi / d)
H =np.zeros((d, d), dtype=np.csingle)
fori,j in it.product(range(d), repeat=2):
HIi, j] = w ** (i*)) / np.sqrt(d)
return H
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Thus, the creation of the general framework for the emulator
is completed. Let us start implementing the generalized Deutsch-
Jozsa algorithm.

The changes are not very significant again, we just need to
replace the number 2 with the dimension of the qudit in certain
places:

def create_operator(f):
d =len(f)
Uf = np.zeros((d**2, d**2))
fori, jin it.product(range(d), repeat=2):
Uf[i*d + (j + {[i]) % d, i*d+j] =1
return Uf

def deutsch_algorithm(f):

d =len(f)
nq=2
nd=1

qc = QuantumCircuit(d, nq, nd)

Uf = create_operator(f)

H = qc.create_h()

qc.set_initial_state(0, np.array([1] + (d-1)*[0]))
qc.set_initial_state(1, np.array((d-1)*[0] + [1]))
qc.reset_state()

qc.apply1(H, 0)

qcapply1(H, 1)

qc.apply_operator(Uf)

qc.apply1(H, 0)

gc.measure(0, 0)

qc.simulate(100)

qc.barplot()

Let us test the algorithm on three functions:
1. Constant

f=10,0,0,0,0]
deutsch_algorithm(f)

1.0

0.8 q

0.6

0.4 4

0.2 q

0.0 - T T T T

Fig. 4. Result of the Deutsch-Jozsa algorithm for a constant function
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2. Balanced (determined measurement result)

f=10,1,2,3,4]
deutsch_algorithm(f)

1.0

0.8 4

0.6 1

0.4 4

0.2 4

0.0 T T T T
0 1 2 3 4

Fig. 5. Result of the Deutsch-Jozsa algorithm for a balanced function

As you can see, the algorithm returns zero when the function is con-
stant, and not zero when the function is balanced.

Conclusion

The authors tried to present the basics of quantum computing and
their emulation using classical computers in an accessible form, as
well as highlight current developments in the field such as the use
of qudits.

3. Balanced (undetermined measurement result)

f=10,2,1,3,4]
deutsch_algorithm(f)

0.5 4

0.4 4

0.3 4

0.2 4

0.14

0.0 -
0 1 2 3 4

Fig. 6. Result of the Deutsch-Jozsa algorithm for a balanced function with

undetermined measurement result

A basic quantum computer emulator was developed and tested in
the Python programming language. Thus, the authors showed the
availability of quantum computing for any person with no access to
a quantum computer.

The Deutsch-Jozsa algorithm and its generalization to qudits are
analyzed in detail, and then implemented using the emulator to give
a clear demonstration of the capabilities of quantum algorithms.

References

(1]

(2]

3]
(4]
[3]

[6]
[7]
(8]

[9]

Vol. 18, No. 2. 2022
e —

Tretiak M.A., Shchekaturin A.E., Pilipenko I.A., Kravchenko V.0., Cherkesova L.V. Analysis of the advantages and disadvantages of
quantum emulators on the example of interaction with the user. Scientific Review. Technical science. 2020; (5):27-37. Available at:
https://www.elibrary.ru/item.asp?id=44149778 (accessed 16.03.2022). (In Russ., abstract in Eng.)

Baskakov P.E., Khabovets Y.Yu,, Pilipenko I.A., Kravchenko V.0., Cherkesova L.V. Tools for Performing and Emulating Quantum Com-
puting. Vestnik Novosibirskogo gosudarstvennogo universiteta. Serid: informacionnye tehnologii v obrazovanii = Vestnik NSU. Series:
Information Technologies. 2020; 18(2):43-53. (In Russ., abstract in Eng.) https://doi.org/10.25205/1818-7900-2020-18-2-43-53
Kiktenko E.O., Nikolaeva A.S., Fedorov A.K. Quantum computing using multilevel quantum systems. Nanoindustry.2020; 13(S4):649-
651. (In Russ,, abstract in Eng.) doi: https://doi.org/10.22184/1993-8578.2020.13.45.649.651

Smirnova T.S., Shvetskiy M.V. A visual emulator of the Bloch vector and sphere as a means of teaching quantum computing. The
Scientific Opinion. 2021; (9):76-82. (In Russ., abstract in Eng.) doi: https://doi.org/10.25807/22224378_2021_9_76

Grigoryeva G.M., Khodchenkov V.Yu. On the possibility of building a quantum computer emulator using XMM registers. Sistemy
komp’yuternoj matematiki i ih prilozheniya = Computer Mathematics Systems and Their Applications. 2021; (22):113-116. Avail-
able at: https://www.elibrary.ru/item.asp?id=46649884 (accessed 16.03.2022). (In Russ., abstract in Eng.)

