ОЦЕНКА ЭФФЕКТИВНОСТИ МЕТОДА ПОВЫШЕНИЯ ПЕРТИНЕНТНОСТИ ИНФОРМАЦИИ В РЕКОМЕНДАТЕЛЬНЫХ СИСТЕМАХ ПОДДЕРЖКИ ЖИЗНЕОБЕСПЕЧЕНИЯ НА ОСНОВЕ НЯВНЫХ ДАННЫХ
Abstract
В статье предложен подход к оценке эффективности метода повышения пертинентности информации, работающего с неявными большими данными пользователей, на основе результатов экспериментальных исследований программной реализации метода, внедрённой в действующий интернет-магазин Thaisoap. Работа выполнена при поддержке Министерства образования и науки РФ, уникальный идентификатор проекта RFMEFI60414X0139.
References
2. С.А.Филиппов, В.Н.Захаров, С.А.Ступников, Д.Ю.Ковалев Подходы к повышению пертинентности информационного предложения в медиасервисах на основе обработки больших объемов данных // Сeur workshop proceedings, Vol-1536, Selected Papers of the XVII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2015) Obninsk, Russia, October 13-16, 2015, p. 114-118.
3. Барсегян А.А., Куприянов М.С., Степаненко В.В., Холод И.И. Методы и модели анализа данных: OLAP и Data Mining//СПб.: БХВ-Петербург, 2004. — 336 с.
4. Лекция: Методы и стадии Data Mining // Статья в сети Интернет, URL: http://www.intuit.ru/studies/courses/6/6/lecture/162?page=1.
5. С.А.Филиппов, В.Н.Захаров, С.А.Ступников, Д.Ю.Ковалев Организация больших объемов данных в рекомендательных системах поддержки жизнеобеспечения, входящих в состав глобальных платформ электронной коммерции // Сeur workshop proceedings, Vol-1536, Selected Papers of the XVII International Conference on Data Analytics and Management in Data Intensive Domains (DAMDID/RCDL 2015) Obninsk, Russia, October 13-16, 2015, p. 119-124.
6. М. Тим Джонс Рекомендательные системы: Часть 1. Введение в подходы и алгоритмы // Библиотека IBM, 2013. URL: http://www.ibm.com/developerworks/ru/library/os-recommender1/.
7. Xiaoyuan Su, Taghi M. Khoshgoftaar A survey of collaborative filtering techniques // Advances in Artificial Intelligence, Volume 2009 (2009), Article ID 421425, 19p.
8. Fleder D., Hosanagar K. Blockbuster Culture's Next Rise or Fall: The Impact of Recommender Systems on Sales Diversity //Management Science, Vol. 55, No. 5, May 2009, pp. 697-712.
9. Брейкин Е. А. Рекомендательная система на основе коллаборативной фильтрации // Молодой ученый. — 2015. —№13. — С. 31-33.
10. Марманис Х., Бабенко Д. Алгоритмы интеллектуального Интернета // СПб.-М.: Символ, 2011. – 466 с.
11. Greg Linden, Brent Smith and Jeremy York Amazon.com recommendations: Item-to-Item Collaborative Filtering // Industry Report, IEEE INTERNET COMPUTING, 2003.
12. Barkan O., Koenigstein N. Item2Vec: Neural Item Embedding for Collaborative Filtering // arXiv preprint arXiv:1603.04259,Mar 2016.
13. Гончаров Максим Системы выработки рекомендаций // Статья в сети Интернет. URL:http://www.businessdataanalytics.ru/RecommendationSystems.htm.
14. Филиппов С.А., Захаров В.Н., Ступников С.А., Ковалев Д.Ю. Метод определения подобия информационных единиц по неявным пользовательским предпочтениям в рекомендательных системах поддержки жизнеобеспечения //Аналитика и управление данными в областях с интенсивным использованием данных: XVIII Международная конференция DAMDID/RCDL’2016 (Ершово, Московская обл., 11 – 14 октября 2016 года, Россия): Труды конференции / Под. Ред. Л.А. Калиниченко, Я. Манолопулоса, С.О. Кузнецова. – М. ФИЦ ИУ РАН, 2016, с. 169 – 174. ISBN 978-5-94558-206-5.
15. Филиппов С.А., Захаров В.Н., Ступников С.А., Ковалев Д.Ю. Кластеризация профилей пользователей в рекомендательных системах поддержки жизнеобеспечения на основе реальных неявных данных // Аналитика и управление данными в областях с интенсивным использованием данных: XVIII Международная конференция DAMDID/RCDL’2016 (Ершово, Московская обл., 11 – 14 октября 2016 года, Россия): Труды конференции / Под. Ред.Л.А. Калиниченко, Я. Манолопулоса, С.О. Кузнецова. – М. ФИЦ ИУ РАН, 2016, с. 163 – 168. ISBN 978-5-94558-206-5.
16. Валерий Дьяченко Сервисы рекомендаций: как с их помощью увеличить продажи на 60% // Статья в сети Интернет, URL: http://www.kom-dir.ru/article/51-servisy-rekomendatsiy

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.