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ABSTRACT 

Qualitative	 Trajectory	 Calculus	 (QTC)	 offers	 a	 powerful	 set	 of	 tools	 towards	 selectable-
granularity	 abstraction	 of	 relative	 trajectories	 of	moving	 entities,	 while	 preserving	 essential	
aspects	 of	 their	 interaction.	 In	 this	 paper,	 we	 present	 a	 case	 study	 of	 an	 application	 of	 QTC	
towards	 analyzing	 human	motion	 and	 interaction	 patterns	 in	 a	 shopping	mall.	 The	 ultimate	
purpose	 of	 this	 study	 is	 to	 use	 the	 derived	 results	 towards	 tuning	 human-aware	 social	 path	
planning	algorithms	for	robots	cohabitating	and	interacting	with	humans	in	malls,	and	in	other	
public	spaces.	This	is	increasingly	important	given	the	rapid	rise	of	service	robots	and	the	need	
for	 human-aware	 navigation	 which	 maximizes	 the	 safety	 and	 comfort	 of	 humans	 while	
preserving	social	norms	such	as	proxemics	and	personal	spaces.	
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ПРИМЕНЕНИЕ QUALITATIVE TRAJECTORY CALCULUS ДЛЯ АНАЛИЗА 
ДВИЖЕНИЯ ЛЮДЕЙ: СОЦИАЛЬНО-ОРИЕНТИРОВАННОЕ ПЛАНИРОВАНИЕ 

МАРШРУТА ДЛЯ РОБОТОВ 
АННОТАЦИЯ 

	(ܥܶܳ) ݏݑ݈ݑ݈ܿܽܥ ݕݎ݋ݐ݆ܿ݁ܽݎܶ ݁ݒ݅ݐܽݐ݈݅ܽݑܳ представляет	 собой	 мощный	 набор	
инструментов	 для	 описания	 взаимосвязанных	 траекторий	 движущихся	 объектов	 с	
необходимым	 уровнем	 абстракции,	 сохраняя	 при	 этом	 основные	 аспекты	 их	
взаимодействия.	В	этой	статье	мы	представляем	рассмотрение	конкретного	примера	
применения	QTC	для	анализа	движения	и	взаимодействия	людей	в	японском	торговом	
центре.	Конечная	цель	данного	исследования	заключается	в	использовании	полученных	
результатов	для	улучшения	алгоритмов	социально-ориентированного,	учитывающего	
психологию	 людей	 планирования	 пути	 для	 мобильных	 роботов,	 функционирующих	 и	
взаимодействующих	с	людьми	в	зданиях	торговых	центров,	а	также	в	других	подобных	
помещениях.	Это	становится	все	более	важным,	учитывая	быстрый	рост	сервисной	
робототехники	 и	 потребность	 в	 навигации,	 повышающей	 безопасность	 и	 комфорт	
людей,	 соблюдая	 при	 этом	 социальные	 нормы,	 такие	 как	 проксемика	 и	 личное	
пространство.	

КЛЮЧЕВЫЕ СЛОВА 

Qualitative	 Trajectory	 Calculus;	 Навигация,	 учитывающая	 психологию	 людей;	 Анализ	
движения	 потока	 толпы	 по	 набору	 данных;	 Качественное	 представление	 данных;	
Планирование	маршрута	для	робота.	

 

INTRODUCTION 

Qualitative Representations often offer several advantages in comparison to their quantitative 
continuous counterparts, in specific domains of application. Such a case is Qualitative Trajectory Calculus 
(QTC) [1], which was created by Nico Van De Weghe in 2005. It offers a powerful set of tools towards 
selectable-granularity abstraction of relative trajectories of moving entities, while preserving essential 
aspects of their interaction. It has been used in the past towards proving encodings of relative trajectories 
which can easily utilised towards analysing aspects of interactions, or even synthesising interactions [2] that 
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maintain required essential properties, in a range of diverse domains: from bird flights [3] to human-robot 
interaction [4] and beyond. Furthermore, a promising domain for wider application of QTC is human motion 
analysis, for example in sports [5], [6], either across body parts of across players.  

