SPACE OF DARK STATES IN TAVIS-CUMMINGS MODEL
Abstract
The dark states of a group of two-level atoms in the Tavis-Cummings resonator with zero detuning are considered. In these states, atoms can not emit photons, despite having non-zero energy. They are stable and can serve as a controlled energy reservoir from which photons can be extracted by differentiated effects on atoms, for example, their spatial separation. Dark states are the simplest example of a subspace free of decoherence in the form of a photon flight, and therefore they are of interest to quantum computing. It is proved that a) the dimension of the subspace of dark states of atoms is the Catalan numbers, b) in the RWA approximation, any dark state is a linear combination of tensor products of singlet-type states and the ground states of individual atoms. For the exact model, in the case of the same force of interaction of atoms with the field, the same decomposition is true, and only singlets participate in the products and the dark states can neither emit a photon nor absorb it. The proof is based on the method of quantization of the amplitude of states of atomic ensembles, in which the roles of individual atoms are interchangeable. In such an ensemble there is a possibility of micro-causality: the trajectory of each quantum of amplitude can be uniquely assigned.
References
[2] Feynman R.P. Theory of Fundamental Processes. Addison Wesley, 1961. (In Eng.)
[3] Bogoliubov N.N., Parasiuk O.S. On the theory of multiplication of causal singular functions. Doklady of the Academy of Sciences of the USSR = The Reports of the Academy of Science. 1955; 100(1):25-28. (In Russ.)
[4] Anikin S.A., Zavyalov O.I., Polivanov M.K. Simple proof of the Bogolyubov – Parasyuk theorem. Theoretical and Mathematical Physics. 1973; 17(2):1082-1088. (In Eng.) DOI: 10.1007/BF01037256
[5] Feynman R.P. Simulating Physics with Computers. International Journal of Theoretical Physics. 1982; 21(6-7):467-488. (In Eng.) DOI: 10.1007/BF02650179
[6] Jaynes E.T., Cummings F.W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE. 1963; 51(1):89-109. (In Eng.) DOI: 10.1109/PROC.1963.1664
[7] Dicke R.H. Coherence in Spontaneous Radiation Processes. Physical Review. 1954; 93(1):99-110. (In Eng.) DOI: 10.1103/PhysRev.93.99
[8] Cohen E., Hansen T., Itzhaki N. From Entanglement Witness to Generalized Catalan Num-bers. Scientific Reports. 2016; 6(30232). (In Eng.) DOI: 10.1038/srep30232
[9] Toth G. Entanglement Witnesses in Spin Models. Physical Review A. 2005; 71(1):010301(R). (In Eng.) DOI: 10.1103/PhysRevA.71.010301
[10] Cirac J.I., Ekert A.K., Macchiavello C. Optimal Purification of Single Qubits. Physical Review Letters. 1999; 82(21):4344-4347. (In Eng.) DOI: 10.1103/PhysRevLett.82.4344
[11] Grover L.K. A fast quantum mechanical algorithm for database search. Proceedings of the 28th Annual ACM Symposium on the Theory of Computing (STOC), May 1996. Melville, NY. 2006; 810:212-219. Available at: https://arxiv.org/abs/quant-ph/9605043 (accessed 17.02.2019). (In Eng.)
[12] Breuer H., Petruccione F. The Theory of Open Quantum Systems. Oxford, 2007. (In Eng.) DOI: 10.1093/acprof:oso/9780199213900.001.0001
[13] Freedman M., Kitaev A., Larsen M., Wang Z. Topological quantum computation. Bulletin of the American Mathematical Society. 2003; 40(1):31-38. (In Eng.) DOI: 10.1090/S0273-0979-02-00964-3
[14] Angelakis D.G., Santos M.F., Bose S. Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Physical Review A. 2007; 76(03):031805(R). (In Eng.) DOI: 10.1103/PhysRevA.76.031805
[15] Huelga S., Plenio M. Vibration, Quanta and Biology. Contemporary Physics. 2013; 54(4):181-207. (In Eng.) DOI: 10.1080/00405000.2013.829687
[16] Plenio M.B., Huelga S.F. Dephasing assisted transport: Quantum networks and biomolecules. New Journal of Physics. 2008; 10:113019. (In Eng.) DOI: 10.1088/1367-2630/10/11/113019
[17] Ambainis A. Quantum walks and their algorithmic applications. International Journal of Quantum Information. 2003; 1(4):507-518. (In Eng.) DOI: 10.1142/S0219749903000383
[18] Ozhigov Y.I. Dark states of atomic ensembles: properties and preparation. Proc. SPIE 10224, International Conference on Micro- and Nano-Electronics 2016, vol. 10224, id. 102242Y, 8 pp. (In Eng.) DOI: 10.1117/12.2264516
[19] Azuma H. Quantum Computation with the Jaynes-Cummings Model. Progress of Theoretical Physics. 2011; 126(3):369-385. (In Eng.) DOI: 10.1143/PTP.126.369
[20] Pöltl C., Emary C., Brandes T. Spin entangled two-particle dark state in quantum transport through coupled quantum dots. Physical Review B. 2013; 87(4):045416. (In Eng.) DOI: 10.1103/PhysRevB.87.045416
[21] Tanamoto T., Ono K., Nori F. Steady-State Solution for Dark States Using a Three-Level System in Coupled Quantum Dots. Japanese Journal of Applied Physics. 2012; 51(2):2BJ07. (In Eng.) DOI: 10.1143/jjap.51.02bj07
[22] Hansom J., Schulte C., Le Gall C., Matthiesen C., Clarke E., Hugues M., Taylor J.M., Atatüre M. Environment-assisted quantum control of a solid-state spin via coherent dark states. Nature Physics. 2014; 10:725-730. (In Eng.) DOI: 10.1038/nphys3077
[23] Kok P., Nemoto K., Munro W.J. Properties of multi-partite dark states. 2002. Available at: https://arxiv.org/abs/quant-ph/0201138 (accessed 17.02.2019). (In Eng.)
[24] Berkeland D.J., Boshier M.G. Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems. 2001. Available at: http://arxiv.org/pdf/quant-ph/0111018v1.pdf (accessed 17.02.2019). (In Eng.)
[25] Ferretti M., Hendrikx R., Romero E., Southall J., Cogdell R. J., Novoderezhkin V.I., Scholes G.D., van Grondelle R. Dark States in the Light-Harvesting complex 2 Revealed by Two-dimensional Electronic Spectroscopy. Scientific Reports. 2016; 6:20834. (In Eng.) DOI: 10.1038/srep20834
[26] André A., Duan L.-M., Lukin M.D. Coherent Atom Interactions Mediated by Dark-State Polaritons. Physical Review Letters. 2002; 88(24):243602. (In Eng.) DOI: 10.1103/PhysRevLett.88.243602
[27] Lee E.S., Geckeler C., Heurich J., Gupta A., Cheong K.-I., Secrest S., Meystre P. Dark states of dressed Bose-Einstein condensates. Physical Review A. 1999; 60(5):4006-4011. (In Eng.) DOI: 10.1103/PhysRevA.60.4006
[28] Fink J.M., Bianchetti R., Baur M., Göppl M., Steffen L., Filipp S., Leek P.J., Blais A., Wallraff A. Dressed Collective Qubit States and the Tavis-Cummings Model in Circuit QED. Physical Review Letters. 2009; 103(8):083601. (In Eng.) DOI: 10.1103/PhysRevLett.103.083601

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.