Arute F, Arya K, Babbush R,, et al. Quantum supremacy using a programmable superconducting processor. Nature. 2019; 574:505-
510. (In Eng.) doi: https://doi.org/10.1038/s41586-019-1666-5

Guzik V.P, Gushanskiy S.M. Development of emulator for quantum computers. Izvestiya SFedU. Engineering Sciences. 2010; (2):73-
79. Available at: https://www.elibrary.ru/item.asp?id=13617268 (accessed 16.03.2022). (In Russ., abstract in Eng.)

Solovyev V.M. Quantum Computers and Quantum Algorithms. Part 1. Quantum Computers. [zvestiya of Saratov University. New Series.
Series: Mathematics. Mechanics. Informatics. 2015; 15(4):462-477. (In Russ., abstract in Eng.) doi: https://doi.org/10.18500/1816-
9791-2015-15-4-462-477

Solovyev V.M. Quantum Computers and Quantum Algorithms. Part 2. Quantum Algorithms. Izvestiya of Saratov University. New Series.
Series: Mathematics. Mechanics. Informatics. 2016; 16(1):104-112. (In Russ., abstract in Eng.) doi: https://doi.org/10.18500/1816-
9791-2016-16-1-104-112

Modern
Information
Technologies
and IT-Education

ISSN 2411-1473 sitito.cs.msu.ru



466 | OBPA3OBATE/IbHbLIE PECYPChI 1 NYYLAS NMPAKTUKA NT-OBPA3OBAHUS A'Hc-é*%geﬂeo%

[10]  Ladd T, Jelezko F, Laflamme R,, et al. Quantum computers. Nature. 2010; 464:45-53. (In Eng.) doi: https://doi.org/10.1038/na-
ture08812

[11] Kiktenko E.O., Fedorov A.K., Man’ko 0O.V.,, Man’ko V.I. Multilevel superconducting circuits as two-qubit systems: Operations, state
preparation, and entropic inequalities. Physical Review A. 2015; 91(4):042312. (In Eng.) doi: https://doi.org/10.1103/PhysRe-
vA.91.042312

[12]  Imany P, Jaramillo-Villegas J.A., Alshaykh M.S,, et al. High-dimensional optical quantum logic in large operational spaces. npj Quan-
tum Information. 2019; 5:59. (In Eng.) doi: https://doi.org/10.1038/s41534-019-0173-8

[13] WangY, Hu Z, Sanders B.C,, Kais S. Qudits and High-Dimensional Quantum Computing. Frontiers in Physics. 2020; 8:589504. (In
Eng.) doi: https://doi.org/10.3389/fphy.2020.589504

[14]  Kiktenko E.O., Nikolaeva A.S., Xu P, Shlyapnikov G.V,, Fedorov A.K. Scalable quantum computing with qudits on a graph. Physical
Review A. 2020; 101(2):022304. (In Eng.) doi: https://doi.org/10.1103 /PhysRevA.101.022304

[15]  Moreno-Pineda E., Godfrin C., Balestro F,, Wernsdorfer W., Ruben M. Molecular spin qudits for quantum algorithms. Chemical Soci-
ety Reviews. 2018; 47(2), 501-513. (In Eng.) doi: https://doi.org/10.1039/C5CS00933B

[16]  Ringbauer M., Meth M., Postler L., Stricker R., Blatt R., Schindler P, Monz T. A universal qudit quantum processor with trapped
ions. Nature Physics. 2022; 18:1053-1057. (In Eng.) doi: https://doi.org/10.1038/s41567-022-01658-0

[17]  Tacchino F, Chiesa A,, Sessoli R., Tavernelli I., Carretta S. A proposal for using molecular spin qudits as quantum simulators of light-
matter interactions. Journal of Materials Chemistry C.2021; 9(32):10266-10275. (In Eng.) doi: https://doi.org/10.1039/D1TC00851]

[18] Lu H.H., Hu Z., Alshaykh M.S., Moore A.J.,, Wang Y., Imany P, Weiner A.M., Kais S. Quantum Phase Estimation with Time-Frequen-
cy Qudits in a Single Photon. Advanced Quantum Technologies. 2020; 3(2):1900074. (In Eng.) doi: https://doi.org/10.1002/
qute.201900074