Recently, robots are starting to become an important part of our everyday life, and very soon it is 
predicted that people will regularly be interacting with robots at work, at home and in public places. Due to 
the increasing co-habitation of spaces by humans as well as robots, though, robot motions should take into 
account human safety as well as human comfort, and should also conform to implicit social rules regarding 
interaction and space sharing. The psychological field of proxemics [7], [8], provides information on many 
such considerations, and recently there is an increasing amount of literature dealing explicitly with human-
aware navigation for robots [9], [10] as well as more specifically with the problem of social path-planning 
[11], [12]: specialized robot path planning, aiming towards motion as well as interaction with single humans 
and groups of humans, that takes into account psychological considerations. 

Towards tuning the parameters of social path planning and other human-aware navigation 
algorithms, empirical observations of human-human interactions can be informative. For that purpose, and 
aiming in particular to introducing human-aware robots in crowded large shopping mall areas, we decided 
to study human motions and interactions for the case of a mall in japan, utilising the ATC dataset [13], and 
choosing Qualitative Trajectory Calculus as our main representational framework. At a further stage, we 
plan to use the results of our human data analysis, towards empirically-informed and parametrically-tuned 
human-robot interaction synthesis, utilizing QTC as well as quantitative parameters derived from our 
studies. 

Thus, in this paper we are presenting a methodology as well as initial results from the first stages 
of analysis of the ATC dataset using QTC, towards creating robots that can path plan and behave in manners 
which maximize human comfort and which are natural when it comes to human proxemics norms and 
expectations. We will start our exposition by providing appropriate background in relevant topics and on 
QTC. Then, we will introduce the data set, and proceed with the steps of our analysis and the derived results. 
Finally, we will discuss future steps and provide a concise forward-looking conclusion. 

BACKGROUND 

A. Qualitative Representations 

The relative inaccuracy of qualitative representations can naively be considered as a disadvantage 
as compared to full quantitative information. However, in many cases qualitative representations are not 
only more efficient that full quantitative ones, but are also successful at throwing away unnecessary details 
while keeping the essential information for the task at hand. Human cognition heavily relies on qualitative 
information, for example when it comes to spatiotemporal descriptions and reasoning.  

Three main principals of modern qualitative modeling, as summarized in [14], are: 
- Discretization 
- Relevance 
- Ambiguity 
Full-accuracy crisp continuous-valued representations are not only practically infeasible, even for 

the case of floating-point digitization, but also usually hide unrealistic assumptions about measurement 
accuracy and absence of noise, and are computationally highly expensive. Therefore, different, and even 
better, adjustable levels of discretization and symbolification often provide great advantage. Furthermore, 
qualitative representations are usually fine-tuned to specific purposes or tasks; and thus their relevance is 
of high importance. Finally, qualitative representations can often inherently handle varying levels of 
ambiguity and incomplete knowledge, which in many cases is highly advantageous.  

For instance, one can think of the three symbols “+”, “-“, “0” as a very simple qualitative 
representation for the real numbers [15]. One can also introduce thresholds and ordering, and thus say that 
some physical quantity is “below “, ”above”, or “equal” to some predetermined threshold, or one can even 
move towards derivatives and rates of change and say that it is “increasing”, “decreasing”, “stable”. A similar 
three triplet-symbol system covering values, velocities, and accelerations, is used for example at the core of 
[16], towards qualitatively representing human activities, while also being augmented with discretized 
quantitative information. Furthermore, qualitative dynamics and qualitative reasoning and simulation [17] 
has successfully been applied to a variety of domains in the past. 

