MODEL OF NEURAL NETWORKS WITH AN INFINITE NUMBER OF CELLS AND SMALL PARAMETER
Аннотация
A method of analysis the dynamics of complex systems using neural networks with an infinite number of cells was investigated. For the Cauchy problem for systems of differential equations of countable order, which describes the neural network with infinite number of cells, considered the question of the existence and uniqueness of its solution.
Литература
2. Calvert B.D., Zemanian A.H. Operating points in infinite nonlinear networks approximated by finite networks, Trans. Amer.Math. Soc. Vol. 352, No 2, 2000. — 753 – 780.
3. Henry D. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1981.
4. Hopfield J.J. Neurons with graded response have collective computational properties like those of two state neurons, Proc. Natl. Acad. Sci. USA. Vol. 81, 1984. — pp. 3088 – 3092.
5. Haiying Huang, Qiaosheng Du, Xibing Kang. Global exponential stability of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays. ISA Transactions. Vol. 52, Issue 6, 2013. — pp. 759 – 767.
6. Korobeinik Ju. Differential equations of infinite order and infinite systems of differential equations. Izv. Akad. Nauk SSSR Ser. Mat. Vol. 34, 1970. — pp. 881 – 922.
7. Krasnoselsky M.A., Zabreyko P.P. Geometrical methods of nonlinear analysis. Springer-Verlag, Berlin, 1984.
8. Lomov S. A. The construction of asymptotic solutions of certain problems with parameters. Izv. Akad. Nauk SSSR Ser. Mat.Vol. 32, 1968. — pp. 884 – 913.
9. Persidsky K.P. Izv. AN KazSSR, Ser. Mat. Mach., Issue 2, 1948. — pp. 3 – 34.
10. Tihonov A. N. Uber unendliche Systeme von Differentialgleichungen. Rec. Math. Vol. 41, Issue 4, 1934. — pp. 551 – 555.
11. Tihonov A. N. Systems of differential equations containing small parameters in the derivatives. Mat. Sbornik N. S. Vol. 31, Issue 73, 1952. — pp. 575 – 586.
12. Vasil’eva A. B. Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives. Uspehi Mat. Nauk. Vol. 18, Issie 111, no. 3 , 1963. — 15 – 86.
13. Zhautykov O. A. On a countable system of differential equations with variable parameters. Mat. Sb. (N.S.). Vol. 49, Issue 91,1959. — pp. 317 – 330.
14. Zhautykov O. A. Extension of the Hamilton-Jacobi theorems to an infinite canonical system of equations. Mat. Sb. (N.S.). Vol.53, Issue 95, 1961. — pp. 313 – 328.
15. Xiao Liang, Linshan Wang, Yangfan Wang, Ruili Wang. Dynamical Behavior of Delayed Reaction-Diffusion Hopfield Neural Networks Driven by Infinite Dimensional Wiener Processes. IEEE Transactions on Neural Networks. Vol. 27, No 9, 2016. — pp. 1816 – 1826.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Редакционная политика журнала основывается на традиционных этических принципах российской научной периодики и строится с учетом этических норм работы редакторов и издателей, закрепленных в Кодексе поведения и руководящих принципах наилучшей практики для редактора журнала (Code of Conduct and Best Practice Guidelines for Journal Editors) и Кодексе поведения для издателя журнала (Code of Conduct for Journal Publishers), разработанных Комитетом по публикационной этике - Committee on Publication Ethics (COPE). В процессе издательской деятельности редколлегия журнала руководствуется международными правилами охраны авторского права, нормами действующего законодательства РФ, международными издательскими стандартами и обязательной ссылке на первоисточник.
Журнал позволяет авторам сохранять авторское право без ограничений. Журнал позволяет авторам сохранить права на публикацию без ограничений.
Издательская политика в области авторского права и архивирования определяются «зеленым цветом» в базе данных SHERPA/RoMEO.
Все статьи распространяются на условиях лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная, которая позволяет другим использовать, распространять, дополнять эту работу с обязательной ссылкой на оригинальную работу и публикацию в этом журналe.