[19] Fischer L.E., Chiesa A., Tacchino F, Egger D.J,, Carretta S., Tavernelli I. Towards universal gate synthesis and error correction in
transmon qudits. arXiv:2212.04496. 2022. (In Eng.) doi: https://doi.org/10.48550/arXiv.2212.04496

[20]  ChiY, Huang]., Zhang Z., et al. A programmable qudit-based quantum processor. Nature Communications. 2022; 13:1166. (In Eng.)
doi: https://doi.org/10.1038/s41467-022-28767-x

[21]  Brennen G.K., O’Leary D.P, Bullock S.S. Criteria for exact qudit universality. Physical Review A. 2005; 71(5):052318. (In Eng.) doi:
https://doi.org/10.1103/PhysRevA.71.052318

[22]  Biamonte ], Wittek P, Pancotti N, et al. Quantum machine learning. Nature. 2017; 549:195-202. (In Eng.) doi: https://doi.
org/10.1038/nature23474

[23]  AryteF, Arya K, Babbush R, et al. Quantum supremacy using a programmable supercon-ducting processor. Nature. 2019; 574:505-
510. (In Eng.) doi: https://doi.org/10.1038/s41586-019-1666-5

[24]  Deutsch D., Jozsa R. Rapid Solution of Problems by Quantum Computation. Proceedings of the Royal Society A: Mathematical, Physi-
cal and Engineering Sciences. 1992; 439(1907):553-558. (In Eng.) doi: https://doi.org/10.1098/rspa.1992.0167

[25] Fan Y. A Generalization of the Deutsch-Jozsa Algorithm to Multi-Valued Quantum Logic. 37th International Symposium on Multiple-Val-
ued Logic (ISMVL'07). IEEE Computer Society, Oslo, Norway; 2007. p. 1-5. (In Eng.) doi: https://doi.org/10.1109/ISMVL.2007.3

Submitted 28.05.2022; approved after reviewing 30.06.2022; accepted for publication 09.07.2022.

About the authors:

Andrey S. Andreeyv, Student of the Department of Higher Mathematics, Faculty of Fundamental Sciences, Bauman Moscow State Technical
University (5, 2-nd Baumanskaya St., building 2, Moscow 105005, Russian Federation), ORCID: https://orcid.org/0000-0002-4124-
4146, andreevas3@student.bmstu.ru

Pavel V. Khrapov, Associate Professor of the Department of Higher Mathematics, Faculty of Fundamental Sciences, (5, 2-nd Bauman-
skaya St., building 2, Moscow 105005, Russian Federation), Cand.Sci. (Phys.-Math.), ORCID: https://orcid.org/0000-0002-6269-0727,
khrapov@bmstu.ru

All authors have read and approved the final manuscript.
CnHMCOK MCNo0J/1b30BaHHbIX HCTOYHUKOB
[1] AHasu3 JO0CTOMHCTB M HEJOCTATKOB KBAaHTOBBIX IMYJIITOPOB Ha MpUMepe B3aUMO/eHCTBHUs € osib3oBaTesieM / M. A. TpeTbsiK,

A. E. lllekaTtypuH, U. A. [lununenko [u ap.] // HayuHoe o603penue. Texuuvyeckne Hayku. 2020. Ne 5. C. 27-37. URL: https://www.
elibrary.ru/item.asp?id=44149778 (gata o6pamenus: 16.03.2022).

[2] WHCTpyMeHTBI /17151 BBIOJIHEHUS M SMYJISILIMU KBaHTOBbIX BerarcieHni / I1. E. Backaxos, 10. 10. Xa6oger, Y. A. [Tununenko [u gp.] // Bectauk
HI'Y. Cepusi: Undopmarmonnblie TexHosiornd. 2020. T. 18, Ne 2. C. 43-53. doi: https://doi.org/10.25205/1818-7900-2020-18-2-43-53

[3] Kukrenko E. 0., HukosnaeBa A. C., ®esopoB A. K. KBaHTOBBIE BBIYMCIEHUS C UCIOJb30BaHHEM MHOTOYPOBHEBBIX KBAaHTOBBIX
cucreM // Hanounayctpus. 2020. T. 13, N2 S4(99). C. 649-651. doi: https://doi.org/10.22184/1993-8578.2020.13.45.649.651

