Comparative Performance Analysis of MPI- and OpenMP-programs on the Example of Parallel Calculations in the Framework of the Nucleus-Nucleus Potential Model and the φ0-Spintronic Model

Abstract

The results of a study of the performance of problem-oriented programs developed using the MPI and OpenMP parallel programming technologies which implement the numerical solution of problems in the framework of two models that are actively used in nuclear physics and the physics of superconducting structures are presented. The first task is the construction of the nucleus-nucleus scattering potential based on the double folding model (MDF), which is reduced to the numerical solution of the non-linear integral equation with integrals of multiplicity 4 by the fix point method. The second task is the simulation of the magnetic moment reversal in the Josephson φ0-junctions of the system "superconductor – ferromagnet – superconductor" (SFS) on the plane of model parameters. The calculation here is reduced to a multiple numerical solution of the Cauchy problem for the corresponding system of ordinary differential equations for the values of the parameters running over the specified intervals with some step. Despite the cardinal differences in the goals and methods of numerical research, both problems have common properties – relatively easy to implement parallelism and not too high requirements for computer resources. For both tasks, the results of comparative calculations of MPI and OpenMP versions on different computing systems using different compilers and different numbers of MPI processes and OpenMP threads are presented. It is shown that for problems of this type, both technologies generally provide comparable characteristics in terms of a speedup of calculations and the minimum achievable computation time with an increase in the number of involved parallel MPI processes and OpenMP threads. The calculations were carried out using the computing resources of the Multifunctional Information and Computing Center of the Mescheryakov Laboratory of Information Technologies of the Joint Institute for Nuclear Research.

Author Biographies

Maxim Victorovich Bashashin, Joint Institute for Nuclear Research; Dubna State University

Junior Researcher of the Mescheryakov Laboratory of Information Technologies; Senior Teacher of the Institute of System Analysis and Management

Elena Valerievna Zemlyanaya, Joint Institute for Nuclear Research; Dubna State University

Head of Sector of Computing of Complex Physical Systems of the Mescheryakov Laboratory of Information Technologies; Professor of the Institute of System Analysis and Management, Dr.Sci. (Phys.-Math.)