B. Human-Aware Robot Navigation 

Service robotics is growing briskly and is expected to continue to grow even faster in the nearest 
future [18]. Consequently, robots and people will interact with each other in different environments such as 
public places, home and work (for example, [19]-[24]) more often. This means that robots and humans will 
be engage in implicit and explicit interaction more frequently. Explicit interactions include robots 
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approaching humans and vice-versa towards interacting, human following robots and vice-versa, as well as 
walking side by side. Implicit interactions include movements aiming towards the minimization of the 
possibility of encounter, active collision avoidance, staying in line with people etc. All those spatial 
interactions of robots with people should be performed effectively and at the same time generate minimal 
discomfort for humans. Thus, of high relevance are also the rules studied in the psychological field of 
proxemics [25], [26], [27], as well as other social rules. Furthermore, robots should take into account human 
comfort while they are engaged in productive interaction. These are the main goals of human-aware 
navigation. It is a relatively new field of robotics at the intersection of human-robot	interaction (HRI) and 
motion planning. While motion planning is a fairly mature field of robotics ([28],[29]), and active 
algorithmic development started in the 80’s [30], HRI is a relatively newer area of research, becoming 
established in the previous decade. However, the HRI field contains many aspects as well as settings of 
interaction, going beyond the purely spatial, and including verbal, non-verbal, gestural, as well as short-
term, long-term, and much more. Consequently, human-aware navigation is connected to HRI and is also 
related to relevant psychological sub-fields as well as the social sciences. 

C. Crowd flow datasets and analysis 

Recently systems such as video-surveillance systems [31] and laser-based tracking systems [32] are 
becoming widespread in public places, and often operate either manually, or semi-autonomously. Such 
systems can be beneficial in multiple ways, beyond increasing safety. For example, information about the 
spatiotemporal patterns of crowd flows could help decongest passageways and enable targeted positioning 
of shops in a shopping mall. Such systems can also be used for the needs of intelligent responsive 
environments, and the data derived are also invaluable towards beter mathematical models of crowds [33]. 
Due to all of the above reasons, a number of crowd flow datasets have become available in the public domain: 
some in the form of pure raw data, others with some basic analysis results attached, such as in the case of 
[34], [13]. Availability of such datasets also gives an opportunity for examining motions of individual 
persons and analysis of the behaviors of small groups, which arise within, and are embedded in the larger 
crowds. 

D. Qualitative Trajectory Calculus 

QTC was first introduced by Van de Weghe as a method of qualitative representation of relative 
trajectories of moving objects. The original QTC formulation was two-dimensional, and was later expanded 
to three dimensions [3]. There exist two variations of it based on the time dimension: continuous-time QTC 
and a discrete-time QTC. A brief description of the meaning of the original QTC symbols is given in table 
[Table 1]. 

Table	1.	Original	QTC	symbols	meaning	[2] 
 Name of constraint - + 0 
A Distance for object k k is approaching l k is moving 

further away from 
l 

distance remains 
steady 

B Distance for object l l is approaching k l is moving further 
away from k 

distance remains 
steady 

C Speed & k is slower than l k is slower than l k is faster than l move with the 
same speed 

D Side for object k with respect to 
line kl: 

k is moving to the 
left of the line 

k is moving to the 
right of the line 

k moves along the 
line 

E Side for object l with respect to line 
kl 

l is moving to the 
left of the line 

l is moving to the 
right of the line 

l moves along the 
line 

F Angle (defining as θ1 the minimal 
angle between the velocity vector 
of k and vector kl and θ2 the 
equivalent for l) 

θ1 < θ2 θ1 > θ2 otherwise 

THE DATASETS 

In our work we have used a dataset of people movements taking place in part of a big shopping and 
business center Asia and Pacific Trade Center in Osaka, Japan [34], [13]. This dataset was taken in part of 
the building - corridor and hall. The tracking area and sensor locations are shown in the figure 1. 
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Figure	1.	Tracking	area	and	sensor	setup	in	ATC	shopping	mall.	The	dashed	line	shows	the	border	of	the	area	covered	by	
the	sensors.	The	photos	below	show	the	corridor	area	in	the	afternoon	on	a	typical	weekday	(left)	and	weekend	(right)	

[32]	

This dataset contains individual pedestrian as well as group data. Individual pedestrian information 
was obtained by using automatic tracking systems. The system consists of multiple different 3D range 
sensors and covering an area of about 900 m^2. Group information is kept in a different file. It was obtained 
by manual labeling according to synchronized information from video-cameras located in the observed area. 

