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Abstract
The paper is devoted to the problem of additive fault detection observer design for discrete LTI plants 
with scalar measurement and external disturbance with the known spectral features. Choice of the ob-
server-filter parameters should maximize its sensitivity to the faults effect and minimize its response 
to the external disturbance signal. These features are provided by the special filter, generating the cor-
rective signal. The specific spectral approach to discrete H2 optimization in frequency domain, based 
on the polynomial factorization, is applied with the aim to improve computational effectiveness of the 
synthesis. Some theoretical aspects are discussed and the novel algorithm of discrete adaptive fault de-
tection observer analytical design is formulated and its effectiveness is demonstrated by the numerical 
example with implementation of MATLAB package.
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Аннотация
Статья посвящена проблеме построения аддитивного наблюдателя для обнаружения неис-
правностей для дискретных объектов LTI со скалярным измерением и внешним возмущением 
с известными спектральными характеристиками. Выбор параметров фильтра-наблюдателя 
должен обеспечивать его максимальную чувствительность к воздействию неисправностей и 
минимальную реакцию на сигнал внешнего возмущения. Эти возможности обеспечивает 
специальный фильтр, формирующий корректирующий сигнал. Специальный спектральный 
подход к дискретной H2-оптимизации в частотной области, основанный на полиномиальной 
факторизации, применяется с целью повышения вычислительной эффективности синтеза. Об-
суждаются некоторые теоретические аспекты, и формулируется новый алгоритм аналитиче-
ского проектирования дискретного адаптивного наблюдателя обнаружения неисправностей, 
эффективность которого демонстрируется на численном примере с реализацией пакета 
MATLAB.
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Introduction

Ever-increasing complexity of the controlled plants and enhancing 
requirements of reliability result in significant attention, paid the 
fault-related areas of control engineering, such as fault detection 
(FD), fault estimation (FE) and fault-tolerant control (FTC). The first 
step in fault diagnosis is fault detection, i.e. binary decision process, 
determining whether a fault has occurred or not. It is obvious, that 
well-timed detection of malfunction makes possible to correct the 
control law timely, until the failure cause serious consequences, 
so effectiveness of the failure effect suppression depends on fault 
detection process.  Various fault detection techniques, existing in 
our time, can be split to data-based approaches (e.g. PCA) [1], us-
ing statistical criteria and model-based ones [2, 3], implementing 
given mathematical description of the plant and usually including 
asymptotic observers.
There are a lot of various approaches of approaches the mod-
el-based fault detection, such as the numerous methods, mentioned 
in [3].However, there are some ways to improve effectiveness of 
the fault detection process, especially in case of the external dis-
turbance with given spectral features or limited computational 
resources. The algorithm, presented in this paper, is based on the 
special spectral approach in frequency domain [4], and techniques 
of spectral optimization and FD observers design, proposed in1 [5-
8]. It does not contain such complicated procedures as solving of 
Riccati equations or linear matrix inequalities (LMI). This feature 
can crucial for the systems with real-time regime of operating, e.g. 
for onboard control systems.
The paper is organized as follows. In the next section, equations 
of a controlled plant are presented and problem of the optimal 
adaptive observer-filter design is formulated. Section 3 is devoted 
to description of the proposed approach with implementation of 
discrete mean-square optimization ideology and formulation of the 
observer design algorithm. In Section 4, the numerical example of 
optimal controller design is presented. Finally, Section 5 concludes 
this paper by discussing the overall results of the investigation and 
possible directions of the future research.
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where nE∈x is the state space vector, 1Eu∈ is the control signal, 1Ed ∈ is the external disturbance, 1Ef ∈ is the 

slowly varying fault, i.e. ][]1[ tftf ≈+ , and mR∈y is output measured signal. All components of the matrices 
hecbA ,,,, are known constant values, the pairs { }BA, and { }CA, are controllable and observable respectively. The 

system (1) has the sample time sT .
External disturbance d for the system (1) is treated as output of the filter with transfer function
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where )(sN d and )(sTd are Schur polynomials (all their roots are located in the open unit disk on complex plane) and 

1i is the white noise. It can also be represented it in the simpler polyharmonical form
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where diA , iω , iϕ are amplitudes, frequencies and phases of the corresponding 
harmonics. Let us suppose that 0ω is the central frequency of the external 
disturbance d .