[4] CmupnoBa T. C, llIBeukuit M. B. BusyanbHblil amynsaTop BekTopa u chepbl byoxa kak cpeAcTBo 06ydyeHHST KBAaHTOBBIM

BeruucaeHusiM // Hayuynoe maenune. 2021. N2 9. C. 76-82. doi: https://doi.org/10.25807/22224378_2021.9_76

CoBpemeHHble
MH(OPMaLMOHHbIe ..
TexHonornuu Tom 18, N2 2. 2022 ISSN 2411-1473 sitito.cs.msu.ru

u UT-o6pasosanve



éiéﬁ?&f&v EDUCATIONAL RESOURCES AND BEST PRACTICES OF IT-EDUCATION | 467

[3]

(6]
(7]
(8]

191

[10]
[1]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]

[25]

I'puropeesa I. M., Xog4enkos B. 10. O BO3M0KHOCTH NOCTPOEHUA 3MY/IATOPA KBAHTOBOI'0 KOMIIBIOTEPA C UCNOJIb30BaHHeM XMM
peructpoB // CucTeMbl KOMIIBIOTEPHOW MaTeMaTUKU U UX npuioxeHus. 2021. Ne 22. C. 113-116. URL: https://www.elibrary.ru/
item.asp?id=46649884 (nara o6pamenus: 16.03.2022).

Quantum supremacy using a programmable superconducting processor / F. Arute, K. Arya, R. Babbush [u gp.] // Nature. 2019. Vol.
574.P.505-510. doi: https://doi.org/10.1038/s41586-019-1666-5

I'y3uk B. @, I'yimanckuit C. M. Pazpa6oTka aMysnsiTOPOB /1 KBAHTOBBIX BbluucauTeneit // U3Bectus HODY. TexHnueckue HayKH.
2010. Ne 2(103). C. 73-79. URL: https://www.elibrary.ru/item.asp?id=13617268 (maTa o6pameHnus: 16.03.2022).

ConoBreB B. M. KBaHTOBble KOMIBIOTEPBI M KBAHTOBbIe aJropuTMmbl. YacTb 1. KBaHTOBbIe KoMIbIOTepbl // W3BecTus
CaparoBckoro yHuBepcuTeTa. HoBast cepus. Cepusi: MatemaTtuka. Mexanuka. UHpopmaTuka. 2015. T. 15, Ne 4. C. 462-477. doi:
https://doi.org/10.18500/1816-9791-2015-15-4-462-477

CostoBbeB B. M. KBaHTOBBIE KOMIIBIOTEPHI M KBAHTOBBIE aJITOPUTMBI YacTh 2. KBaHTOBBIE anroputmel // U3Bectus CapaToBCcKOro
yHuBepcuteTa. HoBast cepus. Cepusi: MaTemaTuka. Mexanuka. UHpopmaTtuka. 2016. T. 16, Ne 1. C. 104-112. doi: https://doi.
org/10.18500/1816-9791-2016-16-1-104-112

Quantum computers / T. Ladd, F Jelezko, R. Laflamme [u ap.] // Nature. 2010. Vol. 464. P. 45-53. doi: https://doi.org/10.1038/
nature08812

Multilevel superconducting circuits as two-qubit systems: Operations, state preparation, and entropic inequalities / E. O. Kiktenko
[v1 np.] // Physical Review A. 2015. Vol. 91, issue 4. Article number: 042312. doi: https://doi.org/10.1103 /PhysRevA.91.042312
High-dimensional optical quantum logic in large operational spaces / P. Imany, ]. A. Jaramillo-Villegas, M. S. Alshaykh [u z1p.] // npj
Quantum Information. 2019. Vol. 5. Article number: 59. doi: https://doi.org/10.1038/s41534-019-0173-8

Qudits and High-Dimensional Quantum Computing / Y. Wang [u ap.] // Frontiers in Physics. 2020. Vol. 8. Article number: 589504.
doi: https://doi.org/10.3389/fphy.2020.589504

Scalable quantum computing with qudits on a graph / E. O. Kiktenko [u ap.] // Physical Review A. 2020. Vol. 101, issue 2. Article
number: 022304. doi: https://doi.org/10.1103/PhysRevA.101.022304

Molecular spin qudits for quantum algorithms / E. Moreno-Pineda [u zap.] // Chemical Society Reviews. 2018. Vol. 47, issue 2. P.
501-513. doi: https://doi.org/10.1039/C5CS00933B

