Research of the Influence of External Conditions on the Optimal Value of the Valves Hydraulic Resistances of Heating Devices Installed in a Heating Indoor Area

Abstract

The article substantiates the relevance of the use of artificial intelligence methods for energy saving problems and provides examples of such works, including using the method of mathematical optimization. Several examples of topical optimization problems are given. The necessity of studying the landscape of the objective function when optimizing the hydraulic regime of the heating system of buildings is substantiated. The formulation of the problem of this study, including the formula for calculating the objective function, is given. A brief description of the optimization algorithms used (genetic algorithm and directed search algorithm) is given. A description of a computational experiment is given, during which the results of optimization of thermohydraulic modes of heated rooms under different conditions were investigated: outside air temperature, temperature and coolant flow rate. This study revealed that the optimal value of the hydraulic resistances of the valves of heating devices generally decreases with a decrease in the outside air temperature, as well as the temperature and flow rate of the heat coolant. Deviations from this pattern are observed under extreme conditions: too low outside air temperature, at low (for these conditions) coolant temperature or low coolant flow rate.

Author Biographies

Alexander Petrovich Shuravin, Kalashnikov Izhevsk State Technical University

Postgraduate Student

Sergey Valentinovich Vologdin, Kalashnikov Izhevsk State Technical University

Professor of the Department of Information Systems, Dr.Sci. (Engineering), Associate Professor

