Ontological Model as a Means of Implementation of Competency Assessment System

Abstract

Recent changes in the structure of global economic and geopolitical relationships pose new challenges, including digitalization, to the education system. The competency-based approach, which uses creative personality-oriented methods, is becoming more popular nowadays. The multimedia learning environment is the best option to create an educational environment that helps to fulfill the creative and intellectual potential of students. In this regard, it is necessary to improve the digital tools used at the university to solve a wide range of new educational tasks, including teacher stress reduction. One of these tools to digitalize and optimize the learning process is the automatized testing, which makes learning more transparent and reduces the stress level for teachers, educators, and operators. When designing such test systems, it is important to take into account the connection between various processes, such as the learning process, the process of knowledge elicitation (testing), the preparation of educational and methodological material, the schedule, etc. In this paper, we propose a model for the formation and assessment of students' competencies based on the ontological approach, which you can also use for automatized checks of answers to open-form tasks manually checked by teachers in the traditional system, which is a resource-intensive labor. The answers to open-form questions are evaluated by analyzing the percentage content of keywords and phrases. The second parameter is the percentage of text coherence. As an additional parameter for the humanities, the Flesch readability index is proposed. To implement the described system, the method of formalization, the ontological model, as well as logico-semantic graphs are used.

Author Biographies

Olga Evgenievna Sheveleva, Dubna State University

Postgraduate Student

Vladimir Nikolaevich Dobrynin, Dubna State University

Professor of the Chair of Geoinformation Systems and Technologies, Institute of System Analysis and Management, Cand. Sci. (Eng.), Senior Researcher

Yana Alexandrovna Goncharova, University of Campania "Luigi Vanvitelli"

