Изучение дисциплины вычислительные методы с помощью проектного подхода

  • Albert Ismailovich Egamov Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского http://orcid.org/0000-0002-3630-7237
  • Oksana Viktorovna Pristavchenko Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского http://orcid.org/0000-0002-5483-8314

Аннотация

В настоящей статье рассказывается об опыте освоения дисциплины "Вычислительные методы" студентами направления подготовки 02.03.02 Фундаментальная информатика и информационные технологии Нижегородского государственного университета им. Н.И. Лобачевского с помощью проектного подхода, где студент под общим руководством наставника самостоятельно осуществляет исследовательскую работу, повторяя и закрепляя теоретические знания и формируя умения и навыки общепрофессиональных и профессиональных компетенций в том числе IT-направления. Именно элементы исследовательского обучения способствуют более активной самостоятельной работе студента, что не всегда является успешно достижимым в вузах и потому считается актуальным в преподавательской деятельности.
Далее в статье обосновывается выбор тем. Следом авторы описывают ход реализации одной из работ: задачей нахождения оптимального управления с начально-краевой задачей для уравнения гиперболического типа и фазовым ограничением. В ней показан переход к интегрально-дифференциальному уравнению для автоматического удовлетворения фазового ограничения. Студент, применяя один из методов нахождения минимума, находит оптимальное значение усеченной задачи, получая, тем самым, минимизирующую последовательность. Доказывается сходимость последовательности оптимальных значений целевых функций усеченных задач к оптимальному значению исходной.  Представлены скриншоты программы, написанной популярном алгоритмическом языке Python, выполненной одним из студентов. Таким образом, авторы дают описания своего опыта слияния в образовательном процессе науки и IT-индустрии, где одно без другого не сможет подготовить конкурентоспособного выпускника.

Сведения об авторах

Albert Ismailovich Egamov, Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

доцент кафедры дифференциальных уравнений, математического и численного анализа, Институт информационных технологий, математики и механики, кандидат физико-математических наук

Oksana Viktorovna Pristavchenko, Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского

учебный мастер кафедры дифференциальных уравнений, математического и численного анализа, Институт информационных технологий, математики и механики

