ФОРМИРОВАНИЕ КОМПОНЕНТОВ НЕЧЕТКОЙ БАЗЫ ЗНАНИЙ ДЛЯ ЦИФРОВЫХ ПЛАН-СХЕМ РЕЗУЛЬТАТОВ СПУТНИКОВОГО МОНИТОРИНГА СЕЛЬХОЗУГОДИЙ
Аннотация
Рассматриваются методы формирования компонентов нечеткой базы знаний в виде базовых цифровых план-схем территорий, определяемых морфологией спутниковых снимков, натурных данных и результатов субъективных оценок. Исследуются варианты реализации алгоритма идентификации повышенной достоверности с учетом нечеткости исходных данных. В ходе разработки модели современного мониторинга территорий в интересах экономического и социального развития населения, стало очевидным, что характеристики информации, с которой эта модель должна оперировать, не соответствует тем объектам, которые описывает «детерминированная» математика, то есть обладающим определенностью, точностью, полнотой, замкнутостью, непротиворечивостью и т. п. Человеко-машинные системы (а именно к таким и следует отнести систему космического мониторинга) и компоненты аппарата представления в них знаний, в реальности, отражают те свойства человеческой модели мира, которые не вписываются в детерминированную математику и характеризуются наличием «НЕ-факторов» -неполнотой, отсутствием точности, незамкнутостью, возможностью противоречий и т. д. В данной работе предлагается разработанный и успешно примененный на практике авторами способ учета НЕ-факторов при идентификации объектов земной поверхности. В рамках этого способа производят следующую последовательность действий: получают векторную трехмерную модель эталонного объекта путем геометрического построения, затем, изменяя ее положение в пространстве (поворот, отражение, масштабирование), получают ряд вышеуказанных параметров, которые сохраняют и используют в дальнейшем при распознавании для воссоздания соответствующего ракурса эталона объекта. В работе рассмотрено исследовано значение НЕ-факторов в процессе идентификации объектов земной поверхности в ходе мониторинга с использованием спутниковых данных, их состояния, предложен вариант преодоления негативного влияния различных видов нечеткости исходных данных мониторинга и повышения достоверности его результатов на принципах кворумного резервирования.
Литература
[2] Gvozdev D.S., Khramov V.V., Kovalev S.M., Golubenko E.V. Applied methods of identification in automated transport systems. Rostov-on-Don: RSTU, 2015. 186 p. (In Russian)
[3] Duda R.O., Hart P.E. Pattern Classification and Scene Analysis. N.-Y.: John Wiley & Sons, 1973. 218 р.
[4] Horn B.K.P. Zrenie robotov: Per. s angl. [Robots vision] B.K.P. Horn. M.: Mir, 1989. 487 p. (In Russian)
[5] Khramov V.V. The methods and models of detection and identification of extended objects on earth surface. Proceedings of the international scientifically-practical Conference “Vehicles: Science, Education, Manufacturing”. Rostov-on-Don: RSTU, pp. 244-248, 2016. (In Russian)
[6] Khramov V.V., Mitjasova О.Yu. Evaluation of the landscape properties resources mathematical morphology. Proceedings of the International scientific-practical Conference "Development perspectives and the effective functioning of transport complex in the South of Russia". Rostov-on-Don: RSTU, pp.144-146, 2015. (In Russian)
[7] Kramarov S.O., Khramov V.V., Romanchenko V.Yu. Prerequisites of the creation and development of the SMART project (satellite monitoring of agricultural development). Proceedings of the XIV International Conference “Prob-lems of economy and Informatization of education”. Tula, pp. 76-82, 2017. Available at: https://elibrary.ru/item.asp?id=29755383 (accessed 26.04.2018). (In Russian)
[8] Golubenko E.V., Khramov V.V., Romanchenko V.Y. Satellite monitoring of territories development as an active ergo technical system: architecture and properties. Proceedings of the International Conference “Transport: sci-ence, education, production”. Vol. 2. Rostov-on-Don: RSTU, pp. 31-35, 2017. (In Russian)
[9] Akperov I.G., Kramarov S.O., Lukasevich V.I., Povh V.I., Khramov V.V., Radchevskij A.N. Sposob formirovaniya cifrovoj plan-skhemy obektov selskohozyajstvennogo naznacheniya i sistema dlya ego realizacii [Method of forming a digital plan schema objects for agricultural purposes and the system for its realization]. Patent RF, no. 2612326, 2017.
[10] Akperov I.G., Kramarov S.O., Khramov V.V., Mitjasova O.Y., Povh V.I. Sposob identifikacii protyazhennyh obektov zemnoj poverhnosti [Method of identification of extended objects of the Earth's surface]. Patent RF, no. 2640331, 2017.
[11] Kramarov S.O., Smirnov Yu.A., Sokolov S.V., Taran V.N. Methods of analysis and synthesis system intelligently-adaptive management. Moscow: INFRA-M, 2016. 238 p. (In Russian)
[12] Dushkin R.V. Methods for receiving, presentation and processing knowledge with No-Factors. Moscow, 2011. 115 p. (In Russian)
[13] Narinjani A.S. Nedoopredeljonnost in submission and processing systems of knowledge. Izvestiya akademii nauk USSR. Tekhnicheskaya kibernetika = Engineering Cybernetics. 1986; 5:3-28. (In Russian)
[14] Zadeh L.A. Fuzzy Sets. Information and Control. 1965; 8(3):338-353. DOI: 10.1016/S0019-9958(65)90241-X
[15] Zadeh L.A. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans-actions on Systems, Man, and Cybernetics. 1973; SMC-3(1):28-44. DOI: 10.1109/TSMC.1973.5408575
[16] Zadeh L.A. Fuzzy Logic, Neural Networks, and Soft Computing. Communications of the ACM. 1994; 37(3):77-84. DOI: 10.1145/175247.175255
[17] Kramarov S., Temkin I., Khramov V. The principles of formation of united geo-informational space based on fuzzy triangulation. Procedia Computer Science. 2017; 120:835-843. DOI: 10.1016/j.procs.2017.11.315
[18] Khramov V. Majority unification of several sources of fuzzy information. Moscow: MIET, pp. 59-61, 1988. (In Russian)
[19] Khramov V.V. Especially the majority fuzzy information processing. Proceedings of the First Russian Conference «Spectral methods of information processing in research» (SPEKTR -2000). M., pp. 136-138, 2000. (In Russian)
[20] Groysman L., Lindenbaun M. Calculation of reliability of the systems with an arbitrary structure with a General reservation quorum. Izvestiya akademii nauk USSR. Tekhnicheskaya kibernetika = Engineering Cybernetics. 1974; 2:66-70. (In Russian)
[21] Gvozdev D.S., Khramov V.V. Estimate of probability recognition of the rolling stock units. Vestnik Rostovskogo Gosudarstvennogo Universiteta Putey Soobshcheniya. 2010; 4(40):61-66. Available at: https://elibrary.ru/item.asp?id=16398847 (accessed 26.04.2018). (In Russian)
[22] Akperov I., Khramov V., Lukascevich V., Mittjasova O. Fuzzy methods and algorithms in data mining and for-mation of digital plan-schemes in earth remote sensing. Procedia Computer Science. 2017; 120:120-125. DOI: 10.1016/j.procs.2017.11.218
[23] Khramov V.V. Developing a knowledge base for 3D-model railway network Russia. Proceedings of the Interna-tional scientifically-practical Conference “Transport-2015”. Rostov-on-Don: RSTU, pp. 131-133, 2015. (In Russian)
[24] Mayorov V.D., Khramov V.V. Heuristic ways of contour coding of models of information objects in robot vision. Vestnik Rostovskogo Gosudarstvennogo Universiteta Putey Soobshcheniya. 2014; 1(53):62-69. Available at: https://elibrary.ru/item.asp?id=21391925 (accessed 26.04.2018). (In Russian)
[25] Khramov V.V. Method of cognitive digital coding of complex information. Proceedings of the International scientifically-practical Conference “Transport-2006”. Vol. 2. Rostov-on-Don: RSTU, pp. 40-44, 2006.
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Редакционная политика журнала основывается на традиционных этических принципах российской научной периодики и строится с учетом этических норм работы редакторов и издателей, закрепленных в Кодексе поведения и руководящих принципах наилучшей практики для редактора журнала (Code of Conduct and Best Practice Guidelines for Journal Editors) и Кодексе поведения для издателя журнала (Code of Conduct for Journal Publishers), разработанных Комитетом по публикационной этике - Committee on Publication Ethics (COPE). В процессе издательской деятельности редколлегия журнала руководствуется международными правилами охраны авторского права, нормами действующего законодательства РФ, международными издательскими стандартами и обязательной ссылке на первоисточник.
Журнал позволяет авторам сохранять авторское право без ограничений. Журнал позволяет авторам сохранить права на публикацию без ограничений.
Издательская политика в области авторского права и архивирования определяются «зеленым цветом» в базе данных SHERPA/RoMEO.
Все статьи распространяются на условиях лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная, которая позволяет другим использовать, распространять, дополнять эту работу с обязательной ссылкой на оригинальную работу и публикацию в этом журналe.