A universal qudit quantum processor with trapped ions / M. Ringbauer [u ap.] // Nature Physics. 2022. Vol. 18. P. 1053-1057. doi:
https://doi.org/10.1038/s41567-022-01658-0

A proposal for using molecular spin qudits as quantum simulators of light-matter interactions / F. Tacchino [u zgp.] // Journal of
Materials Chemistry C. 2021. Vol. 9, issue 32. P. 10266-10275. doi: https://doi.org/10.1039/D1TC00851]

Quantum Phase Estimation with Time-Frequency Qudits in a Single Photon / H. H. Lu [u gp.] // Advanced Quantum Technologies.
2020. Vol. 3, issue 2. Article number: 1900074. doi: https://doi.org/10.1002/qute.201900074

Towards universal gate synthesis and error correction in transmon qudits // L. E. Fischer [u ap.] // arXiv:2212.04496. 2022. doi:
https://doi.org/10.48550/arXiv.2212.04496

A programmable qudit-based quantum processor / Y. Chi, . Huang, Z. Zhang [u znp.] // Nature Communications. 2022. Vol. 13. Ar-
ticle number: 1166. doi: https://doi.org/10.1038/s41467-022-28767-x

Brennen G. K., O’Leary D. P, Bullock S. S. Criteria for exact qudit universality // Physical Review A. 2005. Vol. 71, issue 5. Article
number: 052318. doi: https://doi.org/10.1103/PhysRevA.71.052318

Quantum machine learning / J. Biamonte, P. Wittek, N. Pancotti [u ap.] // Nature. 2017. Vol. 549. P. 195-202. doi: https://doi.
org/10.1038/nature23474

Quantum supremacy using a programmable supercon-ducting processor / F. Aryte, K. Arya, R. Babbush [u ap.] // Nature. 2019. Vol.
574.P.505-510. doi: https://doi.org/10.1038/s41586-019-1666-5

Deutsch D., Jozsa R. Rapid Solution of Problems by Quantum Computation // Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences. 1992. Vol. 439, issue 1907. P. 553-558. doi: https://doi.org/10.1098/rspa.1992.0167

Fan Y. A Generalization of the Deutsch-Jozsa Algorithm to Multi-Valued Quantum Logic // 37th International Symposium on Mul-
tiple-Valued Logic (ISMVL'07). Oslo, Norway: IEEE Computer Society, 2007. P. 1-5. doi: https://doi.org/10.1109/ISMVL.2007.3

Tlocmynuaa 28.05.2022; odo6pena nocae peyensuposarus 30.06.2022; npunama k nyéauxkayuu 09.07.2022.

AnjgpeeB AHjgpeii CepreeBud, cTy/leHT KadeZpbl BbICIIed MaTeMaTHKH, ¢akyabTeT QyHJaMeHTalbHbIX Hayk, PI'EOY BO «MockoBckui
rocy/lapCTBEHHBIN TeEXHUYECKUN yHUBepcuTeT uMeHH H.J. BaymaHa (HaunoHa/IbHBIHN HcciefoBaTebckui yHuBepcuTeT)» (105005, Poccuiickast
®Qepepanus, . MockBa, yi1. 2-51 Baymanckas, 1. 5, k. 1), ORCID: https://orcid.org/0000-0002-4124-4146, andreevas3@student.bmstu.ru
Xpanos [1aBes BacuibeBuy, j01ieHT Kapeaphl BbICIIed MaTeMaTHKH, GaKyabTeT GyHJaMeHTanbHbIX HayK, PI'EOY BO «MockoBckuit
roCy/JapCTBEHHBIM TeXHU4YeCKUN yHHBepcuTeT uMeHu H.D. BaymaHa (HauuoHaJbHBIM HcCaefoBaTebCKUN yHUBepcuTeT)» (105005,
Poccuiickas ®enepanus, r. MockBa, yi1. 2-9 baymaHckasg, 4. 5, k. 1), kaHguaaT ¢usuko-maremarudyeckux Hayk, ORCID: https://orcid.
org/0000-0002-6269-0727, khrapov@bmstu.ru

Bce agmopbl npouumau u 0006puau 0KOHYaMeAbHbIl 8apUAHM PyKONUCU.

Modern
Information

Vol. 18, No. 2. 2022 ISSN 2411-1473 sitito.cs.msu.ru Technologies
e — and IT-Education



