Approach to Building a Recommendation System for Libraries

Abstract

The paper considers the possibility of building a hybrid recommendation system for the electronic library catalog in the form of a recommendation service. The following options for building recommendations were considered: collaborative filtering methods, content-based recommendations. The results obtained were used to create a recommendation service, in which it is proposed to use two recommendation algorithms: collaborative filtering based on documents and recommendations based on content. Anonymized data on completed orders (order history) and data from the library's electronic catalog are used as input data for the recommendation system. An example of building a recommendation system based on content is considered.

Author Biographies

Yulia Viktorovna Leonova, Federal Research Center for Information and Computational Technologies

Researcher, Cand. Sci. (Eng.)

Oleg Sergeevich Kolobov, Federal Research Center for Information and Computational Technologies

Researcher, Cand. Sci. (Eng.)

Anna Anatolyevna Knyazeva, Federal Research Center for Information and Computational Technologies

Researcher, Cand. Sci. (Eng.)

Igor Yuryevich Turchanovsky, Federal Research Center for Information and Computational Technologies

Deputy Director – Director of the Tomsk Branch of the Institute of Computational Technologies, Siberian Branch of the Russian Academy of Sciences, Cand. Sci. (Phis.-Math.)

References

1. Franke M., Geyer-Schulz A., Neumann A.W. Recommender Services in Scientific Digital Libraries. In: Tsihrintzis G.A., Jain L.C. (eds.) Multimedia Services in Intelligent Environments. Studies in Computational Intelligence. Vol. 120. Berlin, Heidelberg: Springer; 2008. p. 377-417. https://doi.org/10.1007/978-3-540-78502-6_15
2. Smeaton A.F., Callan J. Personalisation and recommender systems in digital libraries. International Journal on Digital Libraries. 2005;5(4):299-308. https://doi.org/10.1007/s00799-004-0100-1
3. Beel J., Gipp B., Langer S., Breitinger C. Research-paper recommender systems: a literature survey. International Journal on Digital Libraries. 2016;17:305-338. https://doi.org/10.1007/s00799-015-0156-0
4. Risch J., Krestel R. What Should I Cite? Cross-Collection Reference Recommendation of Patents and Papers. In: Kamps J., Tsakonas G., Manolopoulos Y., Iliadis L., Karydis I. (eds.) Research and Advanced Technology for Digital Libraries. TPDL 2017. Lecture Notes in Computer Science. Vol. 10450. Cham: Springer; 2017. p. 40-46. https://doi.org/10.1007/978-3-319-67008-9_4
5. Tsuji K., Takizawa N., Sato S., Ikeuchi U., Ikeuchi A., Yoshikane F., Itsumura H. Book Recommendation Based on Library Loan Records and Bibliographic Information. Procedia ‒ Social and Behavioral Sciences. 2014;147:478-486. https://doi.org/10.1016/j.sbspro.2014.07.142
6. Naak A., Hage H., Aïmeur E. A Multi-criteria Collaborative Filtering Approach for Research Paper Recommendation in Papyres. In: Babin G., Kropf P., Weiss M. (eds.) E-Technologies: Innovation in an Open World. MCETECH 2009. Lecture Notes in Business Information Processing. Vol. 26. Berlin, Heidelberg: Springer; 2009. p. 25-39. https://doi.org/10.1007/978-3-642-01187-0_3
7. Fu S., Zhang Y., Seinmin N. On the recommender system for university library. In: Proceedings of the IADIS International Conference e-Learning 2013. Prague, Czech Republic; 2013. p. 215-222. Available at: https://files.eric.ed.gov/fulltext/ED562315.pdf (accessed 19.09.2023).
8. Hu Y., Koren Y., Volinsky C. Collaborative Filtering for Implicit Feedback Datasets. In: 2008 Eighth IEEE International Conference on Data Mining. Pisa, Italy: IEEE Computer Society; 2008. p. 263-272. https://doi.org/10.1109/ICDM.2008.22
9. Pathan A.F., Prakash C. Unsupervised Aspect Extraction Algorithm for opinion mining using topic modeling. Global Transitions Proceedings. 2021;2(2):492-499. https://doi.org/10.1016/j.gltp.2021.08.005
