MODEL OF INTEGRAL ASSESSMENT QUALITY OF TRAINING GRADUATES OF HIGHER ENGENEERING EDUCATION

  • Елена Александровна Гаврилина Bauman Moscow State Technical University
  • Михаил Александрович Захаров Bauman Moscow State Technical University
  • Анатолий Павлович Карпенко Bauman Moscow State Technical University
  • Елена Валентиновна Смирнова Bauman Moscow State Technical University
  • Александр Павлович Соколов Bauman Moscow State Technical University

Abstract

This study reviews stationary aspect of the problem of graduates meta-competencies quantitative evaluation. The mathematical model for such evaluation is constructed. Structure of software system META-3 and its main characteristics is described.

Author Biographies

Елена Александровна Гаврилина, Bauman Moscow State Technical University

PhD, assistant professor of Sociology and cultural studies 

Михаил Александрович Захаров, Bauman Moscow State Technical University

graduate student of DUT-6 Faculty of Informatics and Management

Анатолий Павлович Карпенко, Bauman Moscow State Technical University

Doctor of Physical and Mathematical Sciences, Professor, Head of Computer Aided Design (CAD) RK faculty

Елена Валентиновна Смирнова, Bauman Moscow State Technical University

Ph.D., assistant professor of DUT-6 Faculty of Informatics and Management

Александр Павлович Соколов, Bauman Moscow State Technical University

Ph.D., Associate Professor of PK-6 Faculty of Informatics and Control

References

1. Purysheva N S, Romashkina N V and Krysanova O A 2012 On meta-objectivity, methodology and other universals Annals of N. I. Lobachevsky State University of Nizhny Novgorod 1 11-17.
2. Gavrilina E A, Zakharov M A and Karpenko A P 2015 Quantitative evaluation of students’ meta-competencies on the basis of the methods of machine learning Science and education 4 http://technomag.bmstu.ru/doc/764221.html
3. Company “Sociohub.ru” – URL: http://www.sociohub.ru/
4. Yakushev A V, Deykstra L Y and Mityagin S A 2012 Distributed crawler for social networks on the basis of the model Map/Reduce Data-measuring and controlling systems 11 47-53
5. Scikit-learn. Machine Learning in Python. URL: http://scikit-learn.org/stable/
6. Zhu Xhu 2008 Semi-Supervised Learning Literature Survey Computer Sciences TR 1530 (Madison: University of Wisconsin) p. 60.
7. Sutton R and Barto A 2002 Reinforcement Learning (Cambridge, Massachusetts, London England: A Bradford Book The MIT Press)
8. Margie M 2007 Clickers in the classroom: an active learning approach EDUCAUSE Quarterly 2 71 - 74.
9. Varnek A et al. 2009 Inductive transfer of knowledge: application of multi-task learning and feature net approaches to model tissue-air partition coefficients Journal of Chemical Information and Modeling 49 1 133-144.
Published
2016-11-26
How to Cite
ГАВРИЛИНА, Елена Александровна et al. MODEL OF INTEGRAL ASSESSMENT QUALITY OF TRAINING GRADUATES OF HIGHER ENGENEERING EDUCATION. Modern Information Technologies and IT-Education, [S.l.], v. 12, n. 3-2, p. 11-16, nov. 2016. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/116>. Date accessed: 08 nov. 2025.
Section
IT education: methodology, methodological support