ALGORITHMIC AND SOFTWARE IMPLEMENTATION OF REED–SOLOMON ERASURE CODES FOR GALOIS FIELDS OF HIGH ORDER

  • Владимир Владимирович Винников OOO Acronis, Dorodnicyn Computing Centre of RAS
  • Людмила Владимировна Иваничкина OOO Project Iks; Moscow Institute of Physics and Technology

Abstract

This paper is concerned with the novel approach to algorithmic and software implementation of Reed–Solomon codes for super large data storage systems. We compare the most popular algorithms of multiplication over finite fields and consider their pros and cons depending on the alphabet power of messages to encode. This work emphasizes differences in the redundancy parameter requirements for erasure codes designed for either noise-resistant data transfer over communication channels or long term reliable data storing with fault-tolerant access. We propose the multiplication algorithm that combines table and “divide and conquer” approaches to fast multiplication to achieve a compromise between the volume of allocated random access memory and the number of required arithmetic operations. The paper provides the listings with C++ program implementation of the presented algorithm.


 

Author Biographies

Владимир Владимирович Винников, OOO Acronis, Dorodnicyn Computing Centre of RAS

технический писатель; кандидат физико-математических наук, старший научный сотрудник отдела вычислительной физики Вычислительного центра им. А.А. Дородницына

Людмила Владимировна Иваничкина, OOO Project Iks; Moscow Institute of Physics and Technology

старший разработчик; аспирант факультета управления и прикладной математики 

References

1. Ivanichkina L. Computer Simulator of Failures in Super Large Data Storage / L. Ivanichkina, A. Neporada // Contemporary Engineering Sciences. – 2015. – Т. 8. – № 28. – C. 1679–1691.
2. Ivanichkina L. Mathematical methods and models of improving data storage reliability including those based on finite field theory / L. Ivanichkina, A. Neporada // Contemporary Engineering Sciences. – Т. 7. –№ 28. – 2014. – C. 1589 – 1602.
3. ETSI EN 300 744 V1.6.1 (2009-01) Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television // European Standard (Telecommunications series). – 2009. – 66 С.
4. Seroussi G. Table of low-weight binary irreducible polynomials. – Hewlett-Packard Laboratories, 1998.
5. Карацуба А. А., Офман Ю. П. Умножение многозначных чисел на автоматах //ДАН СССР. – 1961. – Т. 145. – № 2. – С. 293-294.
6. Toom A. L. The complexity of a scheme of functional elements realizing the multiplication of integers //Soviet Mathematics Doklady. – 1963. – Т. 3. – №. 4. – С. 714-716.
7. Schönhage D. D. A., Strassen V. Schnelle multiplikation grosser zahlen //Computing. – 1971. – Т. 7. – № 3-4. – С. 281-292.
8. Fürer M. Faster integer multiplication //SIAM Journal on Computing. – 2009. – Т. 39. – № 3. – С. 979-1005.
9. Koc C. K., Acar T. Montgomery multiplication in GF (2k) //Designs, Codes and Cryptography. – 1998. – Т. 14. – № 1. – С. 57-69.
10. Wang B. F., Chen C. L., Chen G. H. A simple approach to implementing multiplication with small tables //Information Processing Letters. – 1991. – Т. 37. – № 6. – С. 327-329.
Published
2016-11-26
How to Cite
ВИННИКОВ, Владимир Владимирович; ИВАНИЧКИНА, Людмила Владимировна. ALGORITHMIC AND SOFTWARE IMPLEMENTATION OF REED–SOLOMON ERASURE CODES FOR GALOIS FIELDS OF HIGH ORDER. Modern Information Technologies and IT-Education, [S.l.], v. 12, n. 3-2, p. 125-130, nov. 2016. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/131>. Date accessed: 05 nov. 2025.
Section
Research and development in the field of new IT and their applications