10. Chauhan U., Shah A. Topic Modeling Using Latent Dirichlet allocation: A Survey. ACM Computing Surveys. 2021;54(7):145. https://doi.org/10.1145/3462478
11. Blei D.M., Ng A.Y., Jordan M.I. Latent Dirichlet allocation. Journal of Machine Learning Research. 2003;3(4-5):993-1022. Available at: https://www.jmlr.org/papers/volume3/blei03a/blei03a.pdf (accessed 19.09.2023).
12. Mönnich M., Spiering M. Adding Value to the Library Catalog by Implementing a Recommendation System. D-Lib Magazine. 2008;14(5/6). https://doi.org/10.1045/may2008-monnich
13. Fleder D., Hosanagar K. Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity. Management Science. 2009;55(5):697-712. https://doi.org/10.1287/mnsc.1080.0974
14. Piryonesi S.M., El-Diraby T.E. Role of Data Analytics in Infrastructure Asset Management: Overcoming Data Size and Quality Problems. Journal of Transportation Engineering, Part B: Pavements. 2020;146(2):04020022. https://doi.org/10.1061/JPEODX.0000175
15. Fareed A., Hassan S., Belhaouari S.B., Halim Z. A collaborative filtering recommendation framework utilizing social networks. Machine Learning with Applications. 2023;14:100495. https://doi.org/10.1016/j.mlwa.2023.100495
16. Jones K.S. A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation. 2004;60(5):493-502. https://doi.org/10.1108/eb026526
17. Qaiser S., Ali R. Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications. 2018;181(1):25-29. Available at: https://www.ijcaonline.org/archives/volume181/number1/qaiser-2018-ijca-917395.pdf (accessed 19.09.2023).
18. Azzopardi L., Girolami M., van Risjbergen K. Investigating the relationship between language model perplexity and IR precision-recall measures. In: Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval (SIGIR '03). New York, NY, USA: Association for Computing Machinery; 2003. p. 369-370. https://doi.org/10.1145/860435.860505
19. Rüdiger M., Antons D., Joshi A.M., Salge T.-O. Topic modeling revisited: New evidence on algorithm performance and quality metrics. PLoS ONE. 2022;17(4):e0266325. https://doi.org/10.1371/journal.pone.0266325
20. O Callaghan D., Greene D., Carthy J., Cunningham P. An analysis of the coherence of descriptors in topic modeling. Expert Systems with Applications. 2015;42(13):5645-5657. https://doi.org/10.1016/j.eswa.2015.02.055
21. Bicalho P., Pita M., Pedrosa G., Lacerda A., Pappa G.L. A general framework to expand short text for topic modeling. Information Sciences. 2017;393:66-81. https://doi.org/10.1016/j.ins.2017.02.007
22. Khamis I. The Use of Machine Learning in Libraries: How to Build a Book Recommender System. In: Holland B. (ed.) Handbook of Research on Advancements of Contactless Technology and Service Innovation in Library and Information Science. IGI Global; 2023. p. 23-44. https://doi.org/10.4018/978-1-6684-7693-2.ch002
23. Thorndike R.L. Who belongs in the family? Psychometrika. 1953;(18):267-276. https://doi.org/10.1007/BF02289263
24. Hahsler M. Recommenderlab: Lab for Developing and Testing Recommender Algorithms. arXiv:2205.12371. 2022. https://doi.org/10.48550/arXiv.2205.12371
25. Ning X., Karypis G. SLIM: Sparse Linear Methods for Top-N Recommender Systems. In: 2011 IEEE 11th International Conference on Data Mining. Vancouver, BC, Canada: IEEE Computer Society; 2011. p. 497-506. https://doi.org/10.1109/ICDM.2011.134
Published
2023-10-15
How to Cite
LEONOVA, Yulia Viktorovna et al. Approach to Building a Recommendation System for Libraries. Modern Information Technologies and IT-Education, [S.l.], v. 19, n. 3, p. 676-683, oct. 2023. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/1001>. Date accessed: 17 feb. 2026. doi: https://doi.org/10.25559/SITITO.019.202303.676-683.
Section
Research and development in the field of new IT and their applications