TRANSPORT AND ECONOMIC BALANCE AND ITS ROLE IN THE COORDINATION OF TRANSPORT PLANNING DURING THE DIGITALIZATION ERA

Abstract

Econometrics tools in framework of Transport and Economic Balance (TEB) for transport planning and forecasting are aimed at improving transport links and transport connectivity via accounting the ratio between the volume of production and consumption of goods and the demand for transport services for their import and export. The TEB’s econometrics model includes the basic balance equations that define its structure and formation rules. The transport and economic balance of the Russian Federation aggregate the actual and forecast freight flows and their correspondence between the regions of the country (OD-matrix) by rail, road, inland water and maritime transport by type of commodities. The balance of actual freight traffic built for 2007-2016 based on statistics for industrial production, domestic and external trade, construction, agriculture and energy, as well as statistics for rail, maritime, inland water and road transport. The forecast of the cargo base and freight traffic is built for the period up to 2030 using the scenarios and forecast estimations by the Ministry of Economic Development of Russia, as well as the indices of regional economic development, considering the technological and transport connectivity of main cargo generating industries. The TEB will make it possible to calculate and substantiate the predicted impacts on the infrastructure considering various options for its reconstruction and development, changing routes, optimally distribute the forecasted flows over the network, considering the predicted characteristics of throughput, speeds and predictability of delivery time, workload of transport network and elimination of bottlenecks.

Author Biographies

Олег Владимирович Евсеев, Scientific Center for Complex Transport Problems of the Ministry of Transport of the Russian Federation

Doctor of Engineering Science, Professor, Director

Василий Вячеславович Мурашов, Scientific Center for Complex Transport Problems of the Ministry of Transport of the Russian Federation

Senior Deputy Director

Александр Игоревич Забоев, Scientific Center for Complex Transport Problems of the Ministry of Transport of the Russian Federation

Ph.D (Economy), Associate Professor, Head of Division

Антон Александрович Земцов, Scientific Center for Complex Transport Problems of the Ministry of Transport of the Russian Federation

Head of Division

Виктор Николаевич Буслов, Scientific Center for Complex Transport Problems of the Ministry of Transport of the Russian Federation

Head of Division

Александр Владимирович Шубин, Scientific Center for Complex Transport Problems of the Ministry of Transport of the Russian Federation

Researcher

Александр Александрович Широв, Institute for Economic Forecasting, Russian Academy of Science

Doctor of Economics, RAS Professor, Deputy Director

Антон Владимирович Шубин, LLC "Geogracom"

General Director

Антон Сергеевич Уразов, LLC "Geogracom"

Researcher

Елена Македониевна Аникина, LLC "Geogracom"

