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ABSTRACT

Qualitative Trajectory Calculus (QTC) offers a powerful set of tools towards selectable-
granularity abstraction of relative trajectories of moving entities, while preserving essential
aspects of their interaction. In this paper, we present a case study of an application of QTC
towards analyzing human motion and interaction patterns in a shopping mall. The ultimate
purpose of this study is to use the derived results towards tuning human-aware social path
planning algorithms for robots cohabitating and interacting with humans in malls, and in other
public spaces. This is increasingly important given the rapid rise of service robots and the need
for human-aware navigation which maximizes the safety and comfort of humans while
preserving social norms such as proxemics and personal spaces.
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ITPUMEHEHUME QUALITATIVE TRAJECTORY CALCULUS /i1 AHAJIU3A
JBWXXEHMA JIIOJEN: COLIUAJIBHO-OPUEHTUPOBAHHOE IJIAHUPOBAHUE
MAPHIPYTA AJIA POBOTOB

AHHOTALIMA

Qualitative Trajectory Calculus (QTC) npedcmasasem  co6oli  MOwHbIU  HA6GOP
UHCMPYMEHMo8 0151 ONUCAHUSI 83AUMOCBSI3AHHbIX Mpaekmopull deuxcywuxcs 06seKkmos ¢
HEo6X00UMbIM YpOBHEM abGCMpakKyuu, COXPAHssT Npu 3MOM OCHOBHble dACNeKMmbl UX
e3aumodeticmsusi. B amoii cmamue Mbl npedcmasisiemM paccmMompeHue KOHKpemHo20 npumepa
npumeHneHusi QTC 045 aHaauza dsudxceHUs u 83aumodeticmausi Aodell 8 ANOHCKOM MOpP2080M
yeumpe. KoneuHas yesb daHH020 ucc/1ed08aHUs 3aKA04AEMCS 8 UCNO/Ab308AHUU NOAYYEHHDBIX
pe3y16mamos 051 yAy4ueHus aa20pummos Coyua/abHO-0pUeHmMUPO8AHHO20, yHUMbIBAOUE20
ncuxos02ur awdell NAAHUPOBAHUS Nymu 0/ MO6U/AbHLIX po60M0o8, PYHKYUOHUPYHWUX U
83aumodelicmayroujux ¢ A100bMu 8 30AHUSIX MOP208bIX YEHMPO8, d MakKxice 8 dpy2ux h0d06HbIX
nomeweHusIx. IMo cmMaHos8umMcsl 8ce 60/1ee 8ANCHbLIM, YyHUMbIBAS] ObICMPbIL pOCM Cep8UCHOU
pPO60MOMeXHUKU U hompebHOCMb 8 HAasu2ayuu, hosvlulawueli 6e30nacHocmsb U Komg@opm
ardell, cobawdasi npu 3mMoM COYUua/abHble HOPMbl, MAKue KAK NpPOKCeMUukd U JAU4YHoe
npocmpaHcmao.

K/IIOYEBBIE C/I0BA

Qualitative Trajectory Calculus; Hasuzayus, y1umbigarowjasi ncuxosnozuro jwdell; AHaaus
deudceHUss homoka moJ/nvl no Habopy daHHblX; KauecmeenHoe npedcmassieHue OAHHbBIX;
[lranupoearue mapwpyma 045 po6oma.

INTRODUCTION

Qualitative Representations often offer several advantages in comparison to their quantitative
continuous counterparts, in specific domains of application. Such a case is Qualitative Trajectory Calculus
(QTC) [1], which was created by Nico Van De Weghe in 2005. It offers a powerful set of tools towards
selectable-granularity abstraction of relative trajectories of moving entities, while preserving essential
aspects of their interaction. It has been used in the past towards proving encodings of relative trajectories
which can easily utilised towards analysing aspects of interactions, or even synthesising interactions [2] that
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maintain required essential properties, in a range of diverse domains: from bird flights [3] to human-robot
interaction [4] and beyond. Furthermore, a promising domain for wider application of QTC is human motion
analysis, for example in sports [5], [6], either across body parts of across players.

Recently, robots are starting to become an important part of our everyday life, and very soon it is
predicted that people will regularly be interacting with robots at work, at home and in public places. Due to
the increasing co-habitation of spaces by humans as well as robots, though, robot motions should take into
account human safety as well as human comfort, and should also conform to implicit social rules regarding
interaction and space sharing. The psychological field of proxemics [7], [8], provides information on many
such considerations, and recently there is an increasing amount of literature dealing explicitly with human-
aware navigation for robots [9], [10] as well as more specifically with the problem of social path-planning
[11], [12]: specialized robot path planning, aiming towards motion as well as interaction with single humans
and groups of humans, that takes into account psychological considerations.

