Еще один шаг к автоматизации разработки программного обеспечения

Аннотация

Предлагается распространить понятие ООП на практически неограниченную сферу. Объектом может быть любой объект: канал, файл, сеть, электронное устройство и т.д. Для каждого объекта должен быть задан некоторый список возможных операций и параметров. Это оказалось удобным для разработки управляющего кода. Эта концепция была использована для упрощения создания программного обеспечения для управления и мониторинга состояния больших систем со множеством компонентов различной природы. Тематические библиотеки программ значительно повысят эффективность работы системы и уменьшат количество программных ошибок. Можно ожидать, что в будущем подпрограммы будут разрабатываться специалистами, которые вообще не являются программистами.

Сведения об авторе

Yuri Alexeyevich Semenov, Национальный исследовательский центр "Курчатовский институт"

ведущий научный сотрудник Института теоретической и экспериментальной физики имени А.И. Алиханова, кандидат физико-математических наук

Литература

1. Ahmed Z., Kinjol F.J., Ananya I.J. Comparative Analysis of Six Programming Languages Based on Readability, Writability, and Reliability. In: 2021 24th International Conference on Computer and Information Technology (ICCIT). Dhaka, Bangladesh: IEEE Computer Society; 2021. p. 1-6. https:doi.org/10.1109/ICCIT54785.2021.9689813
2. Farooq M.Sh, Khan S.A., Ahmad F., Islam S., Abid A. An Evaluation Framework and Comparative Analysis of the Widely Used First Programming Languages. PLOS ONE. 2014;9(2):e88941. https://doi.org/10.1371/journal.pone.0088941
3. Khurana D., Koli A., Khatter K., Singh S. Natural language processing: state of the art, current trends and challenges. Multimedia Tools and Applications. 2023;82(3):3713-3744. https://doi.org/10.1007/s11042-022-13428-4
4. Lloyd S. Ultimate Physical Limits to Computation. Nature. 2000;406:1047-1054. https://doi.org/10.1038/35023282
5. Dorenskaya E.A., Kulikovskaya A.A., Semenov Y.A. Yazyk opisaniya problemy i issledovanie ego vozmozhnostej[Exploring Possibilities of Language for Describing the Problem].Modern Information Technologies and IT-Education. 2020;16(3):653-663. (In Russ., abstract in Eng.) https:doi.org/10.25559/SITITO.16.202003.653-663
6. Casado M., Foster N., Guha A. Abstractions for software-defined networks. Communications of the ACM. 2014;57(10):86-95. https://doi.org/10.1145/2661061.2661063
7. Hu Y., Zou D., Peng J., Wu Y., Shan J., Jin H. TreeCen: Building Tree Graph for Scalable Semantic Code Clone Detection. In: Proceedings of the 37th IEEE/ACM International Conference on Automated Software Engineering (ASE '22). New York, NY, USA: Association for Computing Machinery; 2023. Article number: 109. 12 p. https://doi.org/10.1145/3551349.3556927
8. Gong Y., Huang W., Wang W., Lei Y. A survey on software defined networking and its applications. Frontiers of Computer Science. 2015;9:827-845. https://doi.org/10.1007/s11704-015-3448-z
9. Kulikovskya А.А., Dorenskaya Е.А., Semenov Yu.A.Kolichestvennye harakteristiki bezopasnosti programm [Quantitative Security Characteristics of Perl Programs]. Modern Information Technologies and IT-Education. 2022;18(4):855-860. (In Russ., abstract in Eng.) https://doi.org/10.25559/SITITO.18.202204.855-860
10. Dorenskaya Е.А., Semenov Yu.A.Metod opredeleniya kontekstnyh znachenij slov i dokumentov [The determination method for contextual meanings of words and documents]. Modern Information Technologies and IT-Education. 2018;14(4):896-902. (In Russ., abstract in Eng.) https://doi.org/10.25559/SITITO.14.201804.896-902
11. Kádár I. The optimization of a symbolic execution engine for detecting runtime errors. Acta Cybernetica. 2017;23(2):573-597. https://doi.org/10.14232/actacyb.23.2.2017.9