References

[1] Mogilenko A.V. Iskusstvennyj intellekt: metody, tekhnologii, primenenie v energetike. Analiticheskij obzor [Artificial Intelligence: Methods, Technologies, Application in Energy. Analytical Review]. Avtomatizacija i IT v jenergetike = Automation & IT in the Energy Industry. 2019; (7):22-29. Available at: https://www.elibrary.ru/item.asp?id=38496806 (accessed 17.08.2020). (In Russ., abstract in Eng.)
[2] Rozhentsova N.V., Pyatnikova M.V. Tendenciya razvitiya iskusstvennogo intellekta v energetike [Trends in the Development of Artificial Intelligence]. In: Nauka. Tehnologija. Proizvodstvo - 2019: Modelirovanie i avtomatizacija tehnologicheskih processov i proizvodstv, jenergoobespechenie promyshlennyh predprijatij. Materialy Vserossijskoj nauchno-metodicheskoj konferencii, posvjashhennoj 100-letiju obrazovanija Respubliki Bashkortostan [Proceedings of the All-Russian scientific and methodological conference dedicated to the 100th anniversary of the formation of the Republic of Bashkortostan]. USPTU Publ., Ufa; 2019. p. 133-135. Available at: https://www.elibrary.ru/item.asp?id=42323244 (accessed 17.08.2020). (In Russ., abstract in Eng.)
[3] Muromtsev D.Yu. et al. Software and technical implementation of intelligent energy-saving control systems based on industrial controllers. Journal of Physics: Conference Series. 2019; 1260(3):032027. (In Eng.) DOI: https://doi.org/10.1088/1742-6596/1260/3/032027
[4] Manusov V.Z., Matrenin P.V., Kirgizov A.K. Optimizaciya raspredeleniya kompensiruyushchih ustrojstv v sistemah elektrosnabzheniya na osnove roevogo intellekta [Swarm Optimization for Reactive Power Control in Electrical Grids]. Jenergobezopasnost' i jenergosberezhenie = Energy Safety and Energy Economy. 2017; (3):28-32. (In Russ., abstract in Eng.) DOI: https://doi.org/10.18635/2071-2219-2017-3-28-32
[5] Amado M., Poggi F., Amado A.R., Breu S. A Cellular Approach to Net-Zero Energy Cities. Energies. 2017; 10(11):1826. (In Eng.) DOI: https://doi.org/10.3390/en10111826
[6] Zaharia M., Pǎtraşcu A., Gogonea M.R., Tǎnǎsescu A., Popescu C. A Cluster Design on the Influence of Energy Taxation in Shaping the New EU-28 Economic Paradigm. Energies. 2017; 10(2):257. (In Eng.) DOI: https://doi.org/10.3390/en10020257
[7] Drechsler M. et al. Efficient and equitable spatial allocation of renewable power plants at the country scale. Nature Energy. 2017; 2(9):17124. (In Eng.) DOI: https://doi.org/10.1038/nenergy.2017.124
[8] Staples M.D., Malina R., Barrett S.R.H. The limits of bioenergy for mitigating global life-cycle greenhouse gas emissions from fossil fuels. Nature Energy. 2017; 2(2):16202. (In Eng.) DOI: https://doi.org/10.1038/nenergy.2016.202
[9] Glushko S.I., Obraztsov V.V., Kuzavko A.S. Primenenie algoritma murav'inyh kolonij dlya resheniya zadach optimizacii na grafe [Application of the Ant Colony Algorithm for Solving Optimization Problems on a Graph]. Prioritetnye nauchnye napravleniya: ot teorii k praktike [Priority Research Areas: from Theory to Practice]. 2012; (2):70-74. Available at: https://www.elibrary.ru/item.asp?id=20377914 (accessed 17.08.2020). (In Russ., abstract in Eng.)
[10] Stennikov V.A., Chemezov A.A. Application of a tree search algorithm and a annealing simulated method in optimization of heat network configuration and structure. Programmnye produkty i sistemy = Software & Systems. 2018; 31(2):387-395. (In Russ., abstract in Eng.) DOI: https://doi.org/10.15827/0236-235X.031.2. 387-395
[11] Zakharov A.A., Zakharova I.G., Romazanov A.R., Shirokhix A.V. Modelirovanie teplovogo rezhima i upravlenie teplosnabzheniem pomeshchenij umnogo zdaniya [The Thermal Regime Simulation and the Heat Management of a Smart Building]. Vestnik Tjumenskogo gosudarstvennogo universiteta. Fiziko-matematicheskoe modelirovanie. Neft', gaz, jenergetika = Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy. 2018; 4(2):105-119. (In Russ., abstract in Eng.) DOI: https://doi.org/10.21684/2411-7978-2018-4-2-105-119
[12] Basalaev A.A., Shnayder D.A. Metod optimizacii temperatury podavaemogo teplonositelya v sisteme centralizovannogo teplosnabzheniya zdanij na osnove imitacionnogo modelirovaniya [A Simulation-based Method for Supply Temperature Optimization in District Heating System]. Vestnik Ûžno-Uralʹskogo gosudarstvennogo universiteta. Seriâ, Kompʹûternye tehnologii, upravlenie, èlektronika = Bulletin of the South Ural State University. Series, Computer technologies, automatic control, radio electronics. 2017; 17(1):15-22. (In Russ., abstract in Eng.) DOI: https://doi.org/10.14529/ctcr170102
[13] Kong C., Jovanovic R., Bayram I.S., Devetsikiotis M. A Hierarchical Optimization Model for a Network of Electric Vehicle Charging Stations. Energies. 2017; 10(5):675. (In Eng.) DOI: https://doi.org/10.3390/en10050675
[14] Wang D., Hu Q., Tang J., Jia H., Li Y., Gao S., Fan M. A Kriging Model Based Optimization of Active Distribution Networks Considering Loss Reduction and Voltage Profile Improvement. Energies. 2017; 10(12):2162. (In Eng.) DOI: https://doi.org/10.3390/en10122162
