Development of a Simulator of an Automated Workplace of a Technologist for the Design of Technological Processes of Magnetic Pulse Metal Working

Abstract

The article presents a description of a computer simulator of a technologist's automated workplace for designing technological processes of magnetic-pulse metal processing (MPMP). The simulator was based on an automated information system (AIS) for calculating the parameters of the MPMP processes, which includes a new universal method for calculating the parameters of the MPMP. This method has 4 stages. At the first stage, the mechanical characteristics of the process are calculated, which makes it possible to determine the specific features of the technological operation being performed. These features refer to the work of deformation of the workpiece, the kinetic energy of the deformed section of the workpiece, the magnitude of the pressure of the pulsed magnetic field (PMF), the relationship between the amplitude value of the PMF pressure and the oscillation frequency of the discharge current. At the second stage, a magnetic-pulse installation (MPI) is selected. At the third stage, the parameters of the inductor system are calculated, including the choice of the pitch and the number of turns of the inductor. The initial data for the calculation are the length of the inductor, the intrinsic inductance of the MPI, the dimensions of the workpiece, and the specific electrical conductivity of the materials of the inductor and the workpiece. The fourth stage is the calculation of the MPMP mode, which consists in determining the discharge energy MPI. The LS-DYNA software package is used to visualize the process. The computer simulator is intended for use in the educational process and in production for retraining of personnel, advanced training or certification.

Author Biographies

Ekaterina Arkadyevna Gromovaya, Samara National Research University named after academician S.P. Korolev

Postgraduate student

Irina Nikolaevna Khaimovich, Samara National Research University named after academician S.P. Korolev

