Применение алгоритмов на решётках в постквантовой криптографии

Аннотация

В статье приведён анализ подходов к разработке постквантовых алгоритмов, проведён обзор прогресса в сфере квантовых компьютеров и постквантовых криптографических систем шифрования. Рассматривается один из наиболее перспективных подходов который основывается на теории решёток. Приведены трудно решаемые задачи, на основе которых построены криптографические примитивы теории решёток. В статье боле подробно рассмотрена схема шифрования Goldreich Goldwasser Halevi, построенная на теории решёток. В статье представлен программный комплекс, который позволяет пользователю изучать основные функции схемы GGH: алгоритмы генерации ключей, алгоритмы шифрования и расшифровки сообщения. В статье указаны основные назначения модулей программного комплекса, описан пользовательский интерфейс программы. Также программный комплекс даёт возможность провести атаку на схему шифрования с помощью алгоритма Ленстра-Ленстра-Ловаса. Данное приложение может быть использовано как часть лабораторного комплекса при изучении криптографических средств защиты информации.

Сведения об авторах

Nikolai Alexeyevich Urban, Российский государственный социальный университет

магистрант кафедры информационных технологий, искусственного интеллекта и общественно-социальных технологий цифрового общества

Elena Anatolyevna Melnikova, Российский государственный социальный университет

доцент кафедры информационных технологий, искусственного интеллекта и общественно-социальных технологий цифрового общества, кандидат физико-математических наук