Литература

1. Pohjolainen S., Myllykoski T., Mercat Ch., Sosnovsky S. Modern Mathematics Education for Engineering Curricula in Europe: A Comparative Analysis of EU, Russia, Georgia and Armenia. Birkhäuser Basel: Cham Springer International Publishing; 2018. 196 p. (In Eng.) DOI: https://doi.org/10.1007/978-3-319-71416-5
2. Gonzales H., Wangenaar R. Universities contribution to Bologna Process. Bilbao: University of Deusto; 2008. 164 p. (In Eng.)
3. Smirnova E.V., Clark R.P. Handbook of Research on Engineering Education in a Global Context. University of Warwick, UK: IGI Global; 2018. 543 p. (In Eng.) DOI: https://doi.org/10.4018/978-1-5225-3395-5
4. Baartman L.K.J., Bastiaens T. J., Kirschner P.A., Van der Vleuten C.P.M. Teachers’ opinions on quality criteria for Competency Assessment Programs. Teaching and Teacher Education. 2007; 23(6):857-867. (In Eng.) DOI: https://doi.org/10.1016/j.tate.2006.04.043
5. Gergel V.P., Gugina E.V., Kuzenkov O.A. Razrabotka obrazovatel'nogo standarta Nizhegorodskogo gosuniversiteta po napravleniju "Fundamental'naja informatika i informacionnye tehnologii" [Development of the Educational Standard of the Nizhny Novgorod State University in the direction of "Fundamental Informatics and Information Technologies"]. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2010; 6(1):51-60. Available at: https://www.elibrary.ru/item.asp?id=24172758 (accessed 16.03.2021). (In Russ.)
6. Kuzenkov O.A., Zakharova I.V. Mathematical Programs Modernization Based on Russian and International Standards. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2018; 14(1):233-244. (In Eng.) DOI: https://doi.org/10.25559/SITITO.14.201801.233-244
7. Bednyi B.I., Kuzenkov O.A. Integrated programmes for master’s degree and PhD students. Integratsiya obrazovaniya = Integration of Education. 2017; 21(4):637-650. (In Russ., abstract in Eng.) DOI: https://doi.org/10.15507/1991-9468.089.021.201704.637-650
8. Zakharova I., Kuzenkov O. Experience in implementing the requirements of the educational and professional standards in the field of ICT in Russian Education. CEUR Workshop Proceedings. 2016; 1761:17-31. Available at: http://ceur-ws.org/Vol-1761/paper02.pdf (accessed 16.03.2021). (In Russ., abstract in Eng.)
9. Petrova I.Yu. Kljuchevye orientiry dlja razrabotki i realizacii obrazovatel'nyh programm v predmetnoj oblasti "Informacionno-kommunikacionnye tehnologii" [Key reference points for development and implementation of educational programs in subject domain "Information and Communication Technologies"]. In: Ed. by I. Djukarev, E. Karavaeva, E. Kovtun. Universitet Deusto, Bilbao; 2013. 86 р. Available at: http://www.deusto-publicaciones.es/deusto/pdfs/tuning/tuning37.pdf (accessed 16.03.2021). (In Russ.)
10. Kuzenkov O.A., Zakharova I.V. The relationship between the MetaMath project and the ongoing reform of higher education in Russia. Educational Technology & Society. 2017; 20(3):279-291. Available at: https://www.elibrary.ru/item.asp?id=29438091 (accessed 16.03.2021). (In Russ., abstract in Eng.)
11. Bednyi A., Erushkina L., Kuzenkov O. Modernising educational programmes in ICT based on the Tuning methodology. Tuning Journal for Higher Education. 2014; 1(2):387-404. (In Eng.) DOI: https://doi.org/10.18543/ tjhe-1(2)-2014pp387-404
12. Kuzenkov O. A., Tikhomirov V.V. Ispol'zovanie metodologii TUNING pri razrabotke nacional'nyh ramok kompetencij v oblasti IKT [The use of the TUNING methodology in the development of national competence frameworks in the field of ICT]. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2013; (9):77-87. Available at: https://www.elibrary.ru/item.asp?id=23020512 (accessed 16.03.2021). (In Russ.)
13. Zakharova I.V., et al. Using SEFI framework for modernization of requirements system for mathematical education in Russia. Proceedings of the 44th SEFI Annual Conference 2016 Engineering Education on Top of the World: Industry University Cooperation (SEFI 2016). Finland: SEFI; 2016. 15 p. Available at: http://sefibenvwh.cluster023.hosting.ovh.net/wp-content/uploads/2017/09/zakharova-using-sefi-framework-for-modernization-of-requirements-system-for-mathematical-education-155.pdf (accessed 16.03.2021). (In Eng.)
14. Kuzenkov O.A., Kuzenkova G.V., Biryukov R.S. Razrabotka fonda ocenochnyh sredstv s ispol'zovaniem paketa Math-Bridge [Development of a fund of assessment tools using the Math-Bridge package]. Educational Technology & Society. 2016; 19(4):465-478. Available at: https://www.elibrary.ru/item.asp?id=27163069 (accessed 16.03.2021). (In Russ.)
15. Kuzenkov O.A., Grezina A.V., Shestakova N.V., Karpenko S.N. Opyt razrabotki obrazovatel'nyh standartov (v sootvetstvii s FGOS 3 ++) [Experience in the development of educational standards (in accordance with the Federal State Educational Standards 3 ++)]. Educational Technology & Society. 2020; 23(1):159-169. Available at: https://www.elibrary.ru/item.asp?id=41828165 (accessed 16.03.2021). (In Russ.)
