Recognition of Complex Human Actions Based on Skeletal Pose Sequence Analysis

Abstract

One of the priority areas of computer vision technology development is the extraction of skeletal data from human images and the subsequent use of this data to solve a whole range of applied problems. The paper gives a brief overview of technologies for solving the problem of human action recognition, highlights the main approaches, describes limitations, advantages and disadvantages. The authors propose a new approach to the recognition of complex human actions based on the analysis of skeletal data dynamics and application of state machine. The approach used is multi-stage and combines the sequential use of a neural network model of human pose detection MoveNet, a custom enhanced feature extraction layer (PoseEnhancementLayer), as well as an algorithm for detecting a committed action based on the analysis of poses at bifurcation points of the action. The solution proposed by the authors allows action detection without additional model training, which provides flexibility and scalability. Testing on open datasets showed high accuracy of human pose classification and robustness to incomplete or noisy sequences. The results are relevant for applications in sports analytics, interactive learning, rehabilitation and medical monitoring.

Author Biographies

Kirill Mikhailovich Maksimenko, Dubna State University

студент Института системного анализа и управления

Lev Nikolaevich Teryaev, Dubna State University

аспирант кафедры распределенных и вычислительных систем Института системного анализа и управления

Victor Alexandrovich Dorokhin, Dubna State University

старший преподаватель кафедры распределенных и вычислительных систем Института системного анализа и управления

Andrey Vasilevich Nechaevskiy, Dubna State University; Joint Institute for Nuclear Research

и.о. проректора по цифровому развитию; старший научный сотрудник Лаборатории информационных технологий имени М.Г. Мещерякова

Published
2025-07-21
How to Cite
MAKSIMENKO, Kirill Mikhailovich et al. Recognition of Complex Human Actions Based on Skeletal Pose Sequence Analysis. Modern Information Technologies and IT-Education, [S.l.], v. 21, n. 2, july 2025. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/1216>. Date accessed: 31 oct. 2025.
Section
Research and development in the field of new IT and their applications