Mesh Geometric Rebuilding Using the Common Envelope of a Spheres Family in the Ice Accretion Problem
Abstract
In the numerical simulation of the process of ice growth on the surface of a streamlined body, an important role is played by the problem of geometric remeshing of the surface computational mesh according to the intensity of ice accretion. In this problem, according to the intensity of ice growth in the nodes or cells of the mesh, it is necessary to calculate the new positions of the mesh nodes so that the resulting configuration of the evolved computational mesh adequately reflects the surface with the ice cover formed on it. One of the critical requirements for the mesh rebuilding algorithm is its reliability, the ability to work with arbitrary surface meshes, the ability to work with strong mesh bends, wrinkles and noise, and to deal with potential self-intersections. This article considers an algorithm for rebuilding a surface mesh, in which the new position of a computational mesh node is defined as the point of intersection of the trajectory of the node and the common envelope of a spheres’ family with centers at the points of ice growth and radii corresponding to the intensity of ice growth. The proposed algorithm is designed to work with bodies with complex geometry; when using it, local cavities are tightened, as well as sharp peaks are smoothed, which improves the quality of the final mesh. The main quality of the developed algorithm is its reliability, which allows it to work with meshes of arbitrary complexity and with meshes with geometric defects.
References
2. Fevralskikh A.V. Wing icing of ground-effect vehicle: numerical simulation. Trudy Krylovskogo gosudarstvennogo nauchnogo centra = Transactions of the Krylov State Research Centre. 2019;(4):117-124. (In Russ., abstract in Eng.) https://doi.org/10.24937/2542‑2324‑2019-4-390-117-124
3. Koshelev K.B., Melnikova V.G., Strijhak S.V. Development of iceFoam solver for modeling ice accretion. Proceedings of the Institute for System Programming of the RAS (Proceedings of ISP RAS). 2020;32(4):217-234. (In Russ., abstract in Eng.) https://doi.org/10.15514/ISPRAS-2020-32(4)-16
4. Aksenov A.A., Byvaltsev P.M., Zhlutkov S.V., Sorokin K.E., Babulin A.A., Shevyakov V.I. Numerical simulation of ice accretion on airplane surface. AIP Conference Proceedings. 2019;2125(1):030013. doi: https://doi.org/10.1063/1.5117395
5. Aksenov A.A. FlowVision: Industrial computational fluid dynamics. Computer Research and Modeling. 2017;9(1):5-20. (In Russ., abstract in Eng.) https://doi.org/10.20537/2076-7633-2017-9-5-20
6. Bartkus T.P., Struk P.M., Tsao J.-C. Evaluation of a Thermodynamic Ice-Crystal Icing Model Using Experimental Ice Accretion Data. Atmospheric and Space Environments Conference. 2018. https://doi.org/10.2514/6.2018-4129
7. Zhang X., Wu X., Min J. Aircraft icing model considering both rime ice property variability and runback water effect. International Journal of Heat and Mass Transfer. 2017;104:510-516. https://doi.org/10.1016/J.IJHEATMASSTRANSFER.2016.08.086
8. Zhou R.-W., Zhu Y.-C., Tian Y., Chao J. Study on natural ice-melting process of insulator by thermodynamic analysis. Thermal Science. 2022;26(6B):5015-5025. https://doi.org/10.2298/TSCI211014106Z
9. Porter C.E., Rigby D.L. Three Dimensional Surface Redefinition Method for Computational Ice Accretion Solvers. AIAA Aviation Forum. 2020. https://doi.org/10.2514/6.2020-2831
10. Rybakov A.A., Shumilin S.S. Approximate methods of the surface mesh deformation in two-dimensional case. Lobachevskii Journal of Mathematics. 2019;40(11):1848-1852. https://doi.org/10.1134/S1995080219110258
11. Bourgault-Côté S., Hasanzadeh K., Lavoie P., Laurendeau E. Multi-layer icing methodologies for conservative ice growth. In: 7th European Conference for Aeronautics and Aerospace Sciences (EUCASS). 2017. https://doi.org/10.13009/EUCASS2017-258
12. Jiao X. Volume and feature preservation in surface mesh optimization. In: Proceedings of the 15th International Meshing Roundtable. 2006. https://doi.org/10.1007/978-3-540-34958-7_21
13. McCloud P.L. Extrusion of complex surface meshes utilizing face offsetting and mean curvature smoothing. In: AIAA Scitech 2019 Forum. 2019. https://doi.org/10.2514/6.2019-1718
14. Thompson D., Tong X., Arnoldus Q., Collins E., McLaurin D., Luke E. Discrete surface evolution and mesh deformation for aircraft icing applications. In: 5th AIAA Atmospheric and Space Environments Conference. 2013. https://doi.org/10.2514/6.2013-2544
15. Tong X., Thompson D., Arnoldus Q., Collins E., Luke E. Three-dimensional surface evolution and mesh deformation for aircraft icing applications. Journal of Aircraft. 2017;54:1047-1063. https://doi.org/10.2514/1.C033949
16. Shumilin S.S. Methods for anchoring boundary nodes when smoothing a triangular surface mesh. Program Systems: Theory and Applications. 2021;12(2):207-219. https://doi.org/10.25209/2079‑3316-2021-12-2-207-219
17. Rivara M.-C., Rodrigez-Moreno P. A. Tuned terminal triangles centroid Delaunay algorithm for quality triangulation. In: Roca X., Loseille A. (eds.) 27th International Meshing Roundtable. 2019. Vol. 127. https://doi.org/10.1007/978-3-030-13992-6_12
18. Rakotoarivelo H., Ledoux F. Accurate manycore-accelerated manifold surface remesh kernels. In: Roca X., Loseille A. (eds.) 27th International Meshing Roundtable. 2019. Vol. 127. https://doi.org/10.1007/978‑3‑030-13992-6_22
19. Panchal D., Jayaswal D., Feature sensitive geometrically faithful highly regular direct triangular isotropic surface remeshing. Sādhanā. 2022;(47):94. https://doi.org/10.1007/s12046-022-01866-7
20. Jung W., Shin H., Choi B.K. Self-intersection removal in triangular mesh offsettings. CAD Journal. 2004;1(1):477-484. https://doi.org/10.1080/16864360.2004.10738290
21. Skorkovská V., Kolingerová I., Benes B. A Simple and robust approach to computation of meshes intersection. In: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications. 2018;1:175-182. https://doi.org/10.5220/0006538401750182
22. Charton J., Baek S., Kim Y. Mesh repairing using topology graphs. Journal of Computational Design and Engineering. 2021;8(1):251-267. https://doi.org/10.1093/jcde/qwaa076
23. Rybakov A.A. Optimization of the problem of conflict detection with dangerous aircraft movement areas to execute on Intel Xeon Phi. Programmnye produkty i sistemy = Software & Systems. 2017;30(3):524-528. (In Russ., abstract in Eng.) https://doi.org/10.15827/0236-235X.119.3.524-528
24. Freylekhman S.A., Rybakov A.A. Self-intersection elimination for unstructured surface computational meshes. Lobachevskii Journal of Mathematics. 2022;43(10):134-140. https://doi.org/10.1134/S1995080222130133
25. Shabanov B.M. Rybakov A.A., Shumilin S.S., Vorobyov M.Y. Scaling of supercomputer calculations on unstructured surface computational meshes. Lobachevskii Journal of Mathematics. 2021;42(11):2571-2579. doi: https://doi.org/10.1134/S1995080221110202

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.