The ATC dataset contains 6 days of experiments. For each day the data for 4 one-hour periods are 
provided: 10:00-11:00, 12:00-13:00, 15:00-16:00, 19:00-20:00. Person tracking files contain the data for all 
persons that were tracked in the environment on a given day and period of time. Each row corresponds to 
a single tracked person at a single instant of time. The following fields were used: 

 

TIME [s] (unixtime + milliseconds/1000), PEDESTRIAN_ID, POSITION_X [mm], POSITION_Y 
[mm] 

 

Group files contain the group annotations for the given day. In our initial experiments, we have used 
following information only about pairs (not more than 2 people): 

 

PEDESTRIAN_ID, PARTNER_ID 
TRAJECTORY DATA PROCESSING 

The methodology that we are utilizing consists of two main stages: quantitative analysis, followed 
by qualitative. During the quantitative stage, we examine the probabilistic distributions of a number of 
quantities: trajectory durations, velocities, number of stopping events (stasis), durations of stopping events, 
as well as spatial aspects: distribution of stops, entry and exit points, etc. During the qualitative stage, we 
examine the symbol sequences that are arise from pairs of trajectories, and especially focus on the types of 
relations between trajectories that might arise, such as leader-follower relations vs. uncorellated motion, 
moves to approach or detach from interaction etc. Our goal is to later use the information obtained can be 
used for tuning robot motions, but it could also be used for other purposes, such as optimizing building 
design, shop placement, etc.  

Let us start with the initial quantitative phase. First, we examined the duration of the trajectories 
contained in our dataset. We initially examined short	trajectories with duration less than 10 seconds. We 
observed that most of these trajectories were located on the borders of tracking area. In most cases (type-
0) they represent humans that just for a short time entered the scanned area but did not walk through. In a 
few cases these trajectories were just a noise of automatic tracking systems (type-1). Due to the non-
interesting (for our purposes) nature of these two types of trajectories, we filtered them from our dataset 
(731 remained out of 1090 for 10am-11am, and 2226 out 3138 for 12-1pm). The statistics of the duration 
for all the remaining trajectories for two hours of the first day are illustrated in figure 2. 
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Figure	2.	Durations	of	trajectories	during	the	10am-11am	and	12am-1pm	of	the	first	day	of	the	dataset	(seconds)	[34]	

(median~33)	

This histogram represents trajectory durations for people captured by the tracking system. The red 
vertical line represents the median, while the blue vertical line represents the mean value. 
 Next, we started examining velocity statistics. Actually, velocities for any moment of the tracking 
process are pre-calculated and given explicitly in the data files of the original ATC dataset. However, the 
distribution of the pre-calculated velocities is close to normal (figure 3). This seems to be contrary to 
intuition, given that we observed that many people in the dataset were stopping (or having very little 
motion) for extended time intervals. This naturally should have led to a bimodal distribution: with one peak 
near the average walking speed of the person, and the other peak near the average velocity of the apparent 
micro-motions when the person is stopped. We thus recomputed velocities using the trajectory positions 
data. The distribution that we got looks as we expected – it is bimodal. That means that we can now also use 
it towards discriminating	time	periods	when	the	person	moves	from	those	when	the	person	stops, using an 
adaptive dynamical threshold. This distribution for the period of time from 12am to 1pm of the first day is 
shown in figure 3. All further figures in this paper will from now on represent statistics for this specific time 
period, chosen for the purpose of illustration. The same methods can be used for the other periods. 
 

 
Figure	3.	Distribution	of	velocities	using	given	values	for	all	people	during	the	first	day	from	the	dataset	(on	the	left).	