Professor of the Metal Press Department, Dr. Sci. (Tech.), Professor

References

1. Psyk V., Risch D., Kinsey B.L., Tekkaya A.E., Kleiner M. Electromagnetic forming ‒ A review. Journal of Materials Processing Technology. 2011; 211(5):787-829. (In Eng.) DOI: https://doi.org/10.1016/j.jmatprotec.2010.12.012
2. Glushchenkov V., Karpukhin V., Pesotsky V. Achievements in magnetic pulse welding and assembly of tubular structures. Proceedings of The International Conference on the Joining of Materials: JOM-6. European Institute for the Joining of Materials, Helsingor, Denmark; 1993. p. 473-484. (In Eng.)
3. Chernikov D., Glushchenkov V., Suleimanova I., Nikitin V., Nikitin K. Improvements in the method of magnetic-pulse processing of aluminum melts. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2014; 16(6):256-262. Available at: https://www.elibrary.ru/item.asp?id=22957781 (accessed 29.07.2021). (In Russ., abstract in Eng.)
4. Bely I.V., Ostroumov G.V., Fertik S.M. Davlenie na tonkostennuju zagotovku pri obrabotke ee impul'snym magnitnym polem [Pressure on a thin-walled workpiece when processing it with a pulsed magnetic field]. Bulletin of the National Technical University "KhPI" A series of "Magnetic Pulse Metal Processing". 1971; (1):3-15. (In Russ.)
5. Lebedev G.M., Ovchinnikov Yu.M., et al. Raschet parametrov magnitnogo molota [Calculation of the parameters of the magnetic hammer]. Voprosy proizvodstva letatel'nyh apparatov: Trudy Kujbyshevskogo aviacionnogo instituta. 1970; (41):18-22. (In Russ.)
6. Chernikov D., Karpukhin V., Glushchenkov V. Study of the process of electromagnetic forming with consideration for the effect of magnetic field penetration through the workpiece. Izvestia of Samara Scientific Center of the Russian Academy of Sciences. 2020; 22(2):75-80. (In Russ., abstract in Eng.) DOI: https://doi.org/10.37313/1990-5378-2020-22-2-75-80
7. Karpuhin V. Determination of parameters of pulse-magnetic forming. Vestnik of Samara State Aerospace University named after academician S. P. Korolev (National Research University). 2012; (5-1):228-232. Available at: https://www.elibrary.ru/item.asp?id=21078106 (accessed 29.07.2021). (In Russ., abstract in Eng.)
8. Belyaeva I.A., Glushchenkov V.A. Hybrid Static and Magnetic-Pulsed Loading in Sheet Stamping. Russian Engineering Research. 2020; 40(3):214-217. (In Eng.) DOI: https://doi.org/10.3103/S1068798X20030077
9. Rodenko N.A., Zhukova V.A., Vasilyeva T.I., Glushchenkov V.A., Belyaeva I.A. Changes in the Structure of the Benzylpenicillin Sodium Salt Molecule under the Pulsed Magnetic Field. Journal of Biomedical Photonics and Engineering. 2021; 7(1): 010305. (In Eng.) DOI: https://doi.org/10.18287/JBPE21.07.010305
10. Glushchenkov V.A., Vasilyeva T.I., Purigin P.P., Belyaeva I.A., Rodenko N.A., Madyarova A.K., Jusupov R.Ju. Changes in the Antibacterial Activity of Benzylpenicillin Exposed to a Pulsed High-Intensity Magnetic Field. BIOPHYSICS. 2019; 64(2):214-223. (In Eng.) DOI: https://doi.org/10.1134/S0006350919020088
11. Ershov E.V., Vinogradova L.N., Chelnokova S.V., Martyugov A.S., Computer simulator for installation and removing of part from machine DIP-400. Cherepovets State University Bulletin. 2019; (1):20-26. (In Russ., abstract in Eng.) DOI: https://doi.org/10.23859/1994-0637-2019-1-88-2
12. Orlov A.A., Timchenko S.N., Sidorenko V.S. Arhitektura i principy postroenija komp'juternogo trenazhera razdelitel'nogo proizvodstva [Architecture and principles of building a computer simulator for separation production]. Perspektivnye Materialy. 2013; (S14):78-82. Available at: https://www.elibrary.ru/item.asp?id=20282240 (accessed 29.07.2021). (In Russ.)
13. Khaimovich I.N., Khaimovich A.I., Kovalkova E.A. Аutomatisation of Calculation Method of Technological Parameters of Wiredrawing with Account of Speed Factor and Material Properties. Solid State Phenomena. 2020; 299:552-558. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/SSP.299.552
14. Khaimovich I.N., Frolov M.A. Improvement of Technological Process of Multiproduct Production on the Bases of Simulation Modeling of Production Unit. Key Engineering Materials. 2016; 684:487-507. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/KEM.684.487
15. Khaimovich I.N., Khaimovich A.I. Сomputer-Aided Engineering of the Process of Injection Molding Articles Made of Composite Materials. Key Engineering Materials. 2017; 746:269-274. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/KEM.746.269
16. Khaimovich I.N. CAD system of design and engineering provision of die forming of compressor blades for aircraft engines. IOP Conference Series: Earth and Environmental Science. 2017; 87(8):082024. (In Eng.) DOI: https://doi.org/10.1088/1755-1315/87/8/082024
17. Litvinov V., Chernikov D., Yashkova A. Avtomatizirovannaja informacionnaja sistema rascheta parametrov processov magnitno-impul'snoj obrabotki metallov [Automated information system for calculating the parameters of the processes of magnetic-pulse metal processing]. Proceedings of the International Scientific Conference on Advanced Information Technologies and Scientific Computing (PIT 2017). Samara Scientific Center of RAS, Samara; 2017. p. 368-372. Available at: https://www.elibrary.ru/item.asp?id=29194737 (accessed 29.07.2021). (In Russ.)
18. Nikitin K.V., Amosov E.A., Nikitin V.I., Glushchenkov V.A., Chernikov D.G. Teoreticheskoe i eksperimental’noe obosnovanie obrabotki rasplavov na osnove alyuminiya impul’snymi magnitnymi polyami [Theoretical and experimental substantiation of treatment of aluminum-based melts by pulsed magnetic fields]. Izvestiya Vuzov. Tsvetnaya Metallurgiya = Izvestiya. Non-Ferrous Metallurgy. 2015; (5):11-19. (In Russ., abstract in Eng.) DOI: https://dx.doi.org/10.17073/0021-3438-2015-5-11-19
19. Pandelidis I., Zou Q. Optimization of injection molding design. Polymer Engineering & Science. 1990; 30(15):873-882. (In Eng.) DOI: https://doi.org/10.1002/pen.760301502
20. Batygin Yu.V., Chaplygin E.A., Sabokar O.S. Magnetic pulsed processing of metals for advanced technologies of modernity – a brief review. Electrical Engineering & Electromechanics. 2016; (5):35-39. (In Eng.) DOI: https://doi.org/10.20998/2074-272X.2016.5.05
21. Yin Y.F. Modeling and Analysis of Process Parameters for Plastic Injection Molding of Base-Cover. Advanced Materials Research. 2012; (602-604):1930-1933. (In Eng.) DOI: https://doi.org/10.4028/www.scientific.net/amr.602-604.1930
22. Fetecau C., Postolache I., Stan F. Numerical and Experimental Study on the Injection Moulding of a Thin-Wall Complex Part. Proceedings of the ASME 2008 International Manufacturing Science and Engineering Conference collocated with the 3rd JSME/ASME International Conference on Materials and Processing. ASME 2008 International Manufacturing Science and Engineering Conference. Vol. 1. ASME, Evanston, Illinois, USA; 2008. p. 85-93. (In Eng.) DOI: https://doi.org/10.1115/MSEC_ICMP2008-72196
23. Min B.H. A study on quality monitoring of injection-molded parts. Journal of Materials Processing Technology. 2003; 136(1-3):1-6. (In Eng.) DOI: https://doi.org/10.1016/S0924-0136(02)00445-4
24. Zhou X., Zhang Y., Mao T., Zhou H. Monitoring and dynamic control of quality stability for injection molding process. Journal of Materials Processing Technology. 2017; 249:358-366. (In Eng.) DOI: https://doi.org/10.1016/j.jmatprotec.2017.05.038
25. Baaten T., Debroux N., De Waele W., Faes K. Joining of Copper to Brass Using Magnetic Pulse Welding. Proceedings of the 4th International Conference on High Speed Forming ‒ ICHSF 2010. Columbus, Ohio, USA; 2010. p. 84-96. (In Eng.) DOI: http://dx.doi.org/10.17877/DE290R-8664
Published
2021-09-30
How to Cite
GROMOVAYA, Ekaterina Arkadyevna; KHAIMOVICH, Irina Nikolaevna. Development of a Simulator of an Automated Workplace of a Technologist for the Design of Technological Processes of Magnetic Pulse Metal Working. Modern Information Technologies and IT-Education, [S.l.], v. 17, n. 3, p. 649-657, sep. 2021. ISSN 2411-1473. Available at: <http://sitito.cs.msu.ru/index.php/SITITO/article/view/793>. Date accessed: 06 jan. 2026. doi: https://doi.org/10.25559/SITITO.17.202103.649-657.
Section
Scientific software in education and science