Place of Neural Network Methods for Predicting Power Consumption in Railway Transport
Abstract
The article shows the relevance of forecasting electricity consumption using an automated electric energy metering system that takes into account various levels of the hierarchy of the power supply system. The features of modern management of fuel and energy resources of the enterprise are considered, using the example of the Trans-Baikal Directorate for Energy Supply ‒ a structural subdivision of Transenergo ‒ a branch of the open joint stock company "Russian Railways". The rational use of fuel and energy resources, the introduction of energysaving and resource saving technologies are among the most relevant both in Russia as a whole and in railway transport in particular. The specifics of Russia's economic development and the specifics of the formation of tariffs in the electric energy market have led to an increase in its cost. In this regard, reducing the cost of purchasing fuel and energy resources is one of the main goals of the energy strategy of railway transport. The result of the energy-saving policy of railway transport, in almost all components of the consumption of fuel and energy resources, excluding train traction, is a reduction in the cost of buying electric energy in the situation of reforming electric energy by entering the wholesale electric energy market (RE). It makes possible to reduce the cost of the consumed energy significantly, so the cost of electricity received by the railway from the EPR will be greatly lower than the cost of electricity received from the guaranteeing supplier ‒ the regional power system.
The paper analyzes the factors affecting on the amount of electric energy consumption for train traction. Neural network models with high approximating ability are considered, which allow processing statistical information and performing predictive estimates. It is shown that multilayer neural networks should be considered the most acceptable for predicting power consumption. The method of neural network forecasting of electric energy consumption is considered.
References
2. Zheleznov D.V. Nejronnye seti i prognozirovanie razmerov dvizhenija [Neural networks: forecasting of traffic volumes]. Mir Transporta = World of Transport and Transportation. 2012; 10(4):114-117. Available at: https://www.elibrary.ru/item.asp?id=18060058 (accessed 16.02.2022). (In Russ., abstract in Eng.)
3. Burdinsky S.A., Kistenev V.K., Toropov A.S. Prognozirovanie jelektropotreblenija na osnove ustojchivogo H-raspredelenija [Prediction of electricity consumption based on a stable H-distribution]. Izvestija Tomskogo politehnicheskogo universiteta = Bulletin of the Tomsk Polytechnic University. 2005; 308(5):159-161. Available at: https://www.elibrary.ru/item.asp?id=9117606 (accessed 16.02.2022). (In Russ., abstract in Eng.)
4. Komogorcev M.G., Osipova V.E. Razrabotka modeli opredelenija mezhpoezdnyh intervalov s ispol'zovaniem apparata iskusstvennyh nejronnyh setej [Development of Models of Intertrain Intervals with Use of the Device of Artificial Neural Networks]. Izvestia Transsiba = Journal of Transsib Railway Studies. 2016; (4):87-94. Available at: https://www.elibrary.ru/item.asp?id=28906499 (accessed 16.02.2022). (In Russ., abstract in Eng.)
5. Dronova Yu.V., Korostelev S.V., Tupikina A.A. Prognozirovanie jelektropotreblenija zheleznodorozhnogo transporta na primere Novosibirskogo uchastka Zapadno-sibirskoj zheleznoj dorogi [Forecasting of the power consumption of railway transport on the example of the Novosibirsk site of West Siberian Railway]. Nauchnye problemy transporta Sibiri i Dalnego Vostoka = Scientific problem of transport Siberia and Far East. 2012; (2):293-297. Available at: https://www.elibrary.ru/item.asp?id=18806954 (accessed 16.02.2022). (In Russ., abstract in Eng.)
6. Zakaryukin V.P., Kryukov A.V. The Modeling of Railway Electric Power Systems' State. Sovremennye tehnologii. Sistemnyj analiz. Modelirovanie = Modern Technologies. System Analysis. Modeling. 2004; (4):68-73. Available at: https://www.elibrary.ru/item.asp?id=21388309 (accessed 16.02.2022). (In Eng.)