Distribution	of	velocities	using	computed	values	for	all	people	during	the	first	day	from	the	dataset	(on	the	right:	bimodal	
distribution	–	average	speed	while	stopped	approx.	100	mm/sec,	average	speed	when	walking	1170	mm/sec	(~4.5km/hr)	

,	approx.	threshold	650mm/sec)	

 Stopping statistics are presented on figures 4-8. We start by examining the number of stops per 
trajectory: Trajectories that have no stops don't appear in this figures (706 trajectories have at least one 
stop, out of 2226 – i.e. ~32%). Out of the 706 trajectories that have at least one stop, 302 have one stop only 
(~43%), 165 have two stops only (~23%), and so on, as can be seen in Figure 4. The number of stops on a 
log-log plot reveals an approximate fit to a 1/xn law. Notice that for most people (~94%) there is no more 
then 4 stops total per trajectory and that many people are crossing the area without stops at all (~68%). 
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Figure	4.	Histogram	of	numbers	of	stops	per	trajectory	for	one	hour	of	the	dataset	(302	with	1	stop,	165	with	2	stops	etc)	

Following the number of stops per trajectory, we then examine the stop duration statistics. 
Looking back into figure 2, the median trajectory duration was roughly 33sec, with a much higher mean 
(45sec-75sec), due to the outliers: some very long trajectories. However, for those trajectories that had 
stops, the sum duration of the stops, had a median of 15sec (figure 5); i.e. almost half of the total time. 
Indeed, in figure 7 one can see the distribution of this ratio: median 41% stasis (59% walking). Given that 
more than one stops often occur, the median duration of a single stop is 6sec. 

 
Figure	5	Sum	Duration	of	all	Stops	in	one	Trajectory	(mean	~	36s,	median	~	15s)	
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Figure	6.	Mean	Duration	of	Stops	per	trajectory	(mean	~	12s,	median	~	6s	)	

 
Figure	7.	%	of	sum	duration	of	all	stops	in	a	trajectory	over	total	time	of	Trajectory	(mean~43,	median~41)	
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Figure	8.	Percentage	of	mean	Stop	time	per	Trajectory	(mean	~22s,	median	~15s)	

 
Figure	9.	Ratio	between	zero	symbols	and	the	length	of	the	sequence	of	A	constraint	

Following the initial quantitative analysis, that consisted of the trajectory duration analysis, the 
velocity statistics, the number of stops distribution, and the stop duration statistics, we now move to the 
qualitative trajectory calculus-based analysis. 

We used QTC analysis in order to investigate interactions between people. Firstly, we obtained 
trajectories from the dataset (which were pre-marked as being pairs, so as to have ground truth) and then 
we analyzed the pairs using QTC with three basic constrains and with a threshold of 10cm. The distribution 
of ratios between zero symbols in the A constraint (see table 1) and the lengths of the sequence is shown 
in the figure 9. As expected most values are close to 1 that means that most QTC symbols in A are zeros, 
which is what to be expected in the case of pairs moving together, either in parallel or in leader-follower 
relations (i.e. the distance usually remains constant). The distribution of the entropy for the same QTC 
symbols sequences is shown in the figure 10, and as expected it has very small values, given that the 
underlying distributions are heavily biased to one value (i.e. the probability of a “0” symbol is much higher 
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than the probability of a “+” or a “-“ symbol). In previous research [3], it has been shown how the composite-
symbol distribution entropies of QTC-3D time-series (i.e. composite symbols made by the Cartesian 
product of various QTC-constraint symbols, not just the A constraint that was used here) can be used to 
distinguish leaders from followers for the more complex case of pigeons flying in three dimensions. 

