Modeling Evolutionarily Stable Behavior of Zooplankton Using Pattern Recognition Technologies

Abstract

The problem of finding evolutionarily steady strategy of zooplankton daily vertical migrations is solved by maximizing fitness function. The problem for a class of the simplest data is solved analytically by methods of classical calculus of variations. Piecewise linear and piecewise quadratic approximations of functions of external factors are used. The exact expression of the vertical migration strategy is obtained on the basis of maximizing fitness function for rather simple approximations of input environmental factors. The program complex is created for recognition of qualitative characteristics of evolutionarily steady daily vertical strategy according to approximate data on environment factors (for processing of approximate experimental data generally). Recognition is carried out by means of artificial four-layer neural network. Input data for the program complex is the discrete values set of four external functions, four weight coefficients and also threshold value of vertical movements. Output information of the program complex is the answer concerning existence / lack of the expressed vertical movements of zooplankton for this environment with respect to this threshold value. Training of the network is carried out using the created samples base. The analytical solution of the problem of maximizing fitness function with the simplest approximations of external factors is used for the development of the training data. The training selection contains five types of the entrance functions corresponding to different ways of approximation of external factors. Test date was used for checking network. Test check shows high percent of the right answers of the trained neural network. Comparison of settlement strategy with real observed behavior of a zooplakton is carried out.

Author Biographies

Oleg Anatolevich Kuzenkov, National Research Lobachevsky State University of Nizhny Novgorod

Deputy Director of the Institute of Information Technology, Mathematics and Mechanics, Ph.D. (Phys.-Math.), Associate Professor

Galina Vladimirovna Kuzenkova, National Research Lobachevsky State University of Nizhny Novgorod

Associate Professor of the Department of Software Engineering, Institute of Information Technology, Mathematics and Mechanics, Ph.D. Chem.