7. Raevski N.V., Litvintsev V.G. Postroenie modeli prognozirovanija tjagovogo jelektropotreblenija na osnove interval'noj regressii [Traction power consumption forecasting model construction on the basis of interval regress]. Sovremennye tehnologii. Sistemnyj analiz. Modelirovanie = Modern Technologies. System Analysis. Modeling. 2010; (4):192-196 Available at: https://www.elibrary.ru/item.asp?id=16225141 (accessed 16.02.2022). (In Russ., abstract in Eng.)
8. Komogorcev M.G., Osipova V.E. Ispol'zovanie apparata nejronnyh setej i koordinatnyh opredelenij mestopolozhenija poezdov dlja avtoma-tizirovannogo operativnogo rascheta mezhpoezdnyh intervalov [Using the Apparatus of Neural Networks and Coordinate Locations of Trains for Automated Operational Calculation of Intertrain Intervals]. Transportnaja infrastruktura Sibirskogo regiona = Proceedings of the International Scientific Conference on Transport Infrastructure of the Siberian region. 2016; 1:634-637. Available at: https://www.elibrary.ru/item.asp?id=26416334 (accessed 16.02.2022). (In Russ.)
9. Yakovlev D.A., Osipova V.E. Primenenie matematicheskogo apparata nechetkoj logiki pri opredelenii ob'emov jenergoresursov dlja obespechenija ob'ektov infrastruktury zheleznodorozhnogo transporta [Application of the mathematical apparatus of fuzzy logic in determining the volume of energy resources to provide railway infrastructure facilities]. Problemy proektirovanija, stroitel'stva, diagnostiki i tehnicheskogo soderzhanija ob'ektov zheleznodorozhnogo transporta = Problems of Design, Construction, Diagnostics and Technical Maintenance of Railway Transport Facilities. Zabaikal Railway Transport Institute Publ., Chita; 2013. p. 91-95. Available at: https://www.elibrary.ru/item.asp?id=25593243 (accessed 16.02.2022). (In Russ.)
10. Yakovlev D.A., Osipova V.E. Primenenie nechetkoj logiki v upravlenii jenergeticheskimi resursami na primere Zabajkal'skoj zheleznoj dorogi [The use of fuzzy logic in the management of energy resources on the example of the Trans-Baikal Railway]. Transportnaja infrastruktura Sibirskogo regiona = Proceedings of the International Scientific Conference on Transport Infrastructure of the Siberian region. 2011; 2:8-12. Available at: https://www.elibrary.ru/item.asp?id=21201138 (accessed 16.02.2022). (In Russ.)
11. Shurova N., Li V. Increase of energy efficiency of electric power distribution networks by adjustment of reactive energy consumption in a traction network. MATEC Web of Conferences. 2018; 239:01049. (In Eng.) doi: https://doi.org/10.1051/matecconf/201823901049
12. Wang P., Lin X., Li Y. Optimization analysis on the energy saving control for trains with adaptive genetic algorithm. 2012 International Conference on Systems and Informatics (ICSAI2012). IEEE Press, Yantai, China; 2012. p. 439-443. (In Eng.) doi: https://doi.org/10.1109/ICSAI.2012.6223653
13. Li L., Dong W., Ji Y., Zhang Z., Tong L. Minimal-Energy Driving Strategy for High-Speed Electric Train With Hybrid System Model // IEEE Transactions on Intelligent Transportation Systems. 2013; 14(4):1642-1653. (In Eng.) doi: https://doi.org/10.1109/TITS.2013.2265395
14. Moskalev Yu.V., Ahmedzyanov G.G. The definition of the location and capacity of the compensating device in the ac electrical power system of railways by minimum of active power losses. Izvestia Transsiba = Journal of Transsib Railway Studies. 2016; (2):100-107. Available at: https://www.elibrary.ru/item.asp?id=26643828 (accessed 16.02.2022). (In Russ., abstract in Eng.)
15. Savina N., Myasoedov Yu., Kazakul A. Management of operating costs in distribution grid companies through the optimal compensation of reactive power. Vestnik Irkutskogo gosudarstvennogo tehnicheskogo universiteta = Proceedings of Irkutsk State Technical University. 2011; (6):130-137. Available at: https://www.elibrary.ru/item.asp?id=16519768 (accessed 16.02.2022). (In Russ., abstract in Eng.)
