ELECTRONIC EDUCATIONAL RESOURCE ON QUALITATIVE-NUMERIC RESEARCH OF NON-AUTONOMOUS DYNAMIC SYSTEMS
Abstract
The main goal and the result of the learning process based on competence-oriented approach in education are development of competences necessary for learners to carry out professional activities. Independent work of learners is one of the required conditions for effective competences development. New understanding of the educational process goals requires the modernization of educational programs. Basic methodological approaches to such modernization, based on the principles of the Bologna Process, were developed with the involvement of Lobachevsky State University of Nizhny Novgorod. One of such approaches is the intensive use of electronic educational tools in the educational process. The article describes the electronic educational resource in a form of computer complex on qualitative-numeric research of non-autonomous dynamic systems. The electronic educational resource includes description of algorithms used for qualitative-numeric research of non-autonomous dynamic systems, the user’s guide and the example. The computer complex allows users to search for periodic solutions of dynamic systems, determine their type and character of stability, construct separatrix invariant curves of the Poincare map fixed points and time implementations. It can be used both for studying dynamic systems with certain values of parameters and for studying system evolution over time and finding bifurcations depending on used parameters, as well as constructing bifurcation diagrams in the parameter space. Independent work of learners on the course involves carrying out research assignments and discussing the research results. The use of the computer complex to support independent work of learners has led to increased motivation of learners and higher level of professional competences development.
References
[2] Gonzales H., Wangenaar R. Universities contribution to Bologna Process. An introduction. 2nd Edition. Bilbao: University of Deusto, 2008. 160 p.
[3] Delamare F., Winterton J. What is competence? Human Resource Development International. 2005; 8(1):27-46. DOI: https://doi.org/10.1080/1367886042000338227
[4] Baartman L.K.J., Bastiaens T.J., Kirschner P.A., Cees P.M. van der Vleuten. Teachers’ opinions on quality criteria for Competency Assessment Programs. Teaching and Teacher Education. 2007; 23(6):857-867. DOI: https://doi.org/10.1016/j.tate.2006.04.043
[5] Alpers B. Das SEFI Maths Working Group „Curriculum Framework Document“ und seine Realisierung in einem Mathematik-Curriculum für einen praxisorientierten Maschinenbaustudiengang. In: Hoppenbrock A., Biehler R., Hochmuth R., Rück HG. (eds) Lehren und Lernen von Mathematik in der Studieneingangsphase. Konzepte und Studien zur Hochschuldidaktik und Lehrerbildung Mathematik. Springer Spektrum, Wiesbaden, 2016. Pp. 645–659. DOI: https://doi.org/10.1007/978-3-658-10261-6_40
[6] Dudakov S.M., Zakharova I.V. Monitoring the formation of mathematical competences in students of IT-specialties. Engineering education. 2017; 21:90-95. Available at: http://www.ac-raee.ru/files/io/m21/art_11.pdf (accessed 20.02.18). (In Russian)
[7] Zakharova I., Kuzenkov O. Experience in implementing the requirements of the educational and professional standarts in the field of ICT in Russian education. Modern information technologies and IT-education. 2016; 12(30)-1:17-31. Available at: https://elibrary.ru/item.asp?id=27411971 (accessed 20.02.18). (In Russian)
[8] Soldatenko I., Kuzenkov O., Zakharova I., Balandin D., Biryukov R., Kuzenkova G., Yazenin A., Novikova S. Modernization of math-related courses in engineering education in Russia based on best practices in European and Russian universities. Proceedings of the 44th SEFI Annual Conference 2016 - Engineering Education on Top of the World: Industry University Cooperation (SEFI 2016). 12-15 September 2016, Tampere, Finland. 16 p. Available at: http://sefibenvwh.cluster023.hosting.ovh.net/wp-content/uploads/2017/09/soldatenko-modernization-of-math-related-courses-in-engineering-education-in-russia-based-133.pdf (accessed 20.02.18).
[9] Zakharova I.V., Dudakov S.M., Soldatenko I.S. Designing educational programs in the field of ICT taking into account professional standards. Engineering Education. 2017; 21:140-144. Available at: http://www.ac-raee.ru/files/io/m21/art_19.pdf (accessed 20.02.18). (In Russian)
[10] Bednyi B.I., Kuzenkov O.A. Integrated programmes for master’s degree and PhD students. Integratsiya obrazovaniya = Integration of Education. 2017; 21(4):637-650. (In Russian) DOI: https://doi.org/10.15507/1991-9468.089.021.201704.637-650
[11] Petrova I., Zaripova V., Ishkina E., Militskaya S., Malikov A., Kurmishev N., et al. Tuning Russia: Reference points for the design and delivery of degree programmes in information and communication technologies. Bilbao: University of Deusto, 2013. 198 p.
