AUTOMATIC DOCUMENT CLASSIFICATION ON THE BASIS OF TEXT AUDIENCE AGE GROUPS IN E-LEARNING SYSTEMS
Abstract
The paper discusses the feasibility of automatic document classification mechanisms for e-learning systems. We suggest an intellectual system for text classification based on the age groups of text audience and represent the results of computational experiment characterizing the performance of the method.
References
2. Nguyen T. The effectiveness of online learning: beyond no significant difference and future horizons // MERLOT Journal of Online Learning and Teaching. – 2015. – №2. – P. 309-319.
3. Arkorful V., Abaidoo N. The role of e-learning, the advantages and disadvantages of its adoption in higher education // International Journal of Education and Research. – 2014. – №12. – P. 397-410.
4. Doneva R, Gaftandzhieva S. Automated e-learning quality evaluation // Proceedings of International Conference on e-Learning. – Bratislava, Slovakia, 2014. – P. 169-174.
5. Bodrow W. Evaluation of enterprise skills from the perspective of university education // Proceedings of International Conference on e-Learning. – Bratislava, Slovakia, 2015. – P. 130-135.
6. Баженова И.Ю. Современные подходы к формированию профессиональных компетенций в области применения языков программирования // Современные информационные технологии и ИТ-образование. – 2015. – Т. 1 (№11). – С. 130-134.
7. Parra B.J. Learning strategies and styles as a basis for building personal learning environments // International Journal of Educational Technology in Higher Education. – 2016. – №11. – P. 70-77.
8. Shivdas P.A., Sivakumar S. Innovation in services: A lancastrian approach to the field of e-learning // Education and Information Technologies. – 2016. – №6. – P. 1913–1925.
9. Sharifabadi S.R. How digital libraries can support e-learning // The Electronic Library. – 2006. – №3. – P. 389-401.
10. Onan A., Korukoǧlu S., Bulut H. Ensemble of keyword extraction methods and classifiers in text classification // Expert Systems with Applications. – 2016. – Vol. 57. – P. 232-247.
11. Zhitomirsky-Geffet M., David E., Koppel M., Uzan H. Utilizing overtly political texts for fully automatic evaluation of political leaning of online news websites // Online Information Review. – 2016. – №3. – P. 362-379.
12. Ле М.Х. Оптимизация алгоритма knn для классификации текстов // Труды Московского физико-технического института. – 2016. – № 1. – С. 92-94.
13. Fedotov A.M., Barakhnin V.B., Fedotova O.A., Zhizhimov O.L. A model of digital library to support research activities // Cовременные информационные технологии для фундаментальных научных исследований в области наук о земле: материалы Международной конференции. – Петропавловск-Камчатский, 2014. – С. 22.
14. Malki Z. Information and communication technologies role in developing electronic libraries and information centers // Journal of Theoretical and Applied Information Technology. – 2015. – № 2. – P. 167-183.
15. Tella A. Electronic and paper based data collection methods in library and information science research: A comparative analyses // New Library World. – 2015. – №9-10. – P. 362-379.
16. Akker R., Traum D. A comparison of addressee detection methods for multiparty conversations // Proc. of methods for multiparty conversations. – Amsterdam, 2009. – P. 99-106.
17. Choi D., Ko B., Kim H., Kim P. Text analysis for detecting terrorism-related articles on the Web // Journal of Network and Computer Applications. – 2013. –№5. – P. 37-46.
18. Lee H., Stolcke A., Shriberg E. Using out-of-domain data for lexical addressee detection in human-human
-computer dialog // Proc. North American ACL/Human Language Technology Conference. – Atlanta, 2013. –
P. 215-219.
19. Национальный корпус русского языка [Электронный ресурс]. 2015. URL: http:// ruscorpora.ru/ (дата обращения: 05.10.2016).
20. «База данных метатекстовой разметки Национального корпуса русского языка» (коллекция детской литературы)». 2014.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.