 
Figure	10.	Entropy	of	the	sequence	of	A	constraint	

 Often when two people are moving as a pair, one of them takes the role of the leader while the other 
assumers the role of the follower. The other possible cases are parallel movement, or you can have rotating 
leadership. The fixed leader-follower case is usually apparent through the observation that when the 
leader slows down or accelerates the follower does the same too but with a small time delay. So, we tried 
to apply QTC with variable time delay (gradually increasing an artificial time delay on one of the two 
trajectories and then creating the pair) on the pairs from the dataset.  
 Figures 11 and 12 illustrate our obtained results. In the figure 11 the orange line corresponds to the 
entropy of the original QTC symbol sequence (no time delay) while the blue line corresponds to the entropy 
of the QTC symbols vector generated with an artificial time delay in one of the two trajectories. Notice that 
in figure 11 the positive time delay corresponds to delay of the leader with respect to the follower; but in 
figure 12 the positive time delay corresponds to delay of the follower with respect to the leader. As expected 
a minimum arises only in Fig. 12: the minimum entropy is reached when we assume that the follower 
mirrors the leader with approximately 370msec delay.  

 
Figure	11.	Entropy	of	the	particular	sequence	of	QTC	symbols	with	and	without	time	delay	(orange	and	blue)	
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Figure	12.	Entropy	of	the	particular	sequence	of	QTC	symbols	with	and	without	time	delay	(orange	and	blue)	

FUTURE STEPS 

 Further analysis and methodology standardization steps are taking place at the moment, together 
with development of methods for incorporation of the results into our social path planning algorithms. Some 
of the current and future steps include: 

- Derivation of a compact representation of the results of the quantitative analysis. This 
representation consists of probabilistic automata: their vertices correspond to {entry/exit/stasis 
points} and their edges correspond to {walking segments}. On the vertices and the edges, we also 
supply associated temporal (duration) and spatial (velocity, curvature, location) distributions (in 
an analogous fashion to the models of [35]). 

- Further discrimination between {leader-follower, rotating leadership, parallel walking, uncorellated 
movement} for pairs, and automated classification on the basis of the QTC symbol sequences of 
random pairs. 

- Detection of “approach towards interaction” & “detach from interaction” episodes, and study and 
modelling of the QTC symbol sequences during the episodes, as well as associated quantitative 
parameters (for example, associated to personal space constraints).  

- Incorporation of the above results towards tuning social path planning algorithms for robots, such 
as [11-12]. 

- Utilization of the above results towards optimization of building structures as well as locations of 
specific landmarks and functions within buildings, in order to achieve the desired people flow, 
people stop, and people interaction patterns within buildings. 

CONCLUSION 

Towards the fluid and natural co-habitation of spaces by humans and robots and their co-operation 
as our primary purpose, but also towards compact modeling of human motion and interaction patterns 
within public spaces as a secondary purpose, in this paper we have presented initial steps of a methodology, 
consisting of both quantitative as well as qualitative analysis. Qualitative Trajectory Calculus (QTC) was 
utilized, offering a powerful set of tools towards selectable-granularity abstraction of relative trajectories of 
moving entities, while preserving essential aspects of their interaction. Furthermore, probabilistic modeling 
of temporal and spatial aspects of the human trajectories, as well as their stasis episodes, was brought to 
use.  

Initial results were presented for the case of a dataset consisting of human motions and interactions 
within a Japanese shopping mall, the ATC dataset. Trajectory duration statistics, statistics of walking and 
stasis episodes numbers and durations, velocity distributions were presented. Furthermore, qualitative 
analysis using minimal QTC and entropy analysis, uncovered leader-follower relations as well as the mean 
delay time in them. Importantly, future steps were presented, towards creating standard and compact 
representations of such results, towards further discriminating between many possible types of trajectory 
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pairs, towards analyzing approach-detach results, and towards utilizing our results for human-robot 
interaction as well as architectural & spatial design purposes.  

The methods described and which are being further developed, are becoming increasingly 
important given the rapid rise of service robots and the need for human-aware navigation, maximizing the 
safety and comfort of humans while preserving social norms such as proxemics and personal spaces, 
ultimately towards a future where robots will help improve human lives. 
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