Postgraduate Student

References

1. Patrikova E.N., Patrikova T.S. Tekhnologizaciya vysshego obrazovaniya v usloviyah cifrovoj transformacii [Technologization of higher education in the context of digital transformation]. News of the Tula state university. Technical sciences. 2023;(1):149-154. (In Russ., abstract in Eng.) https://doi.org/10.24412/2071-6168-2023-1-149-155
2. Avanesov V.S. Problema soedineniya testirovaniya s obucheniem [The problem of connecting testing with learning]. Educational Measurements. 2013;(3):16-28. (In Russ.) EDN: RKRWVH
3. Donskaya E.Yu. Testirovanie kak neot"emlemaya chast' sistemy distancionnogo obucheniya v vysshej shkole [Testing as an integral part of the system of distance learning in higher education]. World of Science. Pedagogy and psychology. 2020;(1):9. (In Russ., abstract in Eng.) EDN: ILYBZB
4. Avdeeva T.I., Vysokos M.I., Zykova S.I. Primenenie interaktivnyh metodov v prepodavanii [Application of interactive methods in teaching]. The Bulletin of Adyghe State University: Internet Scientific Journal. 2017;(1):68-71. (In Russ., abstract in Eng.) EDN: YMRLEV
5. Blinova O.A. Mul'timedijnye uchebnye materialy: problemy i poiski reshenij [multimedia training materials: problems and search for solutions]. Philology. Theory & Practice. 2017;(12-1):199-202. (In Russ., abstract in Eng.) EDN: ZREERH
6. Kozhevnikov V.A., Sabinin O.Yu. Sistema avtomaticheskoj proverki otvetov na otkrytye voprosy na russkom yazyke [System of automatic verification of answers to open questions in Russian]. Computing, Telecommunication, and Control. 2018;11(3):57-72. (In Russ., abstract in Eng.) https://doi.org/10.18721/JCSTCS.11306
7. Das B., Majumder M., Sekh A.A., Phadikar S. Automatic question generation and answer assessment for subjective examination. Cognitive Systems Research. 2022;72:14-22. https://doi.org/10.1016/j.cogsys.2021.11.002
8. Bazaron S.A., Rukavichnikov A.V. Method specifications subject area discipline based on ontological approach. Voprosy kiberbezopasnosti. 2014;(5):52-58. (In Russ., abstract in Eng.) EDN: TGNJCF
9. Utegenova A., Yermoldina G., Bapyshev A., Naumenko V., Alisher A. Ontologicheskaya model' predstavleniya i organizacii znanij, s uchetom rekomendacij mezhdunarodnyh standartov v obrazovatel'nom processe voennogo vuza [Ontological model of knowledge representation and organization, taking into account the recommendations of international standards in the educational process of the military university]. Bulletin of KazATC. 2022;123(4):307-318. (In Russ., abstract in Eng.) https://doi.org/10.52167/1609-1817-2022-123-4-307-318
10. Dobrynin V., Mastroianni M., Sheveleva O. A New Structured Model for ICT Competencies Assessment Through Data Warehousing Software. In: Abraham A., et al. Innovations in Bio-Inspired Computing and Applications. IBICA 2021. Lecture Notes in Networks and Systems. Vol. 419. Cham: Springer; 2022. p. 435-446. https://doi.org/10.1007/978-3-030-96299-9_42
11. Dobrynin V., Mastroianni M., Sheveleva O. A Data Warehousing System for ICT Competencies Assessment. Journal of Network and Innovative Computing. 2022;10:036-042. Available at: https://www.mirlabs.net/jnic/secured/Volume10-Issue1/Paper4.pdf (accessed 11.04.2023).
12. Dobrynin V., Sheveleva O., Goncharova Y. Trajectory Shaping To Form Students Competencies. In: Proceedings on 10th International Conference on Advanced Technologies (ICAT'22). Van, Turkey; 2022. p. 103-109. Available at: https://www.icatsconf.org/ICAT22/van (accessed 11.04.2023).
13. Dobrynin V.N., Filozova I.A. Sozdanie, podderzhka i razvitie modeli interpretacii smyslov [Creating, Supporting and Developing of Model of Meanings Interpretation]. CEUR Workshop Proceedings. 2016;1787:189-196. Available at: https://ceur-ws.org/Vol-1787/189-196-paper-32.pdf (accessed 11.04.2023). (In Russ., abstract in Eng.)
14. Dobrynin V.N., Filozova I.A. Semanticheskij poisk v nauchnyh elektronnyh bibliotekah [Semantic search in the scientific digital libraries]. Informatization of Education and Science. 2014;(2):111-127. (In Russ., abstract in Eng.) EDN: SAKIWV
15. Dobrynin V.N., Lobacheva M.V. Prototip semanticheskoj poiskovoj sistemy na osnove logiko-semanticheskoj seti Vopros-otvet-reakciya [The prototype of the semantic search engine based on the logical-semantic network question-answer-reaction ]. Sistemnyj analiz v nauke i obrazovanii = System Analysis in Science and Education. 2009;(2):32-38. (In Russ., abstract in Eng.) EDN: KNNWSD
16. Zhong L., Wu J., Li Q., Peng H., Wu X. A Comprehensive Survey on Automatic Knowledge Graph Construction. ACM Computing Surveys. 2022;36(4):66. https://doi.org/0000001.0000001
17. Dergaeva S.S. Cifrovye videoigry kak instrument formirovaniya kommunikativnoj kompetencii studentov [Digital game-based learning as a tool for studentts´ communikative competence s development]. Azimuth of Scientific Research: Pedagogy and Psychology. 2019;8(3):93-96. (In Russ., abstract in Eng.) https://doi.org/10.26140/anip-2019-0803-0023
18. Ghosh S., Razniewski S., Weikum G. Answering Count Questions with Structured Answers from Text. Journal of Web Semantics. 2023;76:100769. https://doi.org/10.1016/j.websem.2022.100769
19. Kleimola R., Leppisaari I. Learning analytics to develop future competences in higher education: a case study. International Journal of Educational Technology in Higher Education. 2022;19:17. https://doi.org/10.1186/s41239-022-00318-w
20. Zheng Y., Khalid Masood M., Seppänen O., Törmä S., Aikala A. Ontology-Based Semantic Construction Image Interpretation. Buildings. 2023;13(11):2812. https://doi.org/10.3390/buildings13112812
21. Tamašauskaitė G., Groth P. Defining a Knowledge Graph Development Process Through a Systematic Review. ACM Transactions on Software Engineering and Methodology. 2023;32(1):27. https://doi.org/10.1145/3522586
22. Glass R., Metternich J. Method to measure competencies a concept for development, design and validation. Procedia Manufacturing. 2020;45:37-42. https://doi.org/10.1016/j.promfg.2020.04.056
23. Miranda S., Orciuoli F., Loia V., Sampson D. An ontology-based model for competence management. Data & Knowledge Engineering. 2017;107:51-66. https://doi.org/10.1016/j.datak.2016.12.001
24. Paquette G., Marino O., Bejaoui R. A new competency ontology for learning environments personalization. Smart Learning Environments. 2021;8:16. https://doi.org/10.1186/s40561-021-00160-z
25. Razdobarova M.N., Kalinichenko E.B., Zaharova S.A., Ivanova L.M., Lanina A.V. Analiz urovnya sformirovannosti mezhkul'turnoj kommunikativnoj kompetencii studentov neyazykovyh vuzov [Level analysis of intercultural communicative competence formation of non-linguistic students]. Uchenye zapiski universiteta imeni P. F. Lesgafta. 2020;(3):362-367. (In Russ., abstract in Eng.) https://doi.org/10.34835/issn.2308-1961.2020.3.p362-368
Published
2023-06-30
How to Cite
SHEVELEVA, Olga Evgenievna; DOBRYNIN, Vladimir Nikolaevich; GONCHAROVA, Yana Alexandrovna. Ontological Model as a Means of Implementation of Competency Assessment System. Modern Information Technologies and IT-Education, [S.l.], v. 19, n. 2, p. 460-468, june 2023. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/957>. Date accessed: 20 jan. 2026. doi: https://doi.org/10.25559/SITITO.019.202302.460-468.
Section
IT education: methodology, methodological support