References

[1] Hellweger F.L., Clegg R.J., Clark J.R., Plugge C.M., Kreft J.U. Advancing microbial sciences by individual-based modeling. Nature Reviews Microbiology. 2016; 14(7):461-471. (In Eng.) DOI: 10.1038/nrmicro.2016.62
[2] Broom M., Rychtár J. Game-Theoretical Models in Biology. ImprintChapman and Hall/CRC, New York, 2013. (In Eng.) DOI: 10.1201/b14069
[3] Abiodun O.I., Jantan A., Omolara A. E., Dada K.V., Mohamed N.A., Arshad H. State-of-the-art in artificial neural network applications: A survey. Heliyon. 2018; 4(11):e00938. (In Eng.) DOI: 10.1016/j.heliyon.2018.e00938
[4] Birch J. Natural selection and the maximization of fitness. Biological reviews of the Cambridge Philosophical Society. 2016; 91(3):712-727. (In Eng.) DOI: 10.1111/brv.12190
[5] Sainmont J., Andersen K.H., Thygesen U.H., Fiksen O., Visser A.W. An effective algorithm for approximating adaptive behavior in seasonal environments. Ecological Modelling. 2015; 311(C):20-30. (In Eng.) DOI: 10.1016/j.ecolmodel.2015.04.016
[6] Gyllenberg M., Metz J.H., Service R. When do optimisation arguments make evolutionary sense? In: Chalub F.A.C.C., Rodrigues J.F. (Eds.) The Mathematics of Darwin’s Legacy. Birkhauser, Basel, 2011, pp. 233-268. Available at: https://www.bio.vu.nl/thb/course/ecol/GyllMetz2011.pdf (accessed 14.08.2019). (In Eng.)
[7] Gavrilets S. Fitness landscapes and the origin of species (MPB-41). Princeton University Press, 2004. (In Eng.)
[8] Kuzenkov O., Ryabova E. Variational Principle for Self-replicating Systems. Mathematical Modelling of Natural Phenomena. 2015; 10(2):115-128. (In Eng.) DOI: 10.1051/mmnp/201510208
[9] Dieckmann U., Heino M., Parvinen K. The adaptive dynamics of function-valued traits. Journal of Theoretical Biology. 2006; 241(2):370-389. (In Eng.) DOI: 10.1016/j.jtbi.2005.12.002
[10] Parvinen K., Dieckmann U., Heino M. Function-valued adaptive dynamics and the calculus of variations. Journal of Mathematical Biology. 2006; 52(1):1-26. (In Eng.) DOI: 10.1007/s00285-005-0329-3
[11] Gorban A.N. Selection Theorem for Systems with Inheritance. Mathematical Modelling of Natural Phenomena. 2007; 2(4):1-45. (In Eng.) DOI: 10.1051/mmnp:2008024
[12] Kuzenkov O.A., Ryabova E.A. Limit possibilities of solution a hereditary control system. Differential Equations. 2015; 51(4):523-532. (In Eng.) DOI: 10.1134/S0012266115040096
[13] Kuzenkov O.A., Kuzenkova G.V. Optimal control of self-reproduction systems. Journal of Computer and Systems Sciences International. 2012; 51(4):500-511. (In Eng.) DOI: 10.1016/j.cnsns.2014.08.024
[14] Kuzenkov O., Morozov A. Towards the construction of a mathematically rigorous framework for the modelling of evolutionary fitness. Bulletin of Mathematical Biology. 2019; 81(11):4675-4700. (In Eng.) DOI: 10.1007/s11538-019-00602-3
[15] Clark C.W., Mangel M. Dynamic State Variable Models in Ecology: Methods and Applications. Oxford Series in Ecology and Evolution. Oxford: Oxford University Press, 2000. (In Eng.)
[16] Ohman M.D. The Demographic Benefits of Diel Vertical Migration by Zooplankton. Ecological Monographs. 1990; 60(3):257-281. (In Eng.) DOI: 10.2307/1943058
[17] Wilfried G., Bernhard Th. Vertical Migration of Zooplankton as an Evolutionarily Stable Strategy. The American Naturalist. 1988; 132(2):199-216. (In Eng.) DOI: 10.1086/284845
[18] Hays G. A review of the adaptive significance and ecosystem consequences of zooplankton diel vertical migrations. Hydrobiologia. 2003; 503(1-3):163-170. (In Eng.) DOI: 10.1023/B:HYDR.0000008476.23617.b0
[19] Kaiser M.J., Attrill M.J., et al. Marine Ecology: Processes, Symptoms and Impacts. Oxford: Oxford University Press, 2005. (In Eng.)
[20] Hansen A.N., Visser A.W. Carbon export by vertically migrating zooplankton: an optimal behavior model. Limnology and Oceanography. 2016; 61(2):701-710. (In Eng.) DOI: 10.1002/lno.10249
[21] Ducklow H.W., Steinberg D.K., Buesseler K.O. Upper Ocean Carbon Export and the Biological Pump. Oceanography. 2001; 14(4):50-58. (In Eng.) DOI: 10.5670/oceanog.2001.06
[22] Buesseler K.O., Lamborg C.H., Boyd P.W., et al. Revisiting Carbon Flux Through the Ocean's Twilight Zone. Science. 2007; 316(5824):567-570. (In Eng.) DOI: 10.1126/science.1137959
[23] Fiksen O., Giske J., Vertical distribution and population dynamics of copepods by dynamic optimization. ICES Journal of Marine Science. 1995; 52(3-4):483-503. (In Eng.) DOI: 10.1016/1054-3139(95)80062-X
[24] Bollens S.M., Frost B.W. Predator-induced diel vertical migration a planktonic copepod. Journal of Plankton Research. 1989; 11(5):1047-1065. (In Eng.) DOI: 10.1093/plankt/11.5.1047
