PROBABILITY DISTRIBUTION OF THE COMPLEXITY OF THE INDIVIDUAL TRAVELING SALESMAN PROBLEM (FIXED NUMBER OF NODES)
Abstract
It is shown that the logarithm of the complexity (number of nodes in the decision tree of a branch and bound algorithm) of the individual traveling salesman problem is approximately normally distributed. We use a linear regression model (logarithm of the complexity — standard normal distribution) to estimate parameters of normal distribution, which fit the sample. Borders of the interval, which contains 90% of the sample of the logarithm of the complexity, are also given.
References
2. Dantzig, G. B., Fulkerson D. R., Johnson S. M. «On a linearprogramming, combinatorial approach to the traveling-salesman problem» // Operations Research 1959. №7, pp. 58–66.
3. Eastman, W. L. Linear Programming with Pattern Constraints. Ph.D. Thesis. Department of Economics, Harvard University, Cambridge, Massachusetts, USA. – 1958.
4. Jonhnson N.L., Kotz S., and Balakrishnan N. Continuous Univariate Distributions. Vol. 2, Wiley, 1995.
5. Knuth, D. E. «Estimating the efficiency of backtracking programs» // Mathematics of Computing, 1975. Vol. 29, pp. 121–136.
6. Land, A. H., Doig A. G. «An automatic method of solving discrete programming problems» // Econometrica 1960. №28, pp. 497–520.
7. Little, J. D. C., Murty K. G., Sweeney D.W., Karel C. «An algorithm for the traveling salesman problem» // Operations Research, 1963. №11, pp. 972–989.
8. Moors J. J. A. A quantile alternative for kurtosis// The Statistician, 1988. Vol. 37, pp. 25–32.
9. Moors J. J. A., Coenen V. M. J., Heuts R. M. J. «Limiting distributions of moment- and quantile-based measures for skewness and kurtosis». School of Economics and Management, Tilburg University, Res. Mem. FEW 620, 1993.
10. Moors J. J. A., Wagemakers R. Th. A., Coenen V. M. J., Heuts R. M. J., Janssens M. J. B. T. «Characterizing systems of distributions by quantile measures» // Statistica Neerlandica, 1996. Vol. 50, № 3, pp. 417–430.
11. Pearson, K. «Contributions to the Mathematical Theory of Evolution. III. Regression, Heredity and Panmixia» // Philosophical Transactions of the Royal Society of London, 1896. 187, pp. 253–318.
12. Головешкин В.А., Жукова Г.Н., Ульянов М.В., Фомичев М.И. «Сравнение ресурсных характеристик традиционного и модифицированного метода ветвей и границ для TSP» // Современные информационные технологии и ИТ-образование, 2015. Т. 2, № 11. С. 151-159.
13. Крамер Г. Математические методы статистики. — М.: Мир, 1975. — 648 с.
14. Ульянов М.В., Фомичев М.И. «Ресурсные характеристики способов организации дерева решений в методе ветвей и границ для задачи коммивояжера» // Бизнес – информатика, 2015. № 4 (34). С. 38–46.
15. Ульянов М.В. Ресурсно-эффективные компьютерные алгоритмы. Разработка и анализ. — М.: ФИЗМАТЛИТ, 2008. —304 с.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.
