• Sergey Anatolyevich Vasilyev Peoples Friendship University of Russia
  • Galina Olegovna Tzareva Peoples Friendship University of Russia


Сведения об авторах

Sergey Anatolyevich Vasilyev, Peoples Friendship University of Russia

Candidate of Physical and Mathematical Sciences, Associate Professor, Department of Applied Informatics and probability theory

Galina Olegovna Tzareva, Peoples Friendship University of Russia

graduate student of applied computer science and probability theory


1. Afanassieva L.G., Fayolle G., Popov S. Yu. Models for Transportation Networks. J. Math. Science. Vol.84, Issue 3, 1997, pp. 1092–1103.
2. Daletsky Y.L., Krein M.G. Stability of solutions of differential equations in Banach space. Moscow, Science Pub., 1970.
3. Henry D. Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1981.
4. Khmelev D. V., Oseledets V.I. Mean-field approximation for stochastic transportation network and stability of dynamical system: Preprint No. 434 of University of Bremen, 1999.
5. Khmelev D. V. Limit theorems for nonsymmetric transportation networks. Fundamentalnaya i Priklladnaya Matematika. Vol. 7, no. 4, 2001, pp. 1259 – 1266.
6. Kirstein B. M., Franken D. E., Stoian D. Comparability and monotonicity of Markov processes. Theory of probability and its applications.Vol. 22, Issue 1, 1977, pp.43–54.
7. Korobeinik Ju. Differential equations of infinite order and infinite systems of differential equations. Izv. Akad. Nauk SSSR Ser. Mat. Vol. 34, 1970, pp. 881 – 922.
8. Krasnoselsky M.A., Zabreyko P.P. Geometrical methods of nonlinear analysis. Springer-Verlag, Berlin, 1984.
9. Lomov S. A. The construction of asymptotic solutions of certain problems with parameters. Izv. Akad. Nauk SSSR Ser. Mat. Vol. 32, 1968, pp. 884 – 913.
10. Malyshev V. and Yakovlev A. Condensation in large closed Jackson networks. Ann. Appl. Probab. Vol. 6, no. 1, 1996, pp. 92–115.
11. Oseledets V. I., Khmelev D. V. Global stability of infinite systems of nonlinear differential equations, and nonhomogeneous countable Markov chains. Problemy Peredachi Informatsii (Russian), Vol. 36 , Issue 1, 2000, pp. 60–76.
12. Persidsky K.P. Izv. AN KazSSR, Ser. Mat. Mach., Issue 2, 1948, pp. 3–34.
13. Tihonov A. N. Uber unendliche Systeme von Differentialgleichungen. Rec. Math. Vol. 41, Issue 4, 1934, pp. 551–555.
14. Tihonov A. N. Systems of differential equations containing small parameters in the derivatives. Mat. Sbornik N. S. Vol. 31, Issue 73, 1952, pp. 575 – 586.
15. Vasil’eva A. B. Asymptotic behaviour of solutions of certain problems for ordinary non-linear differential equations with a small parameter multiplying the highest derivatives. Uspehi Mat. Nauk. Vol. 18, Issie 111, no. 3 , 1963, pp. 15 – 86.
16. Vvedenskaya N.D., Dobrushin R.L., Kharpelevich F.I. Queueing system with a choice of the lesser of two queues – the asymptotic approach. Probl. inform. Vol. 32, Issue 1,1996, pp.15–27.
17. Vvedenskaya N.D., Suhov Yu.M. Dobrushin’s Mean-Field Approximation for a Queue with Dynamic Routing. Markov Processes and Related Fields. Issue 3, 1997, pp. 493–526.
18. Vvedenskaya N.D. A large queueing system with message transmission along several routes. Problemy Peredachi Informatsii. Vol. 34, no. 2, 1998, pp. 98–108.
19. Zhautykov O. A. On a countable system of differential equations with variable parameters. Mat. Sb. (N.S.). Vol. 49, Issue 91, 1959, pp. 317 – 330.
20. Zhautykov O. A. Extension of the Hamilton-Jacobi theorems to an infinite canonical system of equations. Mat. Sb. (N.S.). Vol. 53, Issue 95, 1961, pp. 313 – 328.
Как цитировать
VASILYEV, Sergey Anatolyevich; TZAREVA, Galina Olegovna. USING SINGULAR PERTURBATED SYSTEMS OF DIFFERENCIAL EQUATIONS OF INFINITE ORDER FOR COUNTABLE MARKOV CHAINS ANALYSIS. Современные информационные технологии и ИТ-образование, [S.l.], v. 12, n. 1, p. 15-20, nov. 2016. ISSN 2411-1473. Доступно на: <>. Дата доступа: 01 dec. 2023
Теоретические вопросы информатики, прикладной математики, компьютерных наук