Литература

1. Mousa N., Shirazi F. A survey analysis of quantum computing adoption and the paradigm of privacy engineering. Security and Privacy. 2024;7(6):e419. https://doi.org/10.1002/spy2.419
2. King A.D., et al. Quantum critical dynamics in a 5,000-qubit programmable spin glass. Nature. 2023;617:61-66. https://doi.org/10.1038/s41586-023-05867-2
3. Kirichenko E.A. Quantum superiority as a threat to cybersecurity and post-quantum methods of cryptography. IMSIT Bulletin. 2021;(1):37-39. (In Russ., abstract in Eng.) EDN: KFKKBQ
4. Lukashev A.V., et al. Quantum aspiration as a threat to information security. International Journal of Information Technologies and Energy Efficiency. 2023;8(6):97-101. (In Russ., abstract in Eng.) EDN: IQDQNH
5. Nazarenko A.P., Dmitriev E.V. The current state of post-quantum cryptography in Russia and abroad. Synchronization systems, signal generation and processing. 2021;12(6):77-83. (In Russ., abstract in Eng.) EDN: FNKIVP
6. Minbaleev A.V., Berestnev M.A., Evsikov K.S. Ensuring information security of mining industry equipment in the quantum era. News of the Tula State University. Sciences of Earth.. 2023;(1):567-584. (In Russ., abstract in Eng.) https://doi.org/10.46689/2218-5194-2023-1-1-567-584
7. Dam D.-T., et al. A Survey of Post-Quantum Cryptography: Start of a New Race. Cryptography. 2023;7(3):40. https://doi.org/10.3390/cryptography7030040
8. Malygina E.S., et al. Basic approaches to the construction of post-quantum cryptosystems: description, comparative characteristics. Prikladnaya Diskretnaya Matematika. Supplement. 2023;(16):58-65. (In Russ., abstract in Eng.) https://doi.org/10.17223/2226308X/16/16
9. Kudryashov V.E., Fionov A.N. Problem of stability of modern cryptosystems against the background of the emergence of quantum computers. Interexpo GEO-Siberia. 2022;6:109-115. (In Russ., abstract in Eng.) https://doi.org/10.33764/2618-981X-2022-6-109-115
10. Kurokawa T., et al. Selection Strategy of F4-Style Algorithm to Solve MQ Problems Related to MPKC. Cryptography. 2023;7(1):10. https://doi.org/10.3390/cryptography7010010
11. Makarov A.O. Scheme of post-quantum aggregated signature with lazy verification based on multidimensional quadratic polynomials. IT Security(Russia). 2023;30(3):30-50. (In Russ., abstract in Eng.) https://doi.org/10.26583/bit.2023.3.02
12. Matveev G. Mathematical aspects of post-quantum cryptography. Science and Innovation. 2023;(8):52-56. (In Russ., abstract in Eng.) EDN: ELRJNN
13. Bukovshin V.A., et al. Analysis of modern post-quantum encryption algorithms. Scientific Review. Technical sciences. 2019;(4):36-44. (In Russ., abstract in Eng.) EDN: VGXBXK
14. Drzazga B., Krzywiecki Ł. Review of Chosen Isogeny-Based Cryptographic Schemes. Cryptography. 2022;6(2):27. https://doi.org/10.3390/cryptography6020027
15. Bandara H., et al. On Advances of Lattice-Based Cryptographic Schemes and Their Implementations. Cryptography. 2022;6(4):56. https://doi.org/10.3390/cryptography6040056
16. Nguyen T.-H., et al. A High-Efficiency Modular Multiplication Digital Signal Processing for Lattice-Based Post-Quantum Cryptography. Cryptography. 2023;7(4):46. https://doi.org/10.3390/cryptography7040046
17. Camacho-Ruiz E., et al. Timing-Attack-Resistant Acceleration of NTRU Round 3 Encryption on Resource-Constrained Embedded Systems. Cryptography. 2023;7(2):29. https://doi.org/10.3390/cryptography7020029
18. Orlov M.A., Nechaev K.A., Reznichenko S.A. Evaluation of statistical properties and cryptographic stability of random sequences obtained by an IBM quantum computer. IT Security(Russia). 2023;30(1):14-26. (In Russ., abstract in Eng.) https://doi.org/10.26583/bit.2023.1.01
19. Azman A.V., Rastamkhanov R.N., Tsukanov I.R. Authentication of the distribution of quantum keys using post-quantum cryptography. Izvestiya Tula State University. Technical sciences. 2023;(1):29-35. https://doi.org/10.24412/2071-6168-2023-1-29-35
20. Chizhov I.V., Popova E.A. Structural Attack on Mceliece-Sidelnikov Type Public-Key Cryptosystem Based on a Combination of Random Codes with Reed-Muller Codes. International Journal of Open Information Technologies. 2020;8(6):24-33. (In Russ., abstract in Eng.) EDN: NOIJEL
21. Sabani M.E., Savvas I.K., Poulakis D., Garani G., Makris G.C. Evaluation and Comparison of Lattice-Based Cryptosystems for a Secure Quantum Computing Era. Electronics. 2023;12(12):2643. https://doi.org/10.3390/electronics12122643
22. Karakaya A., Ulu A. A Review on Latest Developments in Post-Quantum Based Secure Blockchain Systems. In: 2023 11th International Symposium on Digital Forensics and Security (ISDFS). Chattanooga, TN, USA: IEEE Computer Society; 2023. p. 1-6. https://doi.org/10.1109/ISDFS58141.2023.10131840
23. Bos J., et al. CRYSTALS – Kyber: A CCA-Secure Module-Lattice-Based KEM. In: 2018 IEEE European Symposium on Security and Privacy (EuroS&P). London, UK: IEEE Computer Society; 2018. p. 353-367. https://doi.org/10.1109/EuroSP.2018.00032
24. Ortiz J.N., de Araujo R.R., Aranha D.F., Costa S.I.R., Dahab R. The Ring-LWE Problem in Lattice-Based Cryptography: The Case of Twisted Embeddings. Entropy. 2021;23(9):1108. https://doi.org/10.3390/e23091108
25. Yadav V.K., Verma S., Venkatesan, S. An efficient and light weight polynomial multiplication for ideal lattice-based cryptography. Multimedia Tools and Applications. 2021;80:3089-3120. https://doi.org/10.1007/s11042-020-09706-8
Опубликована
2024-03-31
Как цитировать
URBAN, Nikolai Alexeyevich; MELNIKOVA, Elena Anatolyevna. Применение алгоритмов на решётках в постквантовой криптографии. Современные информационные технологии и ИТ-образование, [S.l.], v. 20, n. 1, mar. 2024. ISSN 2411-1473. Доступно на: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/1059>. Дата доступа: 02 apr. 2025
Раздел
Теоретические и прикладные аспекты кибербезопасности