16. 28 Egamov A.I. The Existence and Uniqueness Theorem for Initial-Boundary Value Problem of the Same Class of Integro-Differential PDEs. In: Ed. by I. Bychkov, V. Kalyagin, P. Pardalos, O. Prokopyev. Network Algorithms, Data Mining, and Applications. NET 2018. Springer Proceedings in Mathematics & Statistics. 2020; 315:173-186. Springer, Cham. (In Eng.) DOI: https://doi.org/10.1007/978-3-030-37157-9_12
17. Egamov A.I. Postroenie minimizirujushhej posledovatel'nosti dlja optimizacionnoj zadachi kolebanija struny s fazovym ogranicheniem [Construction of a minimizing sequence for an optimization problem of oscillating a string with a phase constraint]. In: Ed. by V. P. Gergel. Proceedings of the XX International Conference on Mathematical modeling and supercomputer technologies. Nizhny Novgorod: UNN Press; 2020. p. 417-423. Available at: https://www.elibrary.ru/item.asp?id=44388176 (accessed 16.03.2021). (In Russ.)
18. Kuzenkov O., Kuzenkova G., Kiseleva T. Computer support of educational research projects in the field of mathematical modeling of selection processes. Educational Technology & Society. 2019; 22(1):152-163. Available at: https://www.elibrary.ru/item.asp?id=37037790 (accessed 16.03.2021). (In Russ., abstract in Eng.)
19. Tikhonov A.N., Samarskii A.A. Equations of Mathematical Physics. International Series of Monographs on Pure and Applied Mathematics, vol. 39. Pergamon Press, Oxford, New York; 1963. 765 p. (In Eng.)
20. Vladimirov V.S., Zharinov V.V. Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Fizmatlit, Moscow; 2004. 398 p. (In Russ.)
21. Kuzenkov O.A., Ryabova E.A. Proektnyj podhod pri izuchenii matematicheskogo analiza studentami inzhenernyh special'nostej [Project approach in the study of mathematical analysis by students of engineering specialties]. Educational Technology & Society. 2019; 22(4):225-232. Available at: https://www.elibrary.ru/item.asp?id=41233717 (accessed 16.03.2021). (In Russ.)
22. Egamov A.I. Construction of a minimizing sequence for the problem of cooling of the given segments of the rod with phase constraint. Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki. 2020; 162(2):193-210. (In Russ., abstract in Eng.) DOI: https://doi.org/10.26907/2541-7746.2020.2.193-210
23. Kouzenkov O.A., Agamov A.I. The optimal control for nonlinear distributed system described by an integro-differential equation. 1997 1st International Conference, Control of Oscillations and Chaos Proceedings (Cat. No.97TH8329). IEEE Press, St. Petersburg, Russia; 1997; 1:177-178. (In Eng.) DOI: https://doi.org/10.1109/COC.1997.633534
24. Burago P.N., Egamov A.I. On the connection between solutions of initial boundary-value problems for a some class of integro-differential PDE and a linear hyperbolic equation. Zhurnal Srednevolzhskogo Matematicheskogo Obshchestva = Middle Volga Mathematical Society Journal. 2019; 21(4):413-429. (In Russ., abstract in Eng.) DOI: https://doi.org/10.15507/2079-6900.21.201904.413-429
25. Skvortsov L.M. Chislennoe reshenie obyknovennyh differencial'nyh uravnenij i differencial'no-algebraicheskih uravnenij [Numerical solution of ordinary differential equations and differential-algebraic equations]. DMK Press, Moscow; 2018. 230 p. (In Russ.)
26. Kochenderfer M.J., Wheeler T.A. Algorithms for Optimization. The MIT Press, Cambridge, MA; 2018. 520 p. (In Eng.)
27. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. Springer Series in Statistics. Springer, New York, NY; 2009. 745 p. (In Eng.) DOI: https://doi.org/10.1007/978-0-387-84858-7
28. Vasilyev F.P., Ishmukhametov A.Z., Potapov M.M. Obobshchennyi metod momentov v zadachakh optimal’nogo upravleniya [Generalized Method of Moments in Optimal Control Problems]. MSU Publ., Moscow; 1989. 142 p. (In Russ.)
29. Egorov A.I. Optimal'noe upravlenie teplovymi i diffuzionnymi processami [Optimal control of thermal and diffusion processes]. Nauka, Moscow; 1979. 464 p. (In Russ.)
30. Kuzenkov O.A., Novozhenin A.V. Optimal control of measure dynamics. Communications in Nonlinear Science and Numerical Simulation. 2015; 21(1-3):159-171. (In Eng.) DOI: https://doi.org/10.1016/j.cnsns.2014.08.024
31. Harrison M. Illustrated Guide to Python 3: A Complete Walkthrough of Beginning Python with Unique Illustrations Showing how Python Really Works. CreateSpace Independent Publishing Platform; 2017. 256 p. (In Eng.)
32. Pilnenskiy N., Smetannikov I. Feature Selection Algorithms as One of the Python Data Analytical Tools. Future Internet. 2020; 12(3):54. (In Eng.) DOI: https://doi.org/10.3390/fi12030054
Опубликована
2021-06-30
Как цитировать
EGAMOV, Albert Ismailovich; PRISTAVCHENKO, Oksana Viktorovna. Изучение дисциплины вычислительные методы с помощью проектного подхода. Современные информационные технологии и ИТ-образование, [S.l.], v. 17, n. 2, p. 404-414, june 2021. ISSN 2411-1473. Доступно на: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/747>. Дата доступа: 21 nov. 2024 doi: https://doi.org/10.25559/SITITO.17.202102.404-414.
Раздел
ИТ-образование: методология, методическое обеспечение