Towards tuning the parameters of social path planning and other human-aware navigation
algorithms, empirical observations of human-human interactions can be informative. For that purpose, and
aiming in particular to introducing human-aware robots in crowded large shopping mall areas, we decided
to study human motions and interactions for the case of a mall in japan, utilising the ATC dataset [13], and
choosing Qualitative Trajectory Calculus as our main representational framework. At a further stage, we
plan to use the results of our human data analysis, towards empirically-informed and parametrically-tuned
human-robot interaction synthesis, utilizing QTC as well as quantitative parameters derived from our
studies.

Thus, in this paper we are presenting a methodology as well as initial results from the first stages
of analysis of the ATC dataset using QTC, towards creating robots that can path plan and behave in manners
which maximize human comfort and which are natural when it comes to human proxemics norms and
expectations. We will start our exposition by providing appropriate background in relevant topics and on
QTC. Then, we will introduce the data set, and proceed with the steps of our analysis and the derived results.
Finally, we will discuss future steps and provide a concise forward-looking conclusion.

BACKGROUND
A. Qualitative Representations

The relative inaccuracy of qualitative representations can naively be considered as a disadvantage
as compared to full quantitative information. However, in many cases qualitative representations are not
only more efficient that full quantitative ones, but are also successful at throwing away unnecessary details
while keeping the essential information for the task at hand. Human cognition heavily relies on qualitative
information, for example when it comes to spatiotemporal descriptions and reasoning.

Three main principals of modern qualitative modeling, as summarized in [14], are:

- Discretization

- Relevance

- Ambiguity

Full-accuracy crisp continuous-valued representations are not only practically infeasible, even for
the case of floating-point digitization, but also usually hide unrealistic assumptions about measurement
accuracy and absence of noise, and are computationally highly expensive. Therefore, different, and even
better, adjustable levels of discretization and symbolification often provide great advantage. Furthermore,
qualitative representations are usually fine-tuned to specific purposes or tasks; and thus their relevance is
of high importance. Finally, qualitative representations can often inherently handle varying levels of
ambiguity and incomplete knowledge, which in many cases is highly advantageous.

For instance, one can think of the three symbols “+”, “-“ “0” as a very simple qualitative
representation for the real numbers [15]. One can also introduce thresholds and ordering, and thus say that
some physical quantity is “below “, "above”, or “equal” to some predetermined threshold, or one can even
move towards derivatives and rates of change and say that it is “increasing”, “decreasing”, “stable”. A similar
three triplet-symbol system covering values, velocities, and accelerations, is used for example at the core of
[16], towards qualitatively representing human activities, while also being augmented with discretized
quantitative information. Furthermore, qualitative dynamics and qualitative reasoning and simulation [17]
has successfully been applied to a variety of domains in the past.

B. Human-Aware Robot Navigation

Service robotics is growing briskly and is expected to continue to grow even faster in the nearest
future [18]. Consequently, robots and people will interact with each other in different environments such as
public places, home and work (for example, [19]-[24]) more often. This means that robots and humans will
be engage in implicit and explicit interaction more frequently. Explicit interactions include robots
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approaching humans and vice-versa towards interacting, human following robots and vice-versa, as well as
walking side by side. Implicit interactions include movements aiming towards the minimization of the
possibility of encounter, active collision avoidance, staying in line with people etc. All those spatial
interactions of robots with people should be performed effectively and at the same time generate minimal
discomfort for humans. Thus, of high relevance are also the rules studied in the psychological field of
proxemics [25], [26], [27], as well as other social rules. Furthermore, robots should take into account human
comfort while they are engaged in productive interaction. These are the main goals of human-aware
navigation. It is a relatively new field of robotics at the intersection of human-robot interaction (HRI) and
motion planning. While motion planning is a fairly mature field of robotics ([28],[29]), and active
algorithmic development started in the 80’s [30], HRI is a relatively newer area of research, becoming
established in the previous decade. However, the HRI field contains many aspects as well as settings of
interaction, going beyond the purely spatial, and including verbal, non-verbal, gestural, as well as short-
term, long-term, and much more. Consequently, human-aware navigation is connected to HRI and is also
related to relevant psychological sub-fields as well as the social sciences.

