РАСПРЕДЕЛЕННЫЙ МЕТОД СОПОСТАВЛЕНИЯ АСТРОНОМИЧЕСКИХ КАТАЛОГОВ НА ПЛАТФОРМЕ APACHE SPARK
Abstract
В работе предложен горизонтально-масштабируемый алгоритм сопоставления астрономических каталогов, реализованный на платформе распределенных вычислений Apache Spark. Метод обеспечивает необходимую точность сопоставления каталогов и хорошую производительность в сравнении с лучшими реализациями подобных систем, доступными в астрономическом сообществе. Горизонтальная масштабируемость предложенного метода была подтверждена с помощью экспериментов на кластере, развёрнутом в облаке Microsoft Azure.
References
2. Strasbourg astronomical Data Center (CDS) // URL:http://vizier.u-strasbg.fr/viz-bin/VizieR.
3. Alam S. et al. The eleventh and twelfth data releases of the Sloan Digital Sky Survey: Final data from SDSS-III //The Astrophysical Journal Supplement Series. – 2015. – Т. 219. – №. 1. – С. 12.
4. Ivezic Z. et al. Large Synoptic Survey Telescope: From science drivers to reference design //Serbian Astronomical Journal. – 2008. – Т. 176. – С. 1-13.
5. Zaharia M. et al. Spark: cluster computing with working sets //HotCloud. – 2010. – Т. 10. – С. 10-10.
6. Taylor M. TOPCAT: tool for operations on catalogues and tables //Astrophysics Source Code Library. – 2011. – Т. 1. – С. 01010.
7. Devereux D. et al. An O (N log M) Algorithm for Catalogue Crossmatching //Astronomical Data Analysis Software and Systems XIV. – 2005. – Т. 347. – С. 346.
8. Guttman A. R-trees: a dynamic index structure for spatial searching. – ACM, 1984. – Т. 14. – №. 2. – С. 47-57.
9. Li N., Szalay A. CASJobs: A workflow environment designed for large scientific catalogs //2008 Third Workshop on Workflows in Support of Large-Scale Science. – IEEE, 2008. – С. 1-8.
10. Nieto-Santisteban M. A., Thakar A. R., Szalay A. S. Cross-matching very large datasets //National Science and Technology Council (NSTC) NASA Conference. – 2007.
11. Gorski K. M. et al. HEALPix: a framework for high-resolution discretization and fast analysis of data distributed on the sphere //The Astrophysical Journal. – 2005. – Т. 622. – №. 2. – С. 759.
12. Zhao Q. et al. A paralleled large-scale astronomical cross-matching function //International Conference on Algorithms and Architectures for Parallel Processing. – Springer Berlin Heidelberg, 2009. – С. 604-614.
13. Pineau F. X., Boch T., Derriere S. Efficient and Scalable Cross-Matching of (Very) Large Catalogs //Astronomical Data Analysis Software and Systems XX. – 2011. – Т. 442. – С. 85.
14. CDS X-Match service // URL:http://cdsxmatch.u-strasbg.fr/xmatch.
15. Juric M. Large Survey Database // URL:http://research.majuric.org/trac/wiki/LargeSurveyDatabase.
16. Pineau F. X. et al. Probabilistic multi-catalogue positional cross-match //arXiv preprint arXiv:1609.00818. – 2016.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.