References

1. Kraeva Ya.A., Zymbler M.L. The Use of MPI and OpenMP Technologies for Subsequence Similarity Search in Very Long Time Series on a Computer Cluster System with Nodes Based on the Intel Xeon Phi Knights Landing Many-Core Processor. Numerical Methods and Programming. 2019;20(1):29-44. (In Russ., abstract in Eng.) doi: https://doi.org/10.26089/NumMet.v20r104
2. Ezhova N.A., Sokolinsky L.B. Survey of Parallel Computation Models. Bulletin of the South Ural State University. Series: Computational Mathematics and Software Engineering. 2019;8(3):58-91. (In Russ., abstract in Eng.) doi: https://doi.org/10.14529/cmse190304
3. Foster I. Languages for Parallel Processing. In: Błażewicz J., Ecker K., Plateau B., Trystram D. (eds.). Handbook on Parallel and Distributed Processing. International Handbooks on Information Systems. Berlin, Heidelberg: Springer; 2000. p. 92-165. doi: https://doi.org/10.1007/978-3-662-04303-5_3
4. Lukyanov V.K., Zemlyanaya E.V., Lukyanov K.V. Nucleus-nucleus scattering in the high-energy approximation and optical folding potential. Physics of Atomic Nuclei. 2006;69(2):240-254. doi: https://doi.org/10.1134/S1063778806020086
5. Shukrinov Yu.M., Rahmonov I.R., Sengupta K., Buzdin A. Magnetization reversal by superconducting current in φ0 Josephson junctions. Applied Physics Letters. 2017;110(18):182407. doi: https://doi.org/10.1063/1.4983090
6. Adam Gh., et al. IT-ecosystem of the HybriLIT heterogeneous platform for high performance computing and training of IT-specialists. CEUR Workshop Proceedings. 2018;2267:638-644. Available at: http://ceur-ws.org/Vol-2267/638-644-paper-122.pdf (accessed 19.07.2022).
7. Khoa D.T., Knyazkov О.М. Exchange Effects in Nucleus-Nucleus Potentials and Nuclear Rainbow Scattering. Physics of Elementary Particles and Atomic Nuclei. 1990;21(6):1456-1498. Available at: http://www1.jinr.ru/Archive/Pepan/1990-v21/v-21-6/pdf_obzory/v21p6_04.pdf (accessed 19.07.2022). (In Russ., abstract in Eng.)
8. Lukyanov K.V. Double Folding Model of Nucleus-Nucleus Potential: Formulae, Iteration Method and Computer Code. In: Communication of the Joint Institute for Nuclear Research. Р11-2007-38. Dubna: JINR; 2007. 30 p. Available at: http://www1.jinr.ru/Preprints/2007/038(P11-2007-38).pdf (accessed 19.07.2022). (In Russ., abstract in Eng.)
9. Khoa D.T., Satchler G.R. Generalized folding model for elastic and inelastic nucleus–nucleus scattering using realistic density dependent nucleon–nucleon interaction. Nuclear Physics A. 2000;668(1-4):3-41. doi: https://doi.org/10.1016/S0375-9474(99)00680-6
10. Goldobin E., Koelle D., Kleiner R., Buzdin A. Josephson junctions with second harmonic in the current-phase relation: Properties of φ junctions. Physical Review B. 2007;76(22):224523. doi: https://doi.org/10.1103/PhysRevB.76.224523
11. Bashashin M.V., Zemlyanaya E.V., Shukrinov Yu.M., Rahmonov I.R. MPI-implementation of numerical solution of the system of equations describing the long Josephson junctions model. System Analysis in Science and Education. 2015;(4):6-12. Available at: https://www.elibrary.ru/item.asp?id=26695118 (accessed 19.07.2022). (In Russ., abstract in Eng.)
12. Bashashin М., Zemlyanaya E., Lukyanov K. Double-Folding Nucleus-Nucleus Optical Potential: Parallel MPI and OpenMP Implementations. EPJ Web of Conferences. 2020;226:02004. doi: https://doi.org/10.1051/epjconf/202022602004
13. Bashashin M.V., Zemlyanaya E.V., Kakenov M.B., Yermekova A.Ye., Lukyanov K.V. Analysis of the 12;14Be+12C Scattering Data within a Parallel Implementation of 4-Parameter Model. AIP Conference Proceedings. 2021;2377(1):060003. doi: https://doi.org/10.1063/5.0063345
14. Buzdin A. Direct Coupling Between Magnetism and Superconducting Current in the Josephson φ0 Junction Physical Review Letters. 2008;101(10):107005. doi: https://doi.org/10.1103/PhysRevLett.101.107005
15. Buzdin A.I. Proximity effects in superconductor-ferromagnet heterostructures. Reviews of Modern Physics. 2005;77(3):935-976. doi: https://doi.org/10.1103/RevModPhys.77.935
16. Konschelle F., Buzdin A. Magnetic Moment Manipulation by a Josephson Current. Physical Review Letters. 2009;102:017001. doi: https://doi.org/10.1103/PhysRevLett.102.017001
17. Atanasova P.K., Panayotova S.A., Rahmonov I.R. Shukrinov Yu.M., Zemlyanaya E.V., Bashashin M.V. Periodicity in the Appearance of Intervals of the Reversal of the Magnetic Moment of a ϕ0 Josephson Junction. JETP Letters. 2019;110(11):722-726. doi: https://doi.org/10.1134/S0021364019230073
18. Atanasova P.K., Panayotova S.A., Zemlyanaya E.V., Shukrinov Y.M., Rahmonov I.R. Numerical Simulation of the Stiff System of Equations Within the Spintronic Model. In: Nikolov G., Kolkovska N., Georgiev K. (eds.). Numerical Methods and Applications. NMA 2018. Lecture Notes in Computer Science. Vol. 11189. Cham: Springer; 2019. Р. 301-308. doi: https://doi.org/10.1007/978-3-030-10692-8_33
19. Lukyanov K.V., Zemlyanaya E.V., Lukyanov V.K., Kukhtina I.N., Penionzhkevich Yu.E., Sobolev Yu.G. Microscopic analysis of the energy dependence of the 6He, 6Li + 28Si total reaction cross sections in the energy range E = 5−50 A MeV. Bulletin of the Russian Academy of Sciences: Physics. 2008;72(3):356-360. doi: https://doi.org/10.3103/S1062873808030192
20. Bashashin M.V., Zemlyanaya E.V., Rahmonov I.R., Shukrinov Yu.M., Atanasova P.Kh., Volokhova A.V. Numerical approach and parallel implementation for computer simulation of stacked long Josephson junctions. Computer Research and Modeling. 2016;8(4):593-604. Available at: https://elibrary.ru/item.asp?id=26716888 (accessed 19.07.2022). (In Russ., abstract in Eng.)
21. Tanihata I., Hirata D., Kobayashi T., Shimoura S., Sugimoto K., Toki H. Revelation of thick neutron skins in nuclei. Physics Letters B. 1992;289(3-4):261-266. doi: https://doi.org/10.1016/0370-2693(92)91216-V
22. Bashashin M., Nechaevskiy A., Podgainy D., Rahmonov I., Shukrinov Yu., Streltsova O., Zemlyanaya E., Zuev M. Parallel Algorithms for Studying the System of Long Josephson Junctions. CEUR Workshop Proceedings. 2019;2507:392-396. Available at: http://ceur-ws.org/Vol-2507/392-396-paper-72.pdf (accessed 19.07.2022).
23. Klimentov A.A. Exascale Data Processing in Heterogeneous Distributed Computing Infrastructure for Applications in High Energy Physics. Physics of Particles and Nuclei. 2020;51(6):995-1068. doi: https://doi.org/10.1134/S1063779620060052
24. Lukyanov V.K. Kadrev D.N., Zemlyanaya E.V., Lukyanov K.V., Antonov A.N., Gaidarov M.K. Microscopic analysis of quasielastic scattering and breakup reactions of the neutron-rich nuclei 12,14Be. Physical Review C. 2019;100(3):034602. doi: https://doi.org/10.1103/PhysRevC.100.034602
25. Panayotova S., Bashashin M., Zemlyanaya E., Atanasova P., Shukrinov Yu., Rahmonov I. Parallel Numerical Simulation of the Magnetic Moment Reversal within the ϕ0-Josephson Junction Spintronic Model. EPJ Web of Conferences. 2020;226:02018. doi: https://doi.org/10.1051/epjconf/202022602018
Published
2022-10-24
How to Cite
BASHASHIN, Maxim Victorovich; ZEMLYANAYA, Elena Valerievna. Comparative Performance Analysis of MPI- and OpenMP-programs on the Example of Parallel Calculations in the Framework of the Nucleus-Nucleus Potential Model and the φ0-Spintronic Model. Modern Information Technologies and IT-Education, [S.l.], v. 18, n. 3, p. 545-557, oct. 2022. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/870>. Date accessed: 21 aug. 2025. doi: https://doi.org/10.25559/SITITO.18.202203.545-557.
Section
Parallel and distributed programming, grid technologies, programming on GPUs

Most read articles by the same author(s)