Adaptive fault detection observer has the following structure
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where Ω is a set of the pairs { }W,l guarantying stability of the designed closed-loop systems (9).
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where a division to )(~ zG is done totally.
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so reduce of the parameter r can result in so decrease of the functional 1J .
This problem can be overcome by implementation of the scheme, proposed in [8], and based on deformation of

the external disturbance shaping filter (2), i.e.
using of the modified polynomial )(1 zN z
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where a division to )(~ zG is done totally.
7. Split roots of the polynomial ( )zV1 into the two groups iξ , ξ= ni ,1 , jη , η= nj ,1 , ))(deg( 01 zVnn =+ ηξ , calculate 
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and construct the vector l  such that )()()( 0
1 zLzzA =− − lAIc

by the formulae (20), (21).
8. Evaluate the functional  J  (11).
9. Maximize J , repeating the calculations 4–8 with new parame-
ters γ , searched with any numerical method, e.g. Nelder-Mead al-
gorithm. Receive the optimal parameters *γ=γ .
10. If ),,( *γα= stkJJ   is too small, then repeat steps 2-9 with 
new parameters k , r . Receive the optimal parameters *kk = , 

*rr = .
11. Construct optimal 0ll = , )()( 0 sWsW = , using the optimal 
parameters.

Example of Synthesis

Let us demonstrate the practical implementation of the proposed 
algorithm by the example of marine ship moving on the horizontal 
plane with constant longitudinal speed. Consider the plant (1) with 
the following parameters [7], [22-25]:
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and the central frequency 45.00 =ω 0.45, or in the polyharmonical form 
(3)
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(20), (21).
8. Evaluate the functional J (11).
9. Maximize J , repeating the calculations 4–8 with new parameters γ , searched 
with any numerical method, e.g. Nelder-Mead algorithm. Receive the optimal 
parameters *γ=γ .

10. If ),,( *γα= stkJJ is too small, then repeat steps 2-9 with new parameters k , r . Receive the optimal parameters 
*kk = , *rr = .

11. Construct optimal 0ll = , )()( 0 sWsW = , using the optimal parameters.

4 Example of Synthesis

Let us demonstrate the practical implementation of the proposed algorithm by the example of marine ship moving on 
the horizontal plane with constant longitudinal speed. Consider the plant (1) with the following parameters [7], [22-25]:
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and the central frequency 45.00 =ω , or in the polyharmonical form (3)
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Let us choose [ ]1.0,01 =Ω , [ ]002 1.1,9.0 ωω=Ω , 1.00 =k , 99.00 =r , 2ˆ =n , ( )110 =γ and execute the Algorithm 

1. We receive 99.0* =r , 03.0* =k ( )376.0749.110 5* −=γ , and the parameters of the optimal observer
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Figure 1 represents frequency responses rdA and rfA of the transfer functions rdF and rfF (9). Note that the response 

rdA is close to 0 on zero frequency and in the area of 0ω , i.e. effect of the external disturbance )(td is successfully 
suppressed. Fault detection process is presented in the Figure 2: the fault occurs at 200 s and is successfully detected.

F i g. 1. Frequency responses of the transfer functions rdF and rfF
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99.00 =r , 2ˆ =n , ( )110 =γ  and execute the Algorithm 1. We 

receive 99.0* =r , 03.0* =k 0.03, ( )376.0749.110 5* −=γ 10-5( )376.0749.110 5* −=γ , and the 
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Figure 1 represents frequency responses Ard and Arf of the transfer 
functions Frd and Frf  (9). Note that the response Ard is close to 0 
on zero frequency and in the area of 0ω , i.e. effect of the external 
disturbance )(td  is successfully suppressed. Fault detection pro-
cess is presented in the Figure 2: the fault occurs at 200 s and is 
successfully detected.
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Conclusion

A new fault detection technique, based on analytical spectral dis-
crete H2-optimization, has been presented in this paper. The pro-
posed approach can be implemented to various plants, affected by 
disturbance with the given spectral features. Working capacity and 
effectiveness of the formulated algorithm are illustrated by the nu-

merical example: linearized model of a marine ship plane motion. 
On the other hand, there are some serious demerits. First, the pro-
posed algorithm does not take into account dynamics of the fault. 
Second, it cannot be applied in case of plants with multidimensional 
output, external disturbance and control signals. Overcoming of the 
mentioned demerits is the object of the future research.
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