12. Dorenskaya Е.А., Semenov Yu.A. O tehnologii programmirovaniya, orientirovannoj na minimizaciyu oshibok [About the programming techniques, oriented to minimize errors]. Modern Information Technologies and IT-Education. 2017;13(2):50-56. (In Russ., abstract in Eng.) https://doi.org/10.25559/SITITO.2017.2.226
13. Nefdt R.M. Scientific modelling in generative grammar and the dynamic turn in syntax. Linguistics and Philosophy. 2016;39(5):357-394. https://doi.org/10.1007/s10988-016-9193-4
14. Barba-Guaman L.R. et al. Using wolfram software to improve reading comprehension in mathematics for software engineering students. In: 2018 13th Iberian Conference on Information Systems and Technologies (CISTI). Caceres, Spain: IEEE Computer Society; 2018. p. 1-4. https://doi.org/10.23919/CISTI.2018.8399388
15. Nneji G.U., Deng J., Shakher S.S, Monday H.N., Agomuo D., Ukwuoma C.C. A Multimedia Computer Aided Learning Software. In: 2018 IEEE 9th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). Vancouver, BC, Canada: IEEE Computer Society; 2018. p. 807-813. https://doi.org/10.1109/IEMCON.2018.8614770
16. Ali S. et al. Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. Information Fusion. 2023;99:101805. https://doi.org/10.1016/j.inffus.2023.101805
17. Alkhalifa R., Kochkina E., Zubiaga A. Building for tomorrow: Assessing the temporal persistence of text classifiers. Information Processing & Management. 2023;60(2):103200. https://doi.org/10.1016/j.ipm.2022.103200
18. MacGregor R., Trinder P., Loidl H.-W. Improving GHC Haskell NUMA profiling. In: Proceedings of the 9th ACM SIGPLAN International Workshop on Functional High-Performance and Numerical Computing (FHPNC 2021). New York, NY, USA: Association for Computing Machinery; 2021. p. 1-12. https://doi.org/10.1145/3471873.3472974
19. Shapiro J. Programming language challenges in systems codes: why systems programmers still use C, and what to do about it. In: Proceedings of the 3rd workshop on Programming languages and operating systems: linguistic support for modern operating systems (PLOS '06). New York, NY, USA: Association for Computing Machinery; 2006. 9 p. https://doi.org/10.1145/1215995.1216004
20. Guo Y., Chen Z., Chen L., Xu W., Li Y., Zhou Y., Xu B. Generating Python Type Annotations from Type Inference: How Far Are We? ACM Transactions on Software Engineering and Methodology. 2024;33(5):123. https://doi.org/10.1145/3652153
21. Ziegler A., Kalliamvakou E., Li X. A., Rice A., Rifkin D. Measuring GitHub Copilot's Impact on Productivity. Communications of the ACM. 2024;67(3):54-63. https://doi.org/10.1145/3633453
22. Silva T.C., Boos C.F., Junkes-Cunha M., Azevedo F.M. Automatization of a protocol for the postural assessment of patients with Chronic Obstructive Pulmonary Disease. In: AFRICON 2015. Addis Ababa, Ethiopia: IEEE Computer Society; 2015. p. 1-5. https://doi.org/10.1109/AFRCON.2015.7331918
23. Sonnekalb T., Heinze T.S., Mäder P. Deep security analysis of program code. Empirical Software Engineering. 2022;27(1):2. https://doi.org/10.1007/s10664-021-10029-x
24. Villalón-Fonseca R. The nature of security: A conceptual framework for integral-comprehensive modeling of IT security and cybersecurity. Computers & Security. 2022;120:102805. https://doi.org/10.1016/j.cose.2022.102805
25. Bouke M.A. Software Development Security. In: CISSP Exam Certification Companion. Certification Study Companion Series. Berkeley, CA: Apress; 2023. p. 645-725. https://doi.org/10.1007/979-8-8688-0057-3_10
Опубликована
2023-10-15
Как цитировать
SEMENOV, Yuri Alexeyevich. Еще один шаг к автоматизации разработки программного обеспечения. Современные информационные технологии и ИТ-образование, [S.l.], v. 19, n. 3, p. 670-675, oct. 2023. ISSN 2411-1473. Доступно на: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/986>. Дата доступа: 21 nov. 2024 doi: https://doi.org/10.25559/SITITO.019.202303.670-675.
Раздел
Исследования и разработки в области новых ИТ и их приложений