Researcher

References

[1] Evseev O., Zaboev A. Prospects of electronic passportization of transport corridors in the EAEU within the context of transport digitalization. Prospects for the development of the transport complex. Minsk: BelNIIT, 2017, pp. 9-12. Available at: https://elibrary.ru/item.asp?id=32631274& (accessed 12.08.2018). (In Russian)
[2] Ispol'zovanie matematicheskih metodov i EHVM pri planirovanii razvitiya i raboty transporta [The use of mathematical methods and computers in planning the development and operation of transport]. G.I. Chernomordik, I.T. Kozlov (Eds.). M .: Transport, 1967. 294 p. (In Russian)
[3] Kovshov G.N. Transport in the system of models of long-term planning of the national economy. Economics and mathematical methods. Vol. XIII, no. 5. М., 1977, pp. 1034-1053. (In Russian)
[4] Kovshov G.N., Mikhailov A.D. About the transport factor in the system of optimal long-term planning of the national economy. Problems of optimal planning. Part II. M .: CEMI USSR Academy of Sciences, 1973. (In Russian)
[5] Livshits V.N. The choice of optimal solutions in the technical and economic calculations. M.: Economics, 1971. 255 p. (In Russian)
[6] Methodical foundations for building a system of models of national economic planning in a sectoral and territorial context. M: CEMI USSR Academy of Sciences, 1980. (In Russian)
[7] Transportnaya strategiya Rossijskoj Federacii na period do 2030 ot 22.11.2008 № 1734-r v redakcii rasporyazheniya Pravitel'stva Rossijskoj Federacii ot 11.06.2014 № 1032-r. Sobranie zakonodatel'stva Rossijskoj Federacii, 2008. № 50, st. 5977. Available at: https://www.mintrans.ru/documents/3/1009 (accessed 12.08.2018). (In Russian)
[8] Shirov A.A., Yantovsky A.A. Input-output macroeconomic model as the core of complex forecasting calculations. Studies on Russian Economic Development. 2014; 25(3):225-234. Available at: https://elibrary.ru/item.asp?id=24048736 (accessed 12.08.2018).
[9] Brandsma A., Ivanova O., Kancs d’A. RHOMOLO – a dynamic spatial general equilibrium model. Seville, Spain: JRC IPTS, 2011.
[10] Ivanova O. The role of transport infrastructure in regional economic development. TØI Report 671/2003. Oslo, 2003. 160 p. Available at: https://www.toi.no/getfile.php?mmfileid=9223 (accessed 12.08.2018).
[11] Ivanova O., Vold A., Jean-Hansen V. PINGO: A model for prediction of regional and interregional freight transport. Version 1. TØI rapport 578/2002. Oslo, 2002. 48 p. Available at: https://www.toi.no/getfile.php?mmfileid=2346 (accessed 12.08.2018).
[12] Commodity Flow Survey Overview. U.S. Department of Transportation, Bureau of Transportation Statistics. Available at: https://www.bts.gov/cfs (accessed 12.08.2018).
[13] Core Database Development for the European Transport policy Information System (ETIS). EU Transport Research and Innovation Monitoring and Information System. Available at: https://trimis.ec.europa.eu/?q=project/core-database-development-european-transport-policy-information-system-etis (accessed 12.08.2018).
[14] Dietzenbacher E., Los B., Stehrer R., Timmer M., de Vries G. The construction of World Input-Output Tables in the WIOD project. Economic Systems Research. 2013; 25(1):71-98. DOI: 10.1080/09535314.2012.761180
[15] Fachin S., Venanzoni G. IDEM: an Integrated Demographic and Economic Model of Italy. Proceedings of the 14th International Conference on Input-Output Techniques. CONSIP S.p.A., 2002. 15 p. Available at: https://www.iioa.org/conferences/14th/files/Fachiim.pdf (accessed 12.08.2018).
[16] Gaulier G., Zignago S. BACI: International Trade Database at the Product-Level. The 1994-2007 Version. CEPII Working Paper 2010-23. October 2010. CEPII. Available at: http://www.cepii.fr/CEPII/en/publications/wp/abstract.asp?NoDoc=2726 (accessed 12.08.2018).
[17] Helpman E., Melitz M., Rubinstein Y. Estimating Trade Flows: Trading Partners and Trading Volumes. The Quarterly Journal of Economics. 2008; 123(2):441–487. DOI: 10.1162/qjec.2008.123.2.441
[18] Lenzen M., Moran D., Kanemoto K., Geschke A. Building EORA: A global multi-region input-output database at high country and sector resolution. Economic Systems Research. 2013; 25(1):20-49. DOI: 10.1080/09535314.2013.769938
[19] Narayanan G., Badri A.A., McDougall R. Global Trade, Assistance, and Production: The Gtap 8 Data Base. Center for Global Trade Analysis, Purdue University, 2012. Available at: https://www.gtap.agecon.purdue.edu/databases/v8/v8_doco.asp (accessed 12.08.2018).
[20] Measuring Material Flows and Resource Productivity. Vol. I. The OECD Guide. OECD, 2008. 162 p. Available at: https://www.oecd.org/environment/indicators-modelling-outlooks/MFA-Guide.pdf (accessed 12.08.2018).
[21] STAN Database for Structural Analysis. Organisation for Economic Co-operation and Development (OECD). ISIC Rev. 3, SNA93. Available at: https://stats.oecd.org/index.Aspx?Datasetcode=stan08bis (accessed 12.08.2018).
[22] Sivakumar A. Modelling transport: A Synthesis of Transport Modelling Methodologies. Imperial College London Working Paper, 2007. 29 p.
[23] Sorratini J.A. Estimating Statewide Truck Trips Using Commodity Flows and Input-Output Coefficients. Journal of Transportation and Statistics. 2000; 3(1):53-67. Available at: https://www.bts.gov/sites/bts.dot.gov/files/legacy/publications/journal_of_transportation_and_statistics/volume_03_number_01/jts_v3_n1.pdf (accessed 12.08.2018).
[24] Global Material Flows Database Available at: http://www.Materialflows.net (accessed 12.08.2018).
[25] Heyndrickx Ch., Kartseva M., Tourdyeva N. The SUST-RUS database: regional social accounting matrix for Russia. SUST-RUS Project Report, 2011. 36 p. Available at: http://www.cefir.ru/index.php?l=eng&id=528 (accessed 12.08.2018).
[26] Tukker A., Poliakov E., Heijungs R., Hawkins T., Neuwahl F., Rueda-Cantuche J.M., Giljum S., Moll S., Oosterhaven J., Bouwmeester M. Towards a global multi-regional environmentally extended input-output database. Ecological Economics. 2009; 68(7):1928-1937. DOI: 10.1016/j.ecolecon.2008.11.010
[27] United Nations Statistics Division. UN Comtrade – United Nations Commodity Trade Statistics Database. United Nations Statistics Division (UNSD): New York, NY, USA, 2012. Available at: https://unstats.un.org/unsd/databases.htm (accessed 12.08.2018).
[28] United Nations Statistics Division. United Nations Service Trade Statistics Database; United Nations Statistics Division (UNSD): New York, NY, USA, 2017. Available at: https://unstats.un.org/unsd/databases.htm (accessed 12.08.2018).
Published
2018-09-30
How to Cite
ЕВСЕЕВ, Олег Владимирович et al. TRANSPORT AND ECONOMIC BALANCE AND ITS ROLE IN THE COORDINATION OF TRANSPORT PLANNING DURING THE DIGITALIZATION ERA. Modern Information Technologies and IT-Education, [S.l.], v. 14, n. 3, p. 717-726, sep. 2018. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/439>. Date accessed: 12 oct. 2025. doi: https://doi.org/10.25559/SITITO.14.201803.717-726.
Section
Digital Transformation of Transport