C. Crowd flow datasets and analysis

Recently systems such as video-surveillance systems [31] and laser-based tracking systems [32] are
becoming widespread in public places, and often operate either manually, or semi-autonomously. Such
systems can be beneficial in multiple ways, beyond increasing safety. For example, information about the
spatiotemporal patterns of crowd flows could help decongest passageways and enable targeted positioning
of shops in a shopping mall. Such systems can also be used for the needs of intelligent responsive
environments, and the data derived are also invaluable towards beter mathematical models of crowds [33].
Due to all of the above reasons, a number of crowd flow datasets have become available in the public domain:
some in the form of pure raw data, others with some basic analysis results attached, such as in the case of
[34], [13]. Availability of such datasets also gives an opportunity for examining motions of individual
persons and analysis of the behaviors of small groups, which arise within, and are embedded in the larger
crowds.

D. Qualitative Trajectory Calculus

QTC was first introduced by Van de Weghe as a method of qualitative representation of relative
trajectories of moving objects. The original QTC formulation was two-dimensional, and was later expanded
to three dimensions [3]. There exist two variations of it based on the time dimension: continuous-time QTC
and a discrete-time QTC. A brief description of the meaning of the original QTC symbols is given in table
[Table 1].

Table 1. Original QTC symbols meaning [2]

Name of constraint - + 0

A Distance for object k kisapproachingl | k is moving | distance remains
further away from | steady
1

B Distance for object 1 lis approaching k | 1is moving further | distance remains
away from k steady

C Speed & k is slower than 1 kis slower thanl | kis faster thanl move with the

same speed

D Side for object k with respect to

k is moving to the

k is moving to the

k moves along the

angle between the velocity vector
of k and vector kl and 02 the
equivalent for 1)

line Kl: left of the line right of the line line

E Side for object 1 with respect to line | 1 is moving to the | | is moving to the | 1 moves along the
Kkl left of the line right of the line line

F Angle (defining as 61 the minimal | 61 <62 01>62 otherwise

THE DATASETS

In our work we have used a dataset of people movements taking place in part of a big shopping and
business center Asia and Pacific Trade Center in Osaka, Japan [34], [13]. This dataset was taken in part of
the building - corridor and hall. The tracking area and sensor locations are shown in the figure 1.
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Figure 1. Tracking area and sensor setup in ATC shopping mall. The dashed line shows the border of the area covered by
the sensors. The photos below show the corridor area in the afternoon on a typical weekday (left) and weekend (right)

[32]

This dataset contains individual pedestrian as well as group data. Individual pedestrian information
was obtained by using automatic tracking systems. The system consists of multiple different 3D range
sensors and covering an area of about 900 m”2. Group information is kept in a different file. It was obtained
by manual labeling according to synchronized information from video-cameras located in the observed area.

The ATC dataset contains 6 days of experiments. For each day the data for 4 one-hour periods are
provided: 10:00-11:00, 12:00-13:00, 15:00-16:00, 19:00-20:00. Person tracking files contain the data for all
persons that were tracked in the environment on a given day and period of time. Each row corresponds to
a single tracked person at a single instant of time. The following fields were used:

TIME [s] (unixtime + milliseconds/1000), PEDESTRIAN_ID, POSITION_X [mm], POSITION_Y
[mm]

Group files contain the group annotations for the given day. In our initial experiments, we have used
following information only about pairs (not more than 2 people):

PEDESTRIAN_ID, PARTNER_ID
TRAJECTORY DATA PROCESSING

The methodology that we are utilizing consists of two main stages: quantitative analysis, followed
by qualitative. During the quantitative stage, we examine the probabilistic distributions of a number of
quantities: trajectory durations, velocities, number of stopping events (stasis), durations of stopping events,
as well as spatial aspects: distribution of stops, entry and exit points, etc. During the qualitative stage, we
examine the symbol sequences that are arise from pairs of trajectories, and especially focus on the types of
relations between trajectories that might arise, such as leader-follower relations vs. uncorellated motion,
moves to approach or detach from interaction etc. Our goal is to later use the information obtained can be
used for tuning robot motions, but it could also be used for other purposes, such as optimizing building
design, shop placement, etc.