[12] Karavayeva Y.V., Kovtun Y.N. Adapting the Tuning Programme Profiles to the Need of Russian Higher Education. Tuning Journal for Higher Education. 2013; 1(1):187-202. DOI: http://dx.doi.org/10.18543/tjhe-1(1)-2013pp187-202
[13] Bedny A., Erushkina L., Kuzenkov O. Modernising educational programmes in ICT based on the Tuning methodology. Tuning Journal for Higher Education. 2014; 1(2):387-404. DOI: http://dx.doi.org/10.18543/tjhe-1(2)-2014pp387-404
[14] Kuzenkov O.A., Tikhomirov V.V. Using the methodology of "TUNING" in the development of a national ICT competency framework. Modern information technologies and IT-education. 2013; 9:77-87. Available at: https://elibrary.ru/item.asp?id=23020512 (accessed 20.02.18). (In Russian)
[15] Zakharova I., Kuzenkov O., Soldatenko I., Yazenin A., Novikova S., Medvedeva S., Chukhnov A. Using SEFI framework for modernization of requirements system for mathematical education in Russia. Proceedings of the 44th SEFI Annual Conference 2016 - Engineering Education on Top of the World: Industry University Cooperation (SEFI 2016). 12-15 September 2016, Tampere, Finland. 15 p. Available at: http://sefibenvwh.cluster023.hosting.ovh.net/wp-content/uploads/2017/09/zakharova-using-sefi-framework-for-modernization-of-requirements-system-for-mathematical-education-155.pdf (accessed 20.02.18).
[16] Kuzenkov O.A., Kuzenkova G.V., Biryukov R.S. Development of a fund of evaluation tools using the Mathbridge package. Educational Technology & Society. 2016; 19(4):465-478. (In Russian)
[17] Gergel V.P., Kuzenkov O.A. Development of independently established educational standards of Nizhny the Lobachevsky State University of Nizhniy Novgorod in the field of information and communication technologies. The School of the Future. 2012; 4:100-105. (In Russian)
[18] Gugina E.V., Kuzenkov O.A. Educational standards of the Lobachevsky State University of Nizhniy Novgorod. Vestnik of Lobachevsky University of Nizhni Novgorod. Series: Innovations in Education. 2014; 3(4):39-44. (In Russian)
[19] Sosnovsky S., Dietrich M., Andres E., Goguadze G., Winterstein S., Libbrecht P., Siekmann J., Melis E. Math-Bridge: Bridging the gaps in European remedial mathematics with technology-enhanced learning. 201. Pp. 437-451. DOI: 10.13140/2.1.1142.3367.
[20] Sosnovsky S. Math-Bridge: Closing Gaps in European Remedial Mathematics with Technology-Enhanced Learning. In: Wassong T., Frischemeier D., Fischer P., Hochmuth R., Bender P. (eds) Mit Werkzeugen Mathematik und Stochastik lernen – Using Tools for Learning Mathematics and Statistics. Springer Spektrum, Wiesbaden, 2014. Рp. 437-451. DOI: https://doi.org/10.1007/978-3-658-03104-6_31
[21] Goguadze G. Representation for Interactive Exercises. Proceedings of the 16th Symposium, 8th International Conference. Held as Part of CICM '09 on Intelligent Computer Mathematics (Calculemus '09/MKM '09), Jacques Carette, Lucas Dixon, Claudio Sacerdoti Coen, and Stephen M. Watt (Eds.). Springer-Verlag, Berlin, Heidelberg, 2009. Pp. 294-309. DOI: http://dx.doi.org/10.1007/978-3-642-02614-0_25
[22] Basalin P.D., Bezruk K.V. Hybrid intellectual decision making support system architecture. Journal Neurocomputers. 2012; 8:26-35. (In Russian)
[23] Basalin P.D., Timofeev A.E. Interactive forms of teaching computer sciences // Teaching mathematics and computer science in higher education: materials of the International. scientific-method. Conf. (May 16-17, 2017) / scientific. Ed. E.K. Henner. Perm: Perm. State. Nat. Issled. Univ., 2017. p. 4-8. (In Russian)
[24] Basalin P.D., Kumagina Е.А., Neumark Е.А., Timofeev А.Е., Fomina I.А., Chernyshova N.N. IT-education using intelligent learning environments. Modern information technologies and IT-education. 2017; 13(4):105-111. (In Russian) DOI: https://doi.org/10.25559/SITITO.2017.4.384
[25] Grezina A.V., Panasenko A.G. A course in physics at the Institute of Information Technology, Mathematics and Mechanics of the UNN on the basis of the e-learning system. Educational Technology & Society. 2018; 21(1):487-493. (In Russian)
[26] Kiseleva N.V. Computer complex on the qualitative theory of differential equations to support independent work. Educational Technology & Society. 2018; 21(1):423-434. (In Russian)
[27] Medvedeva O.N., Suponev N.P., Soldatenko I.S., Zakharova I.V., Yazenin A.V. On the electronic educational environment and the system for assessing the quality of educational activities in the Tver State University. Educational Technology & Society. 2014; 17(4): 610-624. (In Russian)
[28] Basalin P.D., Timofeev A.E. Hybrid intelligent decision support system shell. Management systems and information technologies. 2018; 71(1):24-28. (In Russian)
[29] Basalin P.D., Timofeev A.E. The shell of a hybrid intellectual learning environment of the production type. Educational Technology & Society. 2018; 21(1):396-405. (In Russian)
[30] Nejmark Ju.I. The method of point maps in the theory of nonlinear oscillations. M: Nauka. 1976. 471 p.
[31] Bahvalov N.S., Zhidkov N.P., Kobel'kov G.M. Numerical methods. M.: Binom. Laboratorija znanij, 2017. 636 p.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.