[15] Sacaan R., Rudnick H., Lagos T., Ordóñez F., Navarro-Espinosa A., Moreno R. Improving power system reliability through optimization via simulation. In: 2017 IEEE Manchester PowerTech, Manchester; 2017. p. 1-6. (In Eng.) DOI: https://doi.org/10.1109/PTC.2017.7981193
[16] Dolan M., Davidson E., Kockar I., Ault G., McArthur S. Distribution power flow management utilising an online Optimal Power Flow technique. In: 2012 IEEE Power and Energy Society General Meeting. San Diego, CA, USA; 2012. p. 1-1. (In Eng.) DOI: https://doi.org/10.1109/PESGM.2012.6345287
[17] Baibakov S.A., Filatov K.V. Optimizaciya teplovyh setej po zatratam na transportirovanie teplonositelya (optimizaciya transportirovaniya tepla) [Optimization of Heating Networks for the Cost of Transporting the Coolant (Optimization of Heat Transportation). Energetik. 2012; (12):26-33. Available at: https://www.elibrary.ru/item.asp?id=18367092 (accessed 17.08.2020). (In Russ.)
[18] Novitsky N.N., Lutsenko A.V. Issledovanie zadach i metodov mnogokriterial'noj optimizacii gidravlicheskih rezhimov raspredelitel'nyh teplovyh setej [Study of objectives and methods of multiobjective optimization of hydraulic modes of heat distribution systems]. Nauchnyi vestnik Novosibirskogo gosudarstvennogo tekhnicheskogo universiteta = Science bulletin of the Novosibirsk state technical university. 2016; (3):131-145. (In Russ., abstract in Eng.) DOI: http://dx.doi.org/10.17212/1814-1196-2016-3-131-145
[19] Sabdenov K., Baitasov T. Optimal'noe (energoeffektivnoe) teplosnabzhenie zdaniya v sisteme central'nogo otopleniya [Optimal (energy efficient) heat supply to buildings in central heating system]. Izvestiya Tomskogo Politekhnicheskogo Univesiteta = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2015; 326(8):53-60. Available at: https://www.elibrary.ru/item.asp?id=25068679 (accessed 17.08.2020). (In Russ., abstract in Eng.)
[20] Shuravin A.P., Vologdin S.V. Primenenie geneticheskogo algoritma dlya optimizacii temperaturnogo rezhima pomeshchenij posredstvom regulirovaniya balansirovochnyh klapanov stoyakov [Application of the genetic algorithm for optimizing the room temperature regime through balancing valves of risers]. Intellektual'nye sistemy v proizvodstve = Intelligent Systems in Manufacturing. 2018; 16(2):113-120. (In Russ., abstract in Eng.) DOI: http://dx.doi.org/10.22213/2410-9304-2018-2-113-120
[21] Vologdin S.V., Jakimovich B.A. Metody i algoritmy povysheniya energoeffektivnosti mnogourovnevoj sistemy centralizovannogo teplosnabzheniya [Methods and algorithms for improving the energy efficiency of a multi-level district heating system]. Publishing ISTU named after M.T. Kalashnikov, Izhevsk. Available at: https://www.elibrary.ru/item.asp?id=25939508 (accessed 17.08.2020). (In Russ.)
[22] Shuravin A.P., Vologdin S.V. Comparison of the characteristics of the genetic algorithm and the method of coordinates search for optimization of temperature modes indoor areas. CEUR Workshop Proceedings. 2019; 2416:260-270. Available at: http://ceur-ws.org/Vol-2416/paper34.pdf (accessed 17.08.2020). (In Eng.)
[23] Kolyada A.V. Issledovanie landshaftov celevyh funkcij pri evolyucionnoj optimizacii: diss. ... kand. tekhn. nauk [Investigation of landscapes of target functions in evolutionary optimization: diss. ... Ph.D. (Engineering)]. Taganrog State Radio Engineering University, Taganrog; 2005. (In Russ.)
[24] Ostroukh E.N., Chernyshev Yu.O., Evich L.N., Panasenko P.A. On efficiency of methods and algorithms for solving optimization problems considering objective function specifics. Vestnik of Don State Technical University. 2019; 19(1):81-85. (In Russ., abstract in Eng.) DOI: https://doi.org/10.23947/1992-5980-2019-19-1-81-85
[25] Korolev S.A., Maykov D.V. Modifikacija algoritma roja chastic na osnove metoda analiza ierarhij [Modification of particle swarm algorithm based on hierarchy analysis method]. Proceedings of Voronezh State University. Series: Systems analysis and information technologies. 2019; (4):36-46. Available at: https://www.elibrary.ru/item.asp?id=41480287 (accessed 17.08.2020). (In Russ., abstract in Eng.)
[26] Rabiner L.R., Gold B. Theory and Application of Digital Signal Processing. Prentice Hall, First Edition; 1975. (In Eng.)
Published
2020-11-30
How to Cite
SHURAVIN, Alexander Petrovich; VOLOGDIN, Sergey Valentinovich. Research of the Influence of External Conditions on the Optimal Value of the Valves Hydraulic Resistances of Heating Devices Installed in a Heating Indoor Area. Modern Information Technologies and IT-Education, [S.l.], v. 16, n. 3, p. 598-609, nov. 2020. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/683>. Date accessed: 12 sep. 2025. doi: https://doi.org/10.25559/SITITO.16.202003.598-609.

Most read articles by the same author(s)