16. Osipova V.E., Yakovlev D.A. Generation of a rational training sample when predicting power consumption for train traction. IOP Conference Series: Materials Science and Engineering. 2020; 760:012040. (In Eng.) doi: https://doi.org/10.1088/1757-899X/760/1/012040
17. Lee T., Cho H., Kim S., Kim K. Measurement and analysis of consumption energy for Korean high-speed trains. 2012 IEEE PES Innovative Smart Grid Technologies (ISGT). IEEE Press, Washington, DC, USA; 2012. p. 1-5. (In Eng.) doi: https://doi.org/10.1109/ISGT.2012.6175629
18. Furutani R., Kudo F., Moriwaki N. Utilization of Al in the Railway Sector. Case Study of Energy Efficiency in Railway Operations. Hitachi Review. 2016; 65(6):128-133. Available at: https://www.hitachi.com/rev/archive/2016/r2016_06/pdf/r2016_06_105.pdf (accessed 16.02.2022). (In Eng.)
19. Xiufeng S., Jian Z. Electric power consumption forecast of life energy sources based on fuzzy neural network. 2011 IEEE International Symposium on IT in Medicine and Education. IEEE Press, Cuangzhou; 2011. p. 309-312. (In Eng.) doi: https://doi.org/10.1109/ITiME.2011.6130840
20. Wang Q., Zhu J. Analysis and Simulation of Energy-Efficient Control of a Train. Proceedings of the 33rd Chinese Control Conference (July 28-30, 2014, Nanjing, China). IEEE Press; 2014. p. 3373-3380. Available at: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6895498 (accessed 16.02.2022). (In Eng.)
21. O'Hagan M. A fuzzy neuron based upon maximum entropy ordered weighted averaging. In: Bouchon-Meunier B., Yager R.R., Zadeh L.A. (eds.) Uncertainty in Knowledge Bases. IPMU 1990. Lecture Notes in Computer Science. Vol. 521. Springer, Berlin, Heidelberg; 1991. (In Eng.) doi: https://doi.org/10.1007/BFb0028148
22. Kobayashi S., Plotkin S., Ribeiro S.K. Energy efficiency technologies for road vehicles. Energy Efficiency. 2009; 2(1):125-137. (In Eng.) doi: https://doi.org/10.1007/s12053-008-9037-3
23. Miyatake M., Ko H. Optimization of train speed profle for minimum energy consumption. IEEJ Transactions on Electrical and Electronic Engineering. 2010; 5(3):263-269. (In Eng.) doi: https://doi.org/10.1002/tee.20528
24. Franke R., Terwiesch P., Meyer M. An algorithm for the optimal control of the driving of trains. Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187). Vol. 3. IEEE Press, Sydney, NSW, Australia; 2000. p. 2123-2128. (In Eng.) doi: https://doi.org/10.1109/CDC.2000.914108
25. Rao Y., Feng X., Wang Q., Sun P., Xiao Z., Chen H. Energy‐efficient control of a train considering multi‐trains power flow. IET Intelligent Transport Systems. 2021; 16(3):380-393. (In Eng.) doi: https://doi.org/10.1049/itr2.12149

This work is licensed under a Creative Commons Attribution 4.0 International License.
Publication policy of the journal is based on traditional ethical principles of the Russian scientific periodicals and is built in terms of ethical norms of editors and publishers work stated in Code of Conduct and Best Practice Guidelines for Journal Editors and Code of Conduct for Journal Publishers, developed by the Committee on Publication Ethics (COPE). In the course of publishing editorial board of the journal is led by international rules for copyright protection, statutory regulations of the Russian Federation as well as international standards of publishing.
Authors publishing articles in this journal agree to the following: They retain copyright and grant the journal right of first publication of the work, which is automatically licensed under the Creative Commons Attribution License (CC BY license). Users can use, reuse and build upon the material published in this journal provided that such uses are fully attributed.