[25] McLaren I.A. Effects of Temperature on Growth of Zooplankton, and the Adaptive Value of Vertical Migration. Journal of the Fisheries Research Board of Canada. 1963; 20(3):685-727. (In Eng.) DOI: 10.1139/f63-046
[26] Pearre Jr. Eat and run? The hunger/satiation hypothesis in vertical migration: History, evidence and consequences. Biological reviews of the Cambridge Philosophical Society. 2003; 78(1):1-79. (In Eng.) DOI: 10.1017/s146479310200595x
[27] Ringelberg J. Changes in Light Intensity and Diel Vertical Migration: A Comparison of Marine and Freshwater Environments. Journal of the Marine Biological Association of the United Kingdom. 1995; 75(1):15-25. (In Eng.) DOI: 10.1017/S0025315400015162
[28] Iwasa Y. Vertical Migration of Zooplankton: A Game Between Predator and Prey. The American Naturalist. 1982; 120(2):171-180. Available at: https://www.jstor.org/stable/2461215 (accessed 14.08.2019). (In Eng.)
[29] Morozov A.Yu., Arashkevich E.G. Towards a correct description of zooplankton feeding in models: Taking into account food-mediated unsynchronized vertical migration. Journal of Theoretical Biology. 2009; 262(2):346-360. (In Eng.) DOI: 10.1016/j.jtbi.2009.09.023
[30] Morozov A., Arashkevich E., Nikishina A., Solovyev K. Nutrientrich plankton communities stabilized via predator-prey interactions: revisiting the role of vertical heterogeneity. Mathematical Medicine and Biology. 2011; 28(2):185-215. (In Eng.) DOI: 10.1093/imammb/dqq010
[31] Morozov A., Best A. Predation on infected host promotes evolutionary branching of virulence and pathogens’ biodiversity. Journal of Theoretical Biology. 2012; 307:29-36. (In Eng.) DOI: 10.1016/j.jtbi.2012.04.023
[32] Amelina A., Sergeeva V.M., Arashkevich E.G., Drits A.V., Louppova N.E., Solovyev K.A. Feeding of the Dominant Herbivorous Plankton Species in the Black Sea and Their Role in Coccolithophorid Consumption. Oceanology. 2017; 57(6):806-816. (In Eng.) DOI: 10.1134/S000143701706011X
[33] Morozov A.Y., Kuzenkov O.A. Towards developing a general framework for modelling vertical migration in zooplankton. Journal of Theoretical Biology. 2016; 405:17-28. (In Eng.) DOI: 10.1007/s11538-019-00602-3
[34] Kuzenkov O. A. Investigation of a dynamical system of Radon probability measures. Differential Equations. 1996; 4:549-554. (In Eng.)
[35] Kuzenkov O.A., Novozhenin A.V. Optimal control of measure dynamics. Communications in Nonlinear Science and Numerical Simulation. 2015; 21(1-3):159-171. (In Eng.) DOI: 10.1016/j.cnsns.2014.08.024
[36] Kuzenkov O.A. Variacionnyj podhod v modelirovanii kolebanij zhivyh sistem [The variational approach in modeling vibrations of living systems]. In: V.N. Tkhay (Ed.) Proceedings of the XIV International Scientific Conference "Stability and vibrations of nonlinear control systems" (Pyatnitsky conference). IPU RAS, Moscow, 2018, pp. 247-250. Available at: https://www.elibrary.ru/item.asp?id=36370883 (accessed 14.08.2019). (In Russ.)
[37] Kuzenkov O.A., Ryabova E.A., Sokolov M.S. Opredelenie robastno-optimal'nyh periodicheskih migracij vodnyh organizmov na osnove variacionnogo principa otbora [Determination of robust-optimal periodic migrations of aquatic organisms based on the variational selection principle]. In: Proceedings of the XIII International Scientific Conference "Stability and vibrations of nonlinear control systems" (Pyatnitsky conference). IPU RAS, Moscow, 2016, pp. 226-228. Available at: https://www.elibrary.ru/item.asp?id=28299619 (accessed 14.08.2019). (In Russ.)
[38] Kuzenkov O.A., Ryabova E.A., Ryabov V.I. Informacionno-komp'yuternaya podderzhka raspoznavaniya evolyucionno ustojchivyh vertikal'nyh migracij planktona [Information and computer support for the recognition of evolutionarily stable vertical plankton migrations]. In: Proceedings of International Scientific Conference "Actual problems of applied mathematics, computer science and mechanics". Voronezh, VSU, 2018, pp. 814-817. Available at: https://www.elibrary.ru/item.asp?id=37036660 (accessed 14.08.2019). (In Russ.)
[39] Kuzenkov O., Morozov A., Kuzenkova G. Recognition of patterns of optimal diel vertical migration of zooplankton using neural networks. In: 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 2019, pp. 1-6. (In Eng.) DOI: 10.1109/IJCNN.2019.8852060
Published
2019-12-23
How to Cite
KUZENKOV, Oleg Anatolevich; KUZENKOVA, Galina Vladimirovna. Modeling Evolutionarily Stable Behavior of Zooplankton Using Pattern Recognition Technologies. Modern Information Technologies and IT-Education, [S.l.], v. 15, n. 4, p. 916-923, dec. 2019. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/581>. Date accessed: 31 may 2025. doi: https://doi.org/10.25559/SITITO.15.201904.916-923.
Section
Research and development in the field of new IT and their applications