Let us start with the initial quantitative phase. First, we examined the duration of the trajectories
contained in our dataset. We initially examined short trajectories with duration less than 10 seconds. We
observed that most of these trajectories were located on the borders of tracking area. In most cases (type-
0) they represent humans that just for a short time entered the scanned area but did not walk through. In a
few cases these trajectories were just a noise of automatic tracking systems (type-1). Due to the non-
interesting (for our purposes) nature of these two types of trajectories, we filtered them from our dataset
(731 remained out of 1090 for 10am-11am, and 2226 out 3138 for 12-1pm). The statistics of the duration
for all the remaining trajectories for two hours of the first day are illustrated in figure 2.
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Figure 2. Durations of trajectories during the 10am-11am and 12am-1pm of the first day of the dataset (seconds) [34]
(median~33)

This histogram represents trajectory durations for people captured by the tracking system. The red
vertical line represents the median, while the blue vertical line represents the mean value.

Next, we started examining velocity statistics. Actually, velocities for any moment of the tracking
process are pre-calculated and given explicitly in the data files of the original ATC dataset. However, the
distribution of the pre-calculated velocities is close to normal (figure 3). This seems to be contrary to
intuition, given that we observed that many people in the dataset were stopping (or having very little
motion) for extended time intervals. This naturally should have led to a bimodal distribution: with one peak
near the average walking speed of the person, and the other peak near the average velocity of the apparent
micro-motions when the person is stopped. We thus recomputed velocities using the trajectory positions
data. The distribution that we got looks as we expected - it is bimodal. That means that we can now also use
it towards discriminating time periods when the person moves from those when the person stops, using an
adaptive dynamical threshold. This distribution for the period of time from 12am to 1pm of the first day is
shown in figure 3. All further figures in this paper will from now on represent statistics for this specific time
period, chosen for the purpose of illustration. The same methods can be used for the other periods.

x10¢

-

Figure 3. Distribution of velocities using given values for all people during the first day from the dataset (on the left).

Distribution of velocities using computed values for all people during the first day from the dataset (on the right: bimodal

distribution - average speed while stopped approx. 100 mm/sec, average speed when walking 1170 mm/sec (~4.5km/hr)
, approx. threshold 650mm/sec)

50 60 700 B0 00 D00 1100 1200 1300 1400 1500

Stopping statistics are presented on figures 4-8. We start by examining the number of stops per
trajectory: Trajectories that have no stops don't appear in this figures (706 trajectories have at least one
stop, out of 2226 - i.e. ~32%). Out of the 706 trajectories that have at least one stop, 302 have one stop only
(~43%), 165 have two stops only (~23%), and so on, as can be seen in Figure 4. The number of stops on a
log-log plot reveals an approximate fit to a 1/x"law. Notice that for most people (~94%) there is no more
then 4 stops total per trajectory and that many people are crossing the area without stops atall (~68%).

167



300

250

200

150

100

50

0
5 10 15 20

Figure 4. Histogram of numbers of stops per trajectory for one hour of the dataset (302 with 1 stop, 165 with 2 stops etc)

Following the number of stops per trajectory, we then examine the stop duration statistics.
Looking back into figure 2, the median trajectory duration was roughly 33sec, with a much higher mean
(45sec-75sec), due to the outliers: some very long trajectories. However, for those trajectories that had
stops, the sum duration of the stops, had a median of 15sec (figure 5); i.e. almost half of the total time.
Indeed, in figure 7 one can see the distribution of this ratio: median 41% stasis (59% walking). Given that
more than one stops often occur, the median duration of a single stop is 6sec.

0
2 7 12 17 22 27 32 37 42 47 52 57 62 67 72 77 82 87 92 97

Figure 5 Sum Duration of all Stops in one Trajectory (mean ~ 36s, median ~ 15s)
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Figure 9. Ratio between zero symbols and the length of the sequence of A constraint

Following the initial quantitative analysis, that consisted of the trajectory duration analysis, the
velocity statistics, the number of stops distribution, and the stop duration statistics, we now move to the
qualitative trajectory calculus-based analysis.

We used QTC analysis in order to investigate interactions between people. Firstly, we obtained
trajectories from the dataset (which were pre-marked as being pairs, so as to have ground truth) and then
we analyzed the pairs using QTC with three basic constrains and with a threshold of 10cm. The distribution
of ratios between zero symbols in the A constraint (see table 1) and the lengths of the sequence is shown
in the figure 9. As expected most values are close to 1 that means that most QTC symbols in A are zeros,
which is what to be expected in the case of pairs moving together, either in parallel or in leader-follower
relations (i.e. the distance usually remains constant). The distribution of the entropy for the same QTC
symbols sequences is shown in the figure 10, and as expected it has very small values, given that the
underlying distributions are heavily biased to one value (i.e. the probability of a “0” symbol is much higher
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than the probability of a “+” or a “-“ symbol). In previous research [3], it has been shown how the composite-
symbol distribution entropies of QTC-3D time-series (i.e. composite symbols made by the Cartesian
product of various QTC-constraint symbols, not just the A constraint that was used here) can be used to
distinguish leaders from followers for the more complex case of pigeons flying in three dimensions.

1 1 1 1 1 I_

0O 005 01 015 02 025 03 035 04 045 05 055 0.6

Figure 10. Entropy of the sequence of A constraint

Often when two people are moving as a pair, one of them takes the role of the leader while the other
assumers the role of the follower. The other possible cases are parallel movement, or you can have rotating
leadership. The fixed leader-follower case is usually apparent through the observation that when the
leader slows down or accelerates the follower does the same too but with a small time delay. So, we tried
to apply QTC with variable time delay (gradually increasing an artificial time delay on one of the two
trajectories and then creating the pair) on the pairs from the dataset.

Figures 11 and 12 illustrate our obtained results. In the figure 11 the orange line corresponds to the
entropy of the original QTC symbol sequence (no time delay) while the blue line corresponds to the entropy
of the QTC symbols vector generated with an artificial time delay in one of the two trajectories. Notice that
in figure 11 the positive time delay corresponds to delay of the leader with respect to the follower; but in
figure 12 the positive time delay corresponds to delay of the follower with respect to the leader. As expected
a minimum arises only in Fig. 12: the minimum entropy is reached when we assume that the follower
mirrors the leader with approximately 370msec delay.
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Figure 11. Entropy of the particular sequence of QTC symbols with and without time delay (orange and blue)
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Figure 12. Entropy of the particular sequence of QTC symbols with and without time delay (orange and blue)
FUTURE STEPS

Further analysis and methodology standardization steps are taking place at the moment, together
with development of methods for incorporation of the results into our social path planning algorithms. Some
of the current and future steps include:

- Derivation of a compact representation of the results of the quantitative analysis. This
representation consists of probabilistic automata: their vertices correspond to {entry/exit/stasis
points} and their edges correspond to {walking segments}. On the vertices and the edges, we also
supply associated temporal (duration) and spatial (velocity, curvature, location) distributions (in
an analogous fashion to the models of [35]).

- Further discrimination between {leader-follower, rotating leadership, parallel walking, uncorellated
movement} for pairs, and automated classification on the basis of the QTC symbol sequences of
random pairs.

- Detection of “approach towards interaction” & “detach from interaction” episodes, and study and
modelling of the QTC symbol sequences during the episodes, as well as associated quantitative
parameters (for example, associated to personal space constraints).

- Incorporation of the above results towards tuning social path planning algorithms for robots, such
as [11-12].

- Utilization of the above results towards optimization of building structures as well as locations of
specific landmarks and functions within buildings, in order to achieve the desired people flow,
people stop, and people interaction patterns within buildings.

CONCLUSION

Towards the fluid and natural co-habitation of spaces by humans and robots and their co-operation
as our primary purpose, but also towards compact modeling of human motion and interaction patterns
within public spaces as a secondary purpose, in this paper we have presented initial steps of a methodology,
consisting of both quantitative as well as qualitative analysis. Qualitative Trajectory Calculus (QTC) was
utilized, offering a powerful set of tools towards selectable-granularity abstraction of relative trajectories of
moving entities, while preserving essential aspects of their interaction. Furthermore, probabilistic modeling
of temporal and spatial aspects of the human trajectories, as well as their stasis episodes, was brought to
use.

Initial results were presented for the case of a dataset consisting of human motions and interactions
within a Japanese shopping mall, the ATC dataset. Trajectory duration statistics, statistics of walking and
stasis episodes numbers and durations, velocity distributions were presented. Furthermore, qualitative
analysis using minimal QTC and entropy analysis, uncovered leader-follower relations as well as the mean
delay time in them. Importantly, future steps were presented, towards creating standard and compact
representations of such results, towards further discriminating between many possible types of trajectory
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pairs, towards analyzing approach-detach results, and towards utilizing our results for human-robot
interaction as well as architectural & spatial design purposes.

The methods described and which are being further developed, are becoming increasingly

important given the rapid rise of service robots and the need for human-aware navigation, maximizing the
safety and comfort of humans while preserving social norms such as proxemics and personal spaces,
ultimately towards a future where robots will help improve human lives.
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