ПЕРИОДИЧЕСКИЕ РЕШЕНИЯ НЕ МАЛОЙ АМПЛИТУДЫ КВАЗИЛИНЕЙНОГО УРАВНЕНИЯ КОЛЕБАНИЙ ДВУТАВРОВОЙ БАЛКИ
Аннотация
Исследуется задача о периодических по времени решениях квазилинейного уравнения вынужденных колебаний двутавровой балки с шарнирно опертыми концами. Нелинейное слагаемое и правая часть уравнения являются периодическими по времени функциями. В работе изучается случай, когда период времени соизмерим с длиной балки. Решение ищется в виде ряда Фурье. Для доказательства сходимости рядов Фурье и их производных исследуются собственные значения дифференциального оператора, соответствующего линейной части уравнения. Получены условия, при которых ядро дифференциального оператора является конечномерным и обратный оператор является вполне непрерывным на дополнении к ядру. Доказана лемма о существовании и регулярности решений соответствующей линейной задачи. Доказательство опирается на свойства сумм рядов Фурье. Доказана теорема о существовании и регулярности периодического решения, если нелинейное слагаемое удовлетворяет условию нерезонансности на бесконечности. Из условия нерезонансности вытекает тот факт, что при больших по модулю значениях аргумента график нелинейного слагаемого не пересекает прямых, угловой коэффициент которых является собственным значением линейной части уравнения. При доказательстве теоремы проводится априорная оценка решений соответствующего операторного уравнения и применяется принцип Лере-Шаудера о неподвижной точке. Получены дополнительные условия, при которых найденное в основной теореме периодическое решение является единственным.
Литература
[2] Collatz L. Eigenwertaufgaben mit technishen anwendungen. Akademishe Verlagsgesellschaft. Geest & Portig K.-G. Leipzig, 1963.
[3] Brezis H., Nirenberg L. Characterizations of the ranges of some nonlinear operators and applications to boundary value problems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 4. 1978; 5(2);225-326. Available at: http://www.numdam.org/item/ASNSP_1978_4_5_2_225_0/ (accessed 11.07.2018).
[4] Tanaka K. Infinitely many periodic solutions for the equation II. Transactions of the American Mathematical Society. 1988; 307(2):615-645. DOI: 10.2307/2001191
[5] Feireisl E. On the existence of periodic solutions of a semilinear wave equation with a superlinear forcing term. Czechoslovak Mathematical Journal. 1988; 38(1):78-87. Available at: http://eudml.org/doc/13683 (accessed 11.07.2018).
[6] Barby V., Pavel N.H. Periodic solutions to nonlinear one dimensional wave equation with x - dependent coefficients. Transactions of the American Mathematical Society. 1997; 349(5):2035-2048. DOI: 10.1090/S0002-9947-97-01714-5
[7] Berti M., Biasco L. Forced vibrations of wave equations with non-monotone nonlinearities. Annales de l'I.H.P. Analyse non linéaire. 2006; 23(4);439-474. DOI: 10.1016/j.anihpc.2005.05.004
[8] Baldi P., Berti M. Forced Vibrations of a Nongomogeneous String. SIAM Journal on Mathematical Analysis. 2008; 40(1):382-412. DOI: 10.1137/060665038
[9] Berti M., Bolle P. Cantor families of periodic solutions of wave equations with Ck nonlinearities. Nonlinear Differential Equations and Applications NoDEA. 2008; 15(1-2):247-276. DOI: 10.1007/s00030-007-7025-5
[10] Berti M., Biasco L. Procesi M. KAM for reversible derivative wave equations. Archive for Rational Mechanics and Analysis. 2014; 212(3):905-955. DOI: 10.1007/s00205-014-0726-0
[11] Rudakov I.A. Periodic solutions of a quasi-linear wave equation with variable coefficients. Matem. Sbornik. 2007; 198(7):91-108. (In Russian)
[12] Ji S. Time periodic solutions to a nonlinear wave equation with x - dependet coefficients. Calculus of Variations and Partial Differential Equations. 2008; 32(2):137-153. DOI: 10.1007/s00526-007-0132-7
[13] Ji S. Periodic solutions for one dimensional wave equation with bounded nonlinearity. Journal of Differential Equations. 2018; 264(9):5527-5540. DOI: 10.1016/j.jde.2018.02.001
[14] Ji S., Li Y. Time periodic solutions to the one-dimensional nonlinear wave equation. Archive for Rational Mechanics and Analysis. 2011; 199(2):435-451. DOI: 10.1007/s00205-010-0328-4
[15] Ji S., Gao Y., Zhu W. Existence and multiplicity of periodic solutions for Dirichlet-Neumann boundary value problem of a variable coefficient wave equation. Advanced Nonlinear Studies. 2016; 16(4):765 -773. DOI: 10.1515/ans-2015-5058
[16] Chen J. Periodic solutions to nonlinear wave equations with spatially dependent coefficients. Zeitschrift für angewandte Mathematik und Physik. 2015; 66(5):2095 -2107. DOI: 10.1007/s00033-015-0497-y
[17] Chen J., Zhang Z. Existence of periodic solutions to asymptotically linear wave equations in a ball. Calculus of Variations and Partial Differential Equations. 2017; 56(58):3-27. DOI: 10.1007/s00526-017-1154-4
[18] Yuan X. Quasi-periodic solutions of completely resonant nonlinear wave equations. Journal of Differential Equations. 2006; 230(1):213-274. DOI: 10.1016/j.jde.2005.12.012
[19] Feireisl E. Time periodic solutions to a semilinear beam equation. Nonlinear Analysis: Theory, Methods & Applications. 1988; 12(3):279-290. DOI: 10.1016/0362-546X(88)90114-9
[20] Eliasson L.H., Grebert B., Kuksin S.B. KAM for the nonlinear beam equation. Geometric and Functional Analysis. 2016; 26(6):1588-1715. DOI: 10.1007/s00039-016-0390-7
[21] Elishakoff I., Johnson V. Apparently the first closed-form solution of vibrating inhomogeneous beam with s tip mass // Journal of Sound and Vibration. 2005; 286(4-5):1057-1066. DOI: 10.1016/j.jsv.2005.01.050
[22] Elishakoff I., Pentaras D. Apparently the first closed-form solution of inhomogeneous elastically restrained vibrating beams. Journal of Sound and Vibration. 2006; 298(1-2):439-445. DOI: 10.1016/j.jsv.2006.05.028
[23] Wang Y., Si J. A result on quasi-periodic solutions of a nonlinear beam equation with a quasi-periodic forcing ter. Zeitschrift für angewandte Mathematik und Physik. 2012; 63(1):189-190. DOI: 10.1007/s00033-011-0172-x
[24] Chen B., Gao Y., Li Y. Periodic solutions to nonlinear Euler-Bernoulli beam equations. Dynamical systems (Math. DS). arXiv preprint. Vol. 1. 2018. 29 p. Available at: https://arxiv.org/abs/1804.03300v1 (accessed 11.07.2018).
[25] Rudakov I.A. Periodic Solutions of the Quasilinear Beam Vibration Equation With Homogeneous Boundary Conditions. Differential equations. 2012; 48(6):820-831. DOI: 10.1134/S0012266112060067
[26] Rudakov I.A. Periodic solutions of the quasilinear equation оf forced beam vibration with homogeneous boundary conditions. Izvestiya: Mathematics. 2015; 79(5):1064-1086. DOI 10.1070/IM2015v079n05ABEH002772
[27] Yamaguchi M. Existence of periodic solutions of second order nonlinear evolution equations and applications. Funkcialaj Ekvacioj. 1995; 38:519-538.
[28] Rudakov I.A. On periodic solutions of a beam vibration equation. Differential Equations. 2018; 54(5):687-695. DOI: 10.1134/S0012266118050117
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Редакционная политика журнала основывается на традиционных этических принципах российской научной периодики и строится с учетом этических норм работы редакторов и издателей, закрепленных в Кодексе поведения и руководящих принципах наилучшей практики для редактора журнала (Code of Conduct and Best Practice Guidelines for Journal Editors) и Кодексе поведения для издателя журнала (Code of Conduct for Journal Publishers), разработанных Комитетом по публикационной этике - Committee on Publication Ethics (COPE). В процессе издательской деятельности редколлегия журнала руководствуется международными правилами охраны авторского права, нормами действующего законодательства РФ, международными издательскими стандартами и обязательной ссылке на первоисточник.
Журнал позволяет авторам сохранять авторское право без ограничений. Журнал позволяет авторам сохранить права на публикацию без ограничений.
Издательская политика в области авторского права и архивирования определяются «зеленым цветом» в базе данных SHERPA/RoMEO.
Все статьи распространяются на условиях лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная, которая позволяет другим использовать, распространять, дополнять эту работу с обязательной ссылкой